Congruency and phenotypic plasticity of immune and nervous systems in children with autism spectrum disorders compared to schizophrenia spectrum disorders”, Medical Immunology (Russia)
https://doi.org/10.15789/1563-0625-CAP-1968
Abstract
According to new views on communication ways and principles in the main regulatory systems of the body, i.e., immune and neuroendocrine, there is a risk for disintegration of pathways and structures in these systems which may underlie disorders such as autism-spectrum disorders (ASD) and schizophreniaspectrum disorders (SSD). Both disorders are classified as neurodevelopmental disorders, with unclear etiology and partially overlapping pathophysiological developmental mechanisms. Diagnosis of ASD and SSD is based on patterns of clinical symptoms/syndromes that demonstrate high heterogeneity and similarity. Therefore, it is very important to find the ways of discerning children with ASD from those with SSD. Our aim was to identify peripheral activity indexes for immune and neuroendocrine systems, and their integration for usage as information hubs of congruency and phenotypic plasticity of these systems in children with ASD, as compared to SSD patients. The levels of 14 indexes of the immune and neuroendocrine systems in blood plasma were determined in 82 children with ASD, 9 children with SSD and 45 children with typical neurodevelopment (TD). To assess peripheral activity of the immune and neuroendocrine systems and their relationships, we applied a multivariate exploratory analysis using a method of nonlinear principal components. The following results were obtained: (1) absence of differences in proinflammatory cytokines between ASD and TD children; (2) patients with SSD have significantly higher values of IL-6 and IFNγ, and lower values of IL-1β, TNFα and IL-10 in blood plasma compared to children with ASD and TRD; (3) the level of neurohormones in children with ASD is in accordance with physiological reference values. The children with SSD have lower levels of epynephrine and dopamine compared to ASD and TD, respectively; (4) integration degree of regulatory systems assessed by principal component analysis has shown the following: (4.1) TD children have strong correlations within each of the systems and between them, thus showing their communicative abilities and plasticity, characteristic of normal values; (4.2) In SSD children, minimal numbers of strong relations were demonstrated within the cytokine system; (4.3) The children with ASD exhibited two clusters: one of them had a complete similarity with TDC, in terms of tension and assortment of immune and neuroendocrine indices; the other one presented low coupling between the parameters of regulatory systems, similar to the children with SSD; (4.4) Analysis of peripheral indices of cytokine and neuroendocrine systems for clusters 1 and 2 in children with ASD compared to children with SSD and TD demonstrated that, in children with ASD of cluster 1, the indices did not differ from TDC, except of epinephrine, ACTH, kynurenine, and tryptophan. In the children with ASD of cluster 2, the values of the indices are equal to children with SSD, except of dopamine and tryptophan. Thus, we have shown phenomenon of transdiagnostic clustering, i.e., allocation of two clusters among ASD children. One of them is similar to levels of indices and connections between the immune and neuroendocrine systems with TD, and another cluster is similar to SSD children. Therefore, they could be potentially useful as diagnostic criteria when discriminating the two disorders.
About the Authors
A. L. BurmistrovaRussian Federation
Burmistrova AlexandraL. - PhD, MD (Medicine), Professor, Head, Department of Microbiology, Immunology and General Biology, Faculty of Biology.
ChelyabinskCompeting Interests: not
Yuliya Yu. Filippova
Russian Federation
Filippova Yuliya Yu. - PhD (Biology), Associate Professor, Department of Microbiology, Immunology and General Biology, Faculty of Biology.
454001, Chelyabinsk, Br. Kashirin str., 129. Phone: 7 (351) 799-71-76. Fax: 7 (351) 742-09-25
Competing Interests: not
References
1. Réale D., Garant D., Humphries M.M., Bergeron P., Careau V. Montiglio P.O. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans. R. Soc. Lond. B Biol. Sci., 2010, Vol. 365, pp. 4051-4063.
2. Saresella M., Marventano I., Guerini F.R., Mancuso R., Ceresa L., Zanzottera M., Rusconi B., Maggioni E., Tinelli C., Clerici M. An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biol. Psychiatry., 2009, Vol. 66, no. 10, pp. 978-984.
