Preview

Medical Immunology (Russia)

Advanced search

IL-2 and regulation of stress hormones and BDNF neurotropic factor levels after experimental traumatic brain injury (TBI)

https://doi.org/10.15789/1563-0625-IAR-1973

Abstract

Experimental traumatic brain  injury  (TBI)   causes  a  stable  stress  response   and  changes   the expression  of various cytokine genes and neurotrophic factors.  The goal of this study was to reveal changes  in the  levels of the  corticosterone and  testosterone hormones and  the  BDNF cytokine in blood  serum,  as well as the expression  of the BDNF gene in hypothalamus in order  to determine the opportunity of correcting the TBI damage  with rIL-2. We used a rat model  of “dropping load”:  mild TBI was caused  by falling of the 115 g load from the height  of 80 cm,  or 120 cm to produce a moderate-degree trauma. After TBI (immediately, or 72 hours  later), the  rats were injected daily with recombinant human interleukin-2 (Roncoleukin) at a dose of 30 μg/kg, a total  of 3 injections. Control animals  (also with TBI)  received  0.15 M NaCl  injections. Blood serum  concentrations of corticosterone, testosterone, and  BDNF were measured with ELISA  tests.  BDNF gene expression in hypothalamus was measured using RT-PCR. Results: the experiments showed a relationship between  hormone concentrations and severity of head injury. In mild TBI,  blood corticosterone levels reached a peak  2 hours  after the  injury, while in moderate TBI,  the  peak  concentration of corticosterone was lower, being delayed  in time  (after  24 hours). Corticosterone and  testosterone concentrations changed reciprocally in the both groups of injured  animals. With injection of rIL-2 in both groups,  corticosterone and testosterone levels were significantly  increased. On  day 7 after  TBI,  the  BDNF level in blood  serum  was decreased, but it was raised  in experimental group  that  received  rIL-2. On day 7, the increase  of BDNF gene expression  in hypothalamus was more  pronounced, when  rIL-2 was administered at 72 hours  after  the  head  injury.  The revealed  positive  association of BDNF levels and  glucocorticoid hormones after  mild  TBI,  like as possible coordination of these  parameters with rIL-2 injection after experimental moderate TBI  provides  a reason  to assume  that  the favorable  impact of rIL-2 on the CNS  recovery  after TBI is, in part,  mediated by the mutual modulating interaction of BDNF and glucocorticoid hormones.

About the Authors

E. E. Fomicheva
Institute of Experimental Medicine
Russian Federation

PhD (Biology), Senior Research Associate, Department of General Pathology and Pathophysiology.

St. Petersburg


Competing Interests: not


S. N. Shanin
Institute of Experimental Medicine
Russian Federation

PhD (Medicine), Senior Research Associate, Department of General Pathology and Pathophysiology.

St. Petersburg


Competing Interests: not


T. A. Filatenkova
Institute of Experimental Medicine
Russian Federation

Research Associate, Department of General Pathology and Pathophysiology.

St. Petersburg


Competing Interests: not


N. B. Serebryanaya
Institute of Experimental Medicine
Russian Federation

PhD, MD (Medicine), Professor, Leading Research Associate, Department of General Pathology and Pathophysiology.

197376, St. Petersburg, Acad. Pavlov str., 9a, Phone: 7 (812) 234-15-83, Fax: 7 (812) 234-94-93


Competing Interests: not


References

1. Babichev V.N. Neuroendocrine Effect Sex Hormones. Uspekhi fiziologicheskikh nauk = Advances in Physiology, 2005, Vol. 36, no. 1, pp. 54-67. (In Russ.)

2. Biloshytsky V.V. The principles of experimental traumatic brain injury modeling. Ukraїnskiy neyrokhіrurgіchniy zhurnal = Ukrainian Neurosurgical Journal, 2008, no. 4, pp. 9-15. (In Russ.)

3. Goncharov N.P, Katsia G.V., Nizhnik A.N. Dehydroepiandrosterone and the cerebral functions. Vestnik RAMN = Annals of the Russian Academy of Medical Sciences, 2006, Vol. 74, no. 6, pp. 45-50. (In Russ.)

4. Koubasov R.V. Hormonal changes in response to extreme environment factors. Vestnik RAMN = Annals of the Russian Academy of Medical Sciences, 2014, no. 9-10, pp 102-109. (In Russ.)

