Regulatory T cell subsets in peripheral blood of HIV-infected patients with discordant response to antiretroviral therapy
https://doi.org/10.15789/1563-0625-RTC-1770
Abstract
The discordant immunologic response to antiretroviral therapy in HIV-infected patients is characterized by ineffective recovery of CD4+T cell counts. The role of regulatory T cells in discordant response to the treatment remains poorly understood both due to the lack of specific and reliable markers of regulatory T cells and their subset’s heterogeneity. In the present work, we studied two groups of HIV-infected patients receiving antiretroviral therapy for more than two years and thus having their viral load suppressed (less than 50 copies of HIV per ml of blood): those who responded (n = 22) and did not respond (n = 19) to the treatment with an increase in their CD4+T cell counts. The control group consisted of uninfected volunteers (n = 23). The CD4+T lymphocyte subset composition was examined by flow cytometry. It was shown that in HIV-infected patients with ineffective immune recovery compared with subjects having a standard response to antiretroviral therapy, the absolute counts of regulatory T cells, as well as CD4+T lymphocytes, was reduced in all maturational subsets: naive cells, central memory, effector memory, and terminally differentiated effectors. That differed immunological nonresponders from patients with a standard response to the treatment, which had a shortage only in naive and central memory regulatory T cell subsets. It is important to note that in HIV-infected patients with a discordant response to therapy, the proportion of effector memory regulatory T cells, that posses the most prominent suppressive capacity, was significantly increased compared with that in other CD4+T lymphocyte subsets. Apparently, despite of regulatory T cell deficiency, in HIV-infected patients with a discordant response to the treatment, the regulatory T cell pool size is big enough to control CD4+T lymphocyte activation. Nevertheless, the number of regulatory T cells may not be sufficient to suppress the over-activation of immunocompetent cells that are not in the CD4+T lymphocyte subset. This can partly explain the increased cell activation level in patients with a discordant response to therapy as compared with those who have a standard respond to the treatment.
About the Authors
L. B. KorolevskayaRussian Federation
Korolevskaya Larisa B. - PhD (Medicine), Research Associate, Laboratory of Ecological Immunology.
614081, Perm, Golev str., 13, Phone: 7 (342) 280-83-34
Competing Interests: not
E. V. Saidakova
Russian Federation
PhD (Biology), Senior Research Associate, Laboratory of Ecological Immunology.
Perm
Competing Interests: not
N. G. Shmagel
Russian Federation
PhD, MD (Medicine), Clinical Immunologist.
Perm
Competing Interests: not
K. V. Shmagel
PhD, MD (Medicine), Head, Laboratory of Ecological Immunology.
Perm
Competing Interests: not
References
1. Autran B., Carcelaint G., Li T. S., Gorochov G., Blanc C., Renaud M., Durali M., Mathez D., Calvez V., Leibowitch J., Katlama C., Debre P. Restoration of the immune system with anti-retroviral therapy. Immunol. Lett., 1999, Vol. 66, no. 1-3, pp. 207-211.
2. Gaardbo J. C., Hartling H. J., Gerstoft J., Nielsen S. D. Incomplete immune recovery in HIV infection: mechanisms, relevance for clinical care, and possible solutions. Clin. Dev. Immunol., 2012, Vol. 2012, p. 670957.
3. Massanella M., Negredo E., Clotet B., Blanco J. Immunodiscordant responses to HAART –mechanisms and consequences. Expert Rev. Clin. Immunol., 2013, Vol. 9, no. 11, pp. 1135-1149.
4. Lederman M.M., Calabrese L., Funderburg N. T., Clagett B., Medvik K., Bonilla H., Gripshover B., Salata R. A., Taege A., Lisgaris M., McComsey G. A., Kirchner E., Baum J., Shive C., Asaad R., Kalayjian R. C., Sieg S. F., Rodriguez B. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells. J. Infect. Dis., 2011, Vol. 204, no. 8, pp. 1217-1226.
5. Yamaguchi T., Wing J. B., Sakaguchi S. Two modes of immune suppression by Foxp3(+) regulatory T cells under inflammatory or non-inflammatory conditions. Semin. Immunol., 2011, Vol. 23 , no. 6, pp. 424-430.
6. Sakaguchi S., Miyara M., Costantino C. M., Hafler D. A. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol., 2010, Vol. 10, no. 7, pp. 490-500.
7. Lim A., Tan D., Price P., Kamarulzaman A., Tan H. Y., James I., French M. A. Proportions of circulating T cells with a regulatory cell phenotype increase with HIV-associated immune activation and remain high on antiretroviral therapy. AIDS, 2007, Vol. 21, no. 12, pp. 1525-1534.