3. Saresella M., Marventano I., Guerini F.R., Mancuso R., Ceresa L., Zanzottera M., Rusconi B., Maggioni E., Tinelli C., Clerici M. An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biol. Psychiatry., 2009, Vol. 66, no. 10, pp. 978-984.
4. Burmistova A.L., Filippova Yu.Yu., Timofeeva A.V. Microbial consortium and oxytocin in the social behavior of children with autism spectrum disorders. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology Epidemiology Immunobiology, 2018, Vol. 4, pp. 62-67. (In Russ.)
5. Schläger C., Körner H., Krueger M., Vidoli S., Haberl M., Mielke D., Brylla E., Issekutz T., Cabañas C., Nelson P.J., Ziemssen T., Rohde V., Bechmann I., Lodygin D., Odoardi F., Flügel A. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature, 2016, Vol. 530, pp. 349-353.
6. Schläger C., Körner H., Krueger M., Vidoli S., Haberl M., Mielke D., Brylla E., Issekutz T., Cabañas C., Nelson P.J., Ziemssen T., Rohde V., Bechmann I., Lodygin D., Odoardi F., Flügel A. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature, 2016, Vol. 530, pp. 349-353.
7. Sealey L.A., Hughes B.W., Sriskanda A.N., Guest J.R., Gibson A.D., Johnson-Williams L., Pace D.G., Bagasra O. Environmental factors in the development of autism spectrum disorders. Environment Int., 2016, Vol. 88, pp. 288-298.
8. Bukharin O.V. Infectious symbiology. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2015, no. 4, pp. 4-9. (In Russ.)
9. Stefanik L., Erdman L., Ameis S.H., Foussias G., Mulsant B.H., Behdinan T., Goldenberg A., O’Donnell L.J., Voineskos A.N. Brain-behavior participant similarity networks among youth and emerging adults with schizophrenia spectrum, autism spectrum, or bipolar disorder and matched controls. Neuropsychopharmacology, 2018, Vol. 43, no. 5, pp. 1180-1188.
10. Sealey L.A., Hughes B.W., Sriskanda A.N., Guest J.R., Gibson A.D., Johnson-Williams L., Pace D.G., Bagasra O. Environmental factors in the development of autism spectrum disorders. Environment Int., 2016, Vol. 88, pp. 288-298.
11. Stilling R.M., Bordenstein S.R., Dinan T.G., Cryan J.F. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front. Cell. Infect. Microbiol., 2014, Vol. 4, no. 147, pp. 1-17.
12. Kuzmina E.G., Zatsarenko S.V. Multivariate modelling of the immune status in detection of secondary immunodeficiency and the allergy. Meditsinskaya immunologiya = Medical Immunology (Russia), 2017, Vol. 19, no. 3, pp. 275-284. (In Russ.) doi: 10.15789/1563-0625-2017-3-275-284.
13. Tonhajzerova I., Ondrejka I., Mestanik M., Mikolka P., Hrtánek I. Mestanikova A., Bujnakova I. Mokra D. Inflammatory activity in autism spectrum disorder. Adv. Exp. Med. Biol., 2015, Vol. 861, pp. 93-98.
14. Stefanik L., Erdman L., Ameis S.H., Foussias G., Mulsant B.H., Behdinan T., Goldenberg A., O’Donnell L.J., Voineskos A.N. Brain-behavior participant similarity networks among youth and emerging adults with schizophrenia spectrum, autism spectrum, or bipolar disorder and matched controls. Neuropsychopharmacology, 2018, Vol. 43, no. 5, pp. 1180-1188.
15. Yirmiya R., Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun., 2011, Vol. 25, no. 2, pp. 181-213.
16. Nikiforova T.A., Peskov S.A., Doronina O.B. Analysis of the current state of clinical and experimental data on the interaction of the nervous and immune systems. Byulleten sibirskoy meditsiny = Bulletin of Siberian Medicine, 2014, Vol. 13, no. 6, pp. 72-80. (In Russ.)
17. van Lange P.A.M., Rinderu M.I., Bushman B.J. Aggression and violence around the world: A model of CLimate, Aggression, and Self-control in Humans (CLASH). Behav. Brain Sci., 2017, Vol. 40, e75. doi: 10.1017/S0140525X16000406.