5. Ostrova I., Avrushchenko M.Sh. Expression of brain-derived neurotrophic factor (BDNF) increases the resistance of neurons to death in the postresuscitation period. Obshchaya reanimatologiya = General Reanimatology, 2015, Vol. 11, no. 3, pp. 45-53. (In Russ.)

6. Rybakina E.G., Shanin S.N., Fomicheva E.E., Filatenkova T.A., Dmitrienko E.V. Cell-molecular mechanisms of protective function’s changes under traumatyic brain injury and ways for it’s medication. Meditsinskiy akademicheskiy zhurnal = Medical Academic Journal, 2014, Vol. 14, no. 4, pp. 55-62. (In Russ.)

7. Serebryanya N.B., Lipatova L.V., Sivakova N.A., Vasilenko A.V. The recombinant human interleukin-2 (IL-2) as the agent of antiepileptic therapies. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2014, Vol. 8, no. 3, pp. 723-726. (In Russ.)

8. Serebryanaya N.B., Shanin S.N., Fomicheva E.E. Platelets and neuroinflammation. Part I: platelets as regulators of neuroinflammation and neuroreparation. Tsitokiny i vospalenie = Cytokines and Inflammation, 2017, Vol. 16, no. 4, pp. 5-12. (In Russ.)

9. Shanin S.N., Fomicheva E.E., Filatenkova T.A., Serebryanaya N.B. Correction of disturbed neuroimmune interactions in experimental traumatic brain injury by means of recombinant interleukin 2. Meditsinskaya immunologiya = Medical Immunology (Russia), 2018, Vol. 20, no. 2, pp. 171-178. (In Russ.) doi: 10.15789/1563-0625-2018-2-171-178.

10. Abbas A.K., Trotta E., Simeonov D., Marson A., Bluestone J.A. Revisiting IL-2: Biology and therapeutic prospects. Sci. Immunol., 2018; Vol. 3, Iss. 25, pii: eaat1482. doi: 10.1126/sciimmunol.aat1482.

11. Alexander N., Osinsky R., Schmitz A., Mueller E., Kuepper Y., Hennig J. The BDNF Val66Met polymorphism affects HPA-axis reactivity to acute stress. Psychoneuroendocrinology, 2010, Vol. 35, Iss. 6, pp. 949-953.

12. Chacón-Fernández P., Säuberli K., Colzani M., Moreau T., Ghevaert C., Barde Y.-A. Brain-derived neurotrophic factor in megakaryocytes. J. Biol. Chem., 2016, Vol. 291, no. 19, pp. 9872-9881.

13. de Assis G.G., Gasanov E.V. BDNF and Cortisol integrative system – plasticity vs. degeneration: implications of the Val66Met polymorphism. Front. Neuroendocrinol., 2019, 55, 100784. doi: 10.1016/j.yfrne.2019.100784.

14. Failla M.D., Conley Y.P., Wagner A.K. Brain-derived neurotrophic factor (BDNF) in traumatic brain injuryrelated mortality: interrelationships between genetics and acute systemic and central nervous system BDNF profiles. Neurorehabil. Neural. Repair, 2016, Vol. 30, no. 1, pp. 83-93.

15. Gray M., Bingham B., Viau V. A comparison of two repeated restraint stress paradigms оn hypothalamicpituitary-adrenal axis habituation, gonadal status and central neuropeptide expression in adult male rats. J. Neuroendocrinol., 2010, Vol. 22, Iss. 2, pp. 92-101.

16. Hermandez-Ontiveros D.G., Tajiri N., Acosta S., Giunta B., Tan J., Borlongan C.V. Microglia activation as a biomarker for traumatic brain injury. Front. Neurol., 2013, Vol. 4, no. 30, pp. 1-9.

17. Himmerich H., Fischer J., Bauer K., Kirkby K.C., Sack U., Krügel U. Stress-induced cytokine changes in rats. Eur. Cytokine Netw., 2013, Vol. 24, no. 2, pp. 97-103.

18. Kalish H., Phillips T.M. Analysis of neurotrophins in human serum by immunoaffinity capillary electrophoresis (ICE) following traumatic head injury. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2010, Vol. 878, Iss. 2, pp. 194-200.

19. Kamamure E., Numakawa T., Adachi N., Kunugi H. Clucocorticoid suppresses BDNFstimulated MAPK/ ERK pathway via inhibiting interaction of Shp2 with TrκB. FEBS Letters, 2011, Vol. 585, Iss. 20, pp. 3224-3228.