8. Eggena M.P., Barugahare B., Jones N., Okello M., Mutalya S., Kityo C., Mugyenyi P., Cao H. Depletion of Regulatory T Cells in HIV Infection Is Associated with Immune Activation. The Journal of Immunology, 2005, Vol. 174, no. 7, pp. 4407-4414.
9. Piconi S., Trabattoni D., Gori A., Parisotto S., Magni C., Meraviglia P., Bandera A., Capetti A., Rizzardini G., Clerici M. Immune activation, apoptosis, and Treg activity are associated with persistently reduced CD4+ T-cell counts during antiretroviral therapy. AIDS, 2010, Vol. 24, no. 13, pp. 1991-2000.
10. Jiao Y., Fu J., Xing S., Fu B., Zhang Z., Shi M., Wang X., Zhang J., Jin L., Kang F., Wu H., Wang F.S. The decrease of regulatory T cells correlates with excessive activation and apoptosis of CD8+ T cells in HIV-1-infected typical progressors, but not in long-term non-progressors. Immunology, 2009, Vol. 128, no. 1, Suppl, pp. e366-375.
11. Liston A., Gray D.H. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol., 2014, Vol. 14, no. 3, pp. 154-165.
12. Plitas G., Rudensky A.Y. Regulatory T Cells: Differentiation and Function. Cancer Immunol. Res., 2016, Vol. 4, no. 9, pp. 721-725.
13. Brenchley J.M., Price D.A., Douek D.C. HIV disease: fallout from a mucosal catastrophe? Nat. Immunol., 2006, Vol. 7, no. 3, pp. 235-239.
14. Grossman Z., Meier-Schellersheim M., Paul W. E., Picker L. J. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nat. Med., 2006, Vol. 12, no.3, pp. 289-295.
15. Moreno-Fernandez M.E., Zapata W., Blackard J. T., Franchini G., Chougnet C. A. Human Regulatory T Cells Are Targets for Human Immunodeficiency Virus (HIV) Infection, and Their Susceptibility Differs Depending on the HIV Type 1 Strain. Journal of Virology, 2009, Vol. 83, no. 24, pp. 12925-12933.
16. Horta A., Nobrega C., Amorim-Machado P., Coutinho-Teixeira V., Barreira-Silva P., Boavida S., Costa P., Sarmento-Castro R., Castro A. G., Correia-Neves M. Poor immune reconstitution in HIV-infected patients associates with high percentage of regulatory CD4+ T cells. PLoS One, 2013, Vol. 8, no. 2, pp. e57336.
17. Saison J., Ferry T., Demaret J., Maucort Boulch D., Venet F., Perpoint T., Ader F., Icard V., Chidiac C., Monneret G., Lyon, H. I. V. Cohort Study Association between discordant immunological response to highly active anti-retroviral therapy, regulatory T cell percentage, immune cell activation and very low-level viraemia in HIV-infected patients. Clin. Exp. Immunol., 2014, Vol. 176, no. 3, pp. 401-409.
18. Sakaguchi S., Yamaguchi T., Nomura T., Ono M. Regulatory T cells and immune tolerance. Cell, 2008, Vol. 133, no. 5, pp. 775-787.
19. Baecher-Allan C., Hafler D.A. Human regulatory T cells and their role in autoimmune disease. Immunol. Rev., 2006, Vol. 212, pp. 203-216.
20. Yadav M., Stephan S., Bluestone J.A. Peripherally induced tregs - role in immune homeostasis and autoimmunity. Front. Immunol., 2013, Vol. 4, pp. 232.
21. Chevalier M.F., Weiss L. The split personality of regulatory T cells in HIV infection. Blood, 2013, Vol. 121, no. 1, pp. 29-37.
22. Bi X., Suzuki Y., Gatanaga H., Oka S.High frequency and proliferation of CD4+ FOXP3+ Treg in HIV-1-infected patients with low CD4 counts. Eur. J. Immunol., 2009, Vol. 39, no. 1, pp. 301-309.
23. Miyara M., Yoshioka Y., Kitoh A., Shima T., Wing K., Niwa A., Parizot C., Taflin C., Heike T., Valeyre D., Mathian A., Nakahata T., Yamaguchi T., Nomura T.., Ono M., Amoura Z., Gorochov G., Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 2009, Vol. 30, no. 6, pp. 899-911.
24. Fritzsching B., Oberle N., Eberhardt N., Quick S., Haas J., Wildemann B., Krammer P.H., Suri-Payer E. Cutting Edge: In Contrast to Effector T Cells, CD4+CD25+FoxP3+ Regulatory T Cells Are Highly Susceptible to CD95 Ligand- but Not to TCR-Mediated Cell Death. The Journal of Immunology, 2005, Vol. 175, no. 1, pp. 32-36.