18. Stilling R.M., Bordenstein S.R., Dinan T.G., Cryan J.F. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front. Cell. Infect. Microbiol., 2014, Vol. 4, no. 147, pp. 1-17.
19. Veiga-Fernandes H., Freitas А.А. The s(c)ensory immune system theory. Trends Immunol., 2017, Vol. 38, no. 10, pp. 777-788.
20. Semina I.I., Mukharyamova L.M., Sabirov I.S., Valeeva E.V., Safiullina L.R., Nikitin D.O. The current state of the problem of autism spectrum disorders – some biomedical and socio-humanitarian aspects. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal, 2019, Vol. 100, no. 6, pp. 918-929. (In Russ.)
21. Vorstman J.A.S., Burbach J.P.H. Autism and schizophrenia: genetic and phenotypic relationships. In: Patel V., Preedy V., Martin C. (eds) Comprehensive Guide to Autism. Springer, New York, 2014, pp. 1645-1662.
22. Tonhajzerova I., Ondrejka I., Mestanik M., Mikolka P., Hrtánek I. Mestanikova A., Bujnakova I. Mokra D. Inflammatory activity in autism spectrum disorder. Adv. Exp. Med. Biol., 2015, Vol. 861, pp. 93-98.
23. Ashwood P., Krakowiak P., Hertz-Picciotto I., Hansen R., Pessah I., van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun., 2011, Vol. 25, no. 1, pp. 40-45.
24. Yirmiya R., Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun., 2011, Vol. 25, no. 2, pp. 181-213.
25. Arendt D. The evolution of cell types in animals: emerging principles from molecular studies. Nat. Rev. Genet., 2008, Vol. 9, no. 11, pp. 868-882.
26. van Lange P.A.M., Rinderu M.I., Bushman B.J. Aggression and violence around the world: A model of CLimate, Aggression, and Self-control in Humans (CLASH). Behav. Brain Sci., 2017, Vol. 40, e75. doi: 10.1017/ S0140525X16000406.
27. Barlati S., Deste G., Ariu C., Vita A. Autism spectrum disorder and schizophrenia: do they overlap? Int. J. Emerg. Ment. Health, Vol. 18, no. 1, pp. 760-763.
28. Veiga-Fernandes H., Freitas А.А. The s(c)ensory immune system theory. Trends Immunol., 2017, Vol. 38, no. 10, pp. 777-788.
29. Baron-Cohen S. Editorial perspective: neurodiversity – a revolutionary concept for autism and psychiatry. J. Child. Psychol. Psychiatry, 2017, Vol. 58, no. 6, pp. 744-747.
30. Vorstman J.A.S., Burbach J.P.H. Autism and schizophrenia: genetic and phenotypic relationships. In: Patel V., Preedy V., Martin C. (eds) Comprehensive Guide to Autism. Springer, New York, 2014, pp. 1645-1662.
31. Baron-Cohen S. Two new theories of autism: hyper-systemising and assortative mating. Arch. Dis. Child., 2006, Vol. 91, no. 1, pp. 2-5.
32. Baruch K., Deczkowska A., David E., Castellano J.M., Miller O., Kertser A., Berkutzki T., Barnett-Itzhaki Z., Bezalel D., Wyss-Coray T., Amit I., Schwartz M. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science, 2014, Vol. 346, pp. 89-93.
33. Besedovsky H.O. The immune system as a sensorial system that can modulate brain functions and reset homeostasis. Ann. N. Y. Acad. Sci., 2019, Vol. 1437, no. 1, pp. 5-14.
34. Canitano R., Pallagrosi M. Autism spectrum disorders and schizophrenia spectrum disorders: excitation/inhibition imbalance and developmental trajectories. Front. Psychiatry, 2017, Vol. 8, 69. doi:10.3389/fpsyt.2017.00069.
35. Choi G.B., Yim Y.S., Wong H., Kim S., Kim H., Kim S.V., Hoeffer C.A., Littman D.R., Huh J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 2016, Vol. 351, pp. 933-939.