20. Liesz A., Suri-Payer E., Veltkamp C., Doerr H., Sommer C., Rivest S. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med., 2009, Vol. 15, pp. 192-199.

21. Loane D.J., Byrnes K.R. Role of microglia in neurotrauma. Neurotherapeutics, 2010, Vol. 7, no. 4, pp. 366-377.

22. Morganti-Kossmann M.C., Yan E., Bye N. Animal models of traumatic brain injury: is there an optimal model to reproduce human brain injury in the laboratory? Injury, 2010, Vol. 41, Suppl. 1, pp. S10-S13.

23. Munoz M.J., Kumar R.G., Oh B.M., Conley Y.P., Wang Z., Failla M.D., Wagner A.K. Сerebrospinal fluid cortisol mediates brain-derived neurotrophic factor relationships to mortality after severe TBI: a prospective cohort study. Front. Mol. Neurosci., 2017, Vol. 10, 44. doi: 10.3389/fnmol.2017.00044.

24. Numakawa T. Possible protective action of neurotrophic factors and natural compaunds against common neurodegenerative diseases. Neural Regen. Res., 2014, Vol. 9, Iss. 16, pp. 1506-1508.

25. Pearson-Murphy B.E. Glucocorticoids, Overview. Encyclopedia of Stress (Second Edition). Ed. Fink G., Academic Press, 2007, pp. 198-210.

26. Pillai A. Decreased BDNF Levels in CSF of drug-naive first-episode psychotic subjects: correlation with plasma BDNF and psychopathology. Int. J. Neuropsychopharmacol., 2010, Vol. 13, Iss. 4, pp. 535-539.

27. Rothman S.M., Mattson M.P. Activity dependent stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience, 2013, Vol. 239, no. 3, pp. 228-240.

28. Saleem Basha N., Kewani Ghirmay, Melles Kahase. In silico comparison of interleukin-2 of Homo sapiens with different species. Pharma Focus: The journal of Eritrean Pharmaceutical Association (ERIPA), 2011, Vol. 14, no. 10, pp. 32-37.

29. Schober M.E., Block B., Requena D.F., Hale M.A., Lane R.H. Developmental traumatic brain injury decreased brain derived neurotrophic factor expression late after injury. Metab. Brain Dis., 2012, Vol. 27, no. 2, pp. 167-173.

30. Simon D., Nascimento R.I., Filho E.M., Bencke J., Regner A. Plasma brain-derived neurotrophic factor levels after severe traumatic brain injury. Brain Inj., 2016, Vol. 30, Iss. 1, pp. 23-28.

31. Tahvildari M., Dana R. Low-dose IL-2 therapy in transplantation, autoimmunity, and inflammatory diseases. J. Immunol., 2019, Vol. 203, Iss. 11, pp. 2749-2755.

32. Turnbull A.V., Rivier C.L. Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol. Rev., 1999, Vol. 79, no. 1, pp. 1-71.


Supplementary files

1. Рисунок 1
Subject
Type Результаты исследования
Download (15KB)    
Indexing metadata ▾
2. Таблица 1
Subject
Type Исследовательские инструменты
Download (13KB)    
Indexing metadata ▾
3. Резюме
Subject
Type Исследовательские инструменты
Download (18KB)    
Indexing metadata ▾
4. Рис.2
Subject
Type Исследовательские инструменты
Download (14KB)    
Indexing metadata ▾
5. Титульный лист
Subject
Type Исследовательские инструменты
Download (15KB)    
Indexing metadata ▾
6. Неозаглавлен
Subject
Type Other
Download (13KB)    
Indexing metadata ▾
7. Метаданные
Subject
Type Исследовательские инструменты
Download (321KB)    
Indexing metadata ▾
8. Рисунок 1 исправленный
Subject
Type Other
Download (15KB)    
Indexing metadata ▾
9. Рис.2 исправленный
Subject
Type Other
Download (15KB)    
Indexing metadata ▾
10. Таблица 1 исправл.
Subject
Type Other
Download (14KB)    
Indexing metadata ▾
11. Резюме - исправлен.
Subject
Type Other
Download (17KB)    
Indexing metadata ▾

Review

For citations:


Fomicheva E.E., Shanin S.N., Filatenkova T.A., Serebryanaya N.B. IL-2 and regulation of stress hormones and BDNF neurotropic factor levels after experimental traumatic brain injury (TBI). Medical Immunology (Russia). 2020;22(4):647-656. (In Russ.) https://doi.org/10.15789/1563-0625-IAR-1973

Views: 842


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)