25. Rosenblum M.D., Way S.S., Abbas A.K. Regulatory T cell memory. Nat. Rev. Immunol., 2016, Vol. 16, no. 2, pp. 90-101.
26. Appay V., Sauce D. Immune activation and inflammation in HIV-1 infection: causes and consequences. J. Pathol., 2008, Vol. 214, no. 2, pp. 231-241.
27. Angin M., Kwon D. S., Streeck H., Wen F., King M., Rezai A., Law K., Hongo T.C., Pyo A., Piechocka-Trocha A., Toth I., Pereyra F., Ghebremichael M., Rodig S.J., Milner D.A., Jr., Richter J.M., Altfeld M., Kaufmann D.E., Walker B.D., Addo M.M. Preserved function of regulatory T cells in chronic HIV-1 infection despite decreased numbers in blood and tissue. J. Infect. Dis., 2012, Vol. 205, no. 10, pp. 1495-1500.
28. Weiss L., Piketty C., Assoumou L., Didier C., Caccavelli L., Donkova-Petrini V., Levy Y., Girard P.M., Burgard M., Viard J.P., Rouzioux C., Costagliola D., Anrs Salto study group Relationship between regulatory T cells and immune activation in human immunodeficiency virus-infected patients interrupting antiretroviral therapy. PLoS One, 2010, Vol. 5, no. 7, pp. e11659.
29. Rueda C.M., Jackson C.M., Chougnet C.A. Regulatory T-Cell-Mediated Suppression of Conventional T-Cells and Dendritic Cells by Different cAMP Intracellular Pathways. Front. Immunol., 2016, Vol. 7, pp. 216.
30. Stiksrud B., Aass H. C.D., Lorvik K.B., Ueland T., Troseid M., Dyrhol-Riise A.M. Activated dendritic cells and monocytes in HIV immunological nonresponders: HIV-induced interferon-inducible protein-10 correlates with low future CD4+ recovery. AIDS, 2019, Vol. 33, no. 7, pp. 1117-1129.
Supplementary files
|
1. Метаданные | |
Subject | ||
Type | Other | |
View
(2MB)
|
Indexing metadata ▾ |
![]() |
2. Титульный лист | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(32KB)
|
Indexing metadata ▾ |
![]() |
3. Резюме | |
Subject | ||
Type | Чистый текст | |
Download
(38KB)
|
Indexing metadata ▾ |
![]() |
4. Рисунок 1 | |
Subject | ||
Type | Результаты исследования | |
Download
(60KB)
|
Indexing metadata ▾ |
![]() |
5. Рисунок 2 | |
Subject | ||
Type | Результаты исследования | |
Download
(53KB)
|
Indexing metadata ▾ |
![]() |
6. Рисунок 3 | |
Subject | ||
Type | Результаты исследования | |
Download
(101KB)
|
Indexing metadata ▾ |
![]() |
7. Таблица 1 | |
Subject | ||
Type | Результаты исследования | |
Download
(42KB)
|
Indexing metadata ▾ |
![]() |
8. подписи к рисункам | |
Subject | ||
Type | Other | |
Download
(30KB)
|
Indexing metadata ▾ |
![]() |
9. текст статьи_измененная нумерация ссылок | |
Subject | ||
Type | Other | |
Download
(188KB)
|
Indexing metadata ▾ |
![]() |
10. список литературы | |
Subject | ||
Type | Other | |
Download
(56KB)
|
Indexing metadata ▾ |
![]() |
11. Рисунок_1. Субпопуляционный состав CD4+ Т-лимфоцитов у ВИЧ-инфицированных пациентов и здоровых добровольцев | |
Subject | ||
Type | Other | |
Download
(128KB)
|
Indexing metadata ▾ |
![]() |
12. Рисунок_2. Субпопуляционный состав регуляторных Т-клеток у ВИЧ-инфицированных пациентов и здоровых добровольцев | |
Subject | ||
Type | Other | |
Download
(135KB)
|
Indexing metadata ▾ |
![]() |
13. Рисунок_3. Доля регуляторных клеток в субпопуляциях CD4+ Т-лимфоцитов | |
Subject | ||
Type | Other | |
Download
(208KB)
|
Indexing metadata ▾ |
![]() |
14. подписи к рисункам | |
Subject | ||
Type | Other | |
Download
(39KB)
|
Indexing metadata ▾ |
![]() |
15. таблица_1 | |
Subject | ||
Type | Other | |
Download
(42KB)
|
Indexing metadata ▾ |
Review
For citations:
Korolevskaya L.B., Saidakova E.V., Shmagel N.G., Shmagel K.V. Regulatory T cell subsets in peripheral blood of HIV-infected patients with discordant response to antiretroviral therapy. Medical Immunology (Russia). 2020;22(2):281-290. (In Russ.) https://doi.org/10.15789/1563-0625-RTC-1770