36. Craddock N., Owen M.J. The Kraepelinian dichotomy – going, going... but still not gone. Br. J. Psychiatry, 2010, Vol. 196, no. 2, pp. 92-95.
37. de Lacy N., King B.H. Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu. Rev. Clin. Psychol., 2013, Vol. 9, pp. 555-587.
38. del Giudice M., Klimczuk A.C.E., Traficonte D.M., Maestripieri D. Autistic-like and schizotypal traits in a life history perspective: diametrical associations with impulsivity, sensation seeking, and sociosexual behavior. Evol. Hum. Behav., 2014, Vol. 35, no. 5, pp. 415-424.
39. del Rey A., Besedovsky H.O. Immune-neuro-endocrine reflexes, circuits, and networks: physiologic and evolutionary implications. Front. Horm. Res., 2017, Vol. 48, pp. 1-18.
40. Derecki N.C., Cardani-Boulton A.N., Yang C.H., Quinnies K.M., Crihfield A., Lynch K.R., Kipnis J. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med., 2010, Vol. 207, no. 5, pp. 1067-1080.
41. Draghi J.A., Whitlock M.C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution, 2012, Vol. 66, no. 9, pp. 2891-2902.
42. Engelhardt B. T cell migration into the central nervous system during health and disease: Different molecular keys allow access to different central nervous system compartments. Clin. Exp. Neuroimmunol., 2010, Vol. 1, pp. 79-93.
43. Engelhardt B., Ransohoff R.M. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol., 2012, Vol. 33, no. 12, pp. 579-589.
44. Filiano A.J., Xu Y., Tustison N.J., Marsh R.L., Baker W., Smirnov I., Overall C.C., Gadani S.P., Turner S.D., Weng Z., Peerzade S.N., Chen H., Lee K.S., Scott M.M., Beenhakker M.P., Litvak V., Kipnis J. Unexpected role of interferon-γ in regulating neuronal connectivity and social behavior. Nature, 2016, Vol. 535, no. 7612, pp. 425-429.
45. Flandroy L., Poutahidis T., Berg G., Clarke G., Dao M.C., Decaestecker E., Furman E., Haahtela T., Massart S., Plovier H., Sanz Y., Rook G. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ., 2018, Vol. 627, pp. 1018-1038.
46. Gandal M.J, Zhang P., Hadjimichael E., Walker R.L., Chen C., Liu S., Won H., van Bakel H., Varghese M., Wang Y., Shieh A.W., Haney J., Parhami S., Belmont J., Kim M., Losada P.M., Khan Z., Mleczko J., Xia Y., Dai R., Wang D., Yang Y.T., Xu M., Fish K., Hof P.R., Warrell J., Fitzgerald D., White K., Jaffe A.E., PsychENCODE Consortium, Peters M.A., Gerstein M., Liu C., Iakoucheva L.M., Pinto D., Geschwind D.H., Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, Vol. 362, eaat8127. doi:10.1126/science.aat8127.
47. García-Bueno B., Caso J.R., Leza J.C. Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci. Biobehav. Rev., 2008, Vol. 32, no. 6, pp. 1136-1151.
48. Gomez-Fernandez A., de la Torre-Aguilar M.J., Gil-Campos M., Flores-Rojas K., Cruz-Rico M.D., MartinBorreguero P., Perez-Navero J.L. Children with autism spectrum disorder with regression exhibit a different profile in plasma cytokines and adhesion molecules compared to children without such regression. Front. Pediatr., 2018, Vol. 6, 264. doi: 10.3389/fped.2018.00264.
49. Kawakami N., Bartholomäus I., Pesic M., Mues M. An autoimmunity odyssey: how autoreactive T cells infiltrate into the CNS. Immunol. Rev., 2012, Vol. 248, no. 1, pp. 140-155.
50. Kelley K.W., McCusker R.H. Getting nervous about immunity. Semin. Immunol., 2014, Vol. 26, no. 5, pp. 389-393.
51. Kioussis D., Pachnis V. Immune and nervous systems: more than just a superficial similarity? Immunity, 2009, Vol. 31, no. 5, pp. 705-710.
52. Kipnis J., Gadani S., Derecki N.C. Pro-cognitive properties of T cells. Nat. Rev. Immunol., 2012, Vol. 12, no. 9, pp. 663-669.
53. Kipnis J. Multifaceted Interactions between adaptive immunity and the central nervous system. Science, 2016, Vol. 353, pp. 766-771.
54. Kivisäkk P., Imitola J., Rasmussen S., Elyaman W., Zhu B., Ransohoff R.M., Khoury S.J. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol., 2009, Vol. 65, no. 4, pp. 457-469.
55. Korn T., Kallies A. T cell responses in the central nervous system. Nat. Rev. Immunol., 2017, Vol. 17, no. 3, pp. 179-194.
56. Kroken R.A., Sommer I.E., Steen V.M., Dieset I., Johnsen E. Constructing the immune signature of schizophrenia for clinical use and research; an integrative review translating descriptives into diagnostics. Front. Psychiatry., 2019, Vol. 9, 753. doi: 10.3389/fpsyt.2018.00753.
57. Marin I.A., Kipnis J. Central nervous system: (immunological) ivory tower or not? Neuropsychopharmacology, 2017, Vol. 42, no. 1, pp. 28-35.
58. Marin I., Kipnis J. Learning and memory … and the immune system. Learn Mem., 2013, Vol. 20, no. 10, pp. 601-606.
59. Mouridsen S., Rich, B., Isager T. Psychiatric disorders in adults diagnosed as children with atypical autism. A case control study. J. Neural Transm., 2008, Vol. 115, pp. 135-138.
60. Napolioni V., Ober-Reynolds B., Szelinger S., Corneveaux J.J, Pawlowski T., Ober-Reynolds S., Kirwan J., Persico A.M., Melmed R., Craig D., Smith C.J., Matthew J. Huentelman. Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder. J. Neuroinflammation, 2013, Vol. 10, 38. doi: 10.1186/1742-2094-10-38.
61. Pfau M.L., Russo S.J. Peripheral and central mechanisms of stress resilience. Neurobiol. Stress., 2015, Vol. 1, pp. 66-79.
62. Prata J., Santos S.G., Almeida M. I., Coelho R., Barbosa M.A. Bridging autism spectrum disorders and schizophrenia through inflammation and biomarkers – pre-clinical and clinical investigations. J. Neuroinflammation, 2017, Vol. 14, no. 1, 179. doi: 10.1186/s12974-017-0938-y.
63. Raison C.L., Miller A.H. Malaise, melancholia and madness: the evolutionary legacy of an inflammatory bias. Brain Behav. Immun., 2013, Vol. 31, pp. 1-8.
64. Ransohoff R.M., Kivisäkk P., Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol., 2003, Vol. 3, pp. 569-581.
65. Rapoport J., Chavez A., Greenstein D., Addington A., Gogtay N. Autism-spectrum disorders and childhood onset schizophrenia: clinical and biological contributions to a relationship revisited. J. Am. Acad. Child. Adolesc. Psychiatry, 2009, Vol. 48, no. 1, pp. 10-18.
66. Réale D., Garant D., Humphries M.M., Bergeron P., Careau V. Montiglio P.O. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans. R. Soc. Lond. B Biol. Sci., 2010, Vol. 365, pp. 4051-4063.
67. Saresella M., Marventano I., Guerini F.R., Mancuso R., Ceresa L., Zanzottera M., Rusconi B., Maggioni E., Tinelli C., Clerici M. An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biol. Psychiatry., 2009, Vol. 66, no. 10, pp. 978-984.
68. Schläger C., Körner H., Krueger M., Vidoli S., Haberl M., Mielke D., Brylla E., Issekutz T., Cabañas C., Nelson P.J., Ziemssen T., Rohde V., Bechmann I., Lodygin D., Odoardi F., Flügel A. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature, 2016, Vol. 530, pp. 349-353.
69. Sealey L.A., Hughes B.W., Sriskanda A.N., Guest J.R., Gibson A.D., Johnson-Williams L., Pace D.G., Bagasra O. Environmental factors in the development of autism spectrum disorders. Environment Int., 2016, Vol. 88, pp. 288-298.
70. Stefanik L., Erdman L., Ameis S.H., Foussias G., Mulsant B.H., Behdinan T., Goldenberg A., O’Donnell L.J., Voineskos A.N. Brain-behavior participant similarity networks among youth and emerging adults with schizophrenia spectrum, autism spectrum, or bipolar disorder and matched controls. Neuropsychopharmacology, 2018, Vol. 43, no. 5, pp. 1180-1188.
71. Stilling R.M., Bordenstein S.R., Dinan T.G., Cryan J.F. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front. Cell. Infect. Microbiol., 2014, Vol. 4, no. 147, pp. 1-17.
72. Tonhajzerova I., Ondrejka I., Mestanik M., Mikolka P., Hrtánek I. Mestanikova A., Bujnakova I. Mokra D. Inflammatory activity in autism spectrum disorder. Adv. Exp. Med. Biol., 2015, Vol. 861, pp. 93-98.
73. Yirmiya R., Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun., 2011, Vol. 25, no. 2, pp. 181-213.
74. van Lange P.A.M., Rinderu M.I., Bushman B.J. Aggression and violence around the world: A model of CLimate, Aggression, and Self-control in Humans (CLASH). Behav. Brain Sci., 2017, Vol. 40, e75. doi: 10.1017/S0140525X16000406.
75. Veiga-Fernandes H., Freitas А.А. The s(c)ensory immune system theory. Trends Immunol., 2017, Vol. 38, no. 10, pp. 777-788.
76. Vorstman J.A.S., Burbach J.P.H. Autism and schizophrenia: genetic and phenotypic relationships. In: Patel V., Preedy V., Martin C. (eds) Comprehensive Guide to Autism. Springer, New York, 2014, pp. 1645-1662.
Supplementary files
![]() |
1. Метаданные | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(35KB)
|
Indexing metadata ▾ |
![]() |
2. Подписи авторов | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(344KB)
|
Indexing metadata ▾ |
![]() |
3. Титульный лист | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(36KB)
|
Indexing metadata ▾ |
![]() |
4. Резюме | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(45KB)
|
Indexing metadata ▾ |
![]() |
5. Литература | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(106KB)
|
Indexing metadata ▾ |
![]() |
6. Таблица 1 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(16KB)
|
Indexing metadata ▾ |
![]() |
7. Таблица 2 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(17KB)
|
Indexing metadata ▾ |
![]() |
8. Название, подписи к рисунку 1 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13KB)
|
Indexing metadata ▾ |
![]() |
9. Рисунок 1 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(9MB)
|
Indexing metadata ▾ |
![]() |
10. Статья с исправлениями | |
Subject | ||
Type | Other | |
Download
(37KB)
|
Indexing metadata ▾ |
![]() |
11. Резюме исправлено | |
Subject | ||
Type | Other | |
Download
(16KB)
|
Indexing metadata ▾ |
![]() |
12. ТАБЛИЦА 2. МАТРИЦА ФАКТОРНЫХ НАГРУЗОК ПОКАЗАТЕЛЕЙ ИММУННОЙ И НЕЙРОЭНДОКРИННОЙ СИСТЕМ ДЕТЕЙ С РАС, РШС И ТРД, ПОЛУЧЕННАЯ В ХОДЕ НЕЛИНЕЙНОГО АНАЛИЗА ГЛАВНЫХ КОМПОНЕНТ | |
Subject | ||
Type | Other | |
Download
(20KB)
|
Indexing metadata ▾ |
![]() |
13. Литература дополнена | |
Subject | ||
Type | Other | |
Download
(126KB)
|
Indexing metadata ▾ |
![]() |
14. Рисунок исправлен | |
Subject | ||
Type | Other | |
Download
(57MB)
|
Indexing metadata ▾ |
Review
For citations:
Burmistrova A.L., Filippova Yu.Yu. Congruency and phenotypic plasticity of immune and nervous systems in children with autism spectrum disorders compared to schizophrenia spectrum disorders”, Medical Immunology (Russia). Medical Immunology (Russia). 2020;22(4):703-716. (In Russ.) https://doi.org/10.15789/1563-0625-CAP-1968