Preview

Medical Immunology (Russia)

Advanced search

Congruency and phenotypic plasticity of immune and nervous systems in children with autism spectrum disorders compared to schizophrenia spectrum disorders”, Medical Immunology (Russia)

https://doi.org/10.15789/1563-0625-CAP-1968

Abstract

According to new views on communication ways and  principles in the main  regulatory systems of the  body, i.e.,  immune and  neuroendocrine, there  is a risk for disintegration of pathways  and  structures in these  systems which  may underlie disorders  such as autism-spectrum disorders  (ASD)  and schizophreniaspectrum disorders (SSD). Both disorders are classified as neurodevelopmental disorders, with unclear etiology and partially  overlapping pathophysiological developmental mechanisms. Diagnosis of ASD and SSD is based on patterns of clinical  symptoms/syndromes that  demonstrate high heterogeneity and  similarity.  Therefore, it is very important to find the  ways of discerning children with ASD from  those  with SSD.  Our  aim was to identify peripheral activity indexes for immune and neuroendocrine systems, and their integration for usage as information hubs of congruency and phenotypic plasticity of these systems in children with ASD, as compared to SSD  patients. The  levels of 14 indexes  of the immune and  neuroendocrine systems in blood  plasma  were determined in 82 children with ASD, 9 children with SSD and 45 children with typical neurodevelopment (TD). To assess peripheral activity of the immune and neuroendocrine systems and their relationships, we applied  a multivariate exploratory analysis using a method of nonlinear principal components. The following results were obtained: (1) absence  of differences in proinflammatory cytokines between  ASD and TD children; (2) patients with SSD  have significantly  higher  values of IL-6  and IFNγ, and lower values of IL-1β, TNFα and IL-10  in blood plasma compared to children with ASD and TRD; (3) the level of neurohormones in children with ASD is in accordance with physiological reference values. The children with SSD have lower levels of epynephrine and dopamine compared to ASD and TD,  respectively; (4) integration degree of regulatory systems assessed by principal component analysis has shown  the following:  (4.1)  TD  children have strong  correlations within each of the systems and between  them, thus showing their communicative abilities and plasticity, characteristic of normal values; (4.2) In SSD  children, minimal numbers of strong  relations were demonstrated within  the cytokine system;  (4.3)  The children with ASD exhibited  two clusters:  one of them  had a complete similarity with TDC, in terms of tension and assortment of immune and neuroendocrine indices; the other one presented low coupling between  the parameters of regulatory systems, similar to the children with SSD; (4.4) Analysis of peripheral indices of cytokine and neuroendocrine systems for clusters 1 and 2 in children with ASD compared to children with SSD and TD demonstrated that,  in children with ASD of cluster  1, the indices  did not differ from TDC, except  of epinephrine, ACTH, kynurenine, and tryptophan. In the children with ASD of cluster 2, the values of the indices are equal to children with SSD,  except of dopamine and tryptophan. Thus,  we have shown phenomenon of transdiagnostic clustering, i.e., allocation of two clusters among  ASD children. One of them is similar to levels of indices and connections between the immune and neuroendocrine systems with TD, and another cluster is similar to SSD children. Therefore, they could be potentially useful as diagnostic criteria when discriminating the two disorders.

About the Authors

A. L. Burmistrova
Chelyabinsk State University
Russian Federation

Burmistrova AlexandraL. - PhD, MD (Medicine), Professor, Head, Department of Microbiology, Immunology and General Biology, Faculty of Biology.

Chelyabinsk

Competing Interests: not


Yuliya Yu. Filippova
Chelyabinsk State University
Russian Federation

Filippova Yuliya Yu. - PhD (Biology), Associate Professor, Department of Microbiology, Immunology and General Biology, Faculty of Biology.

454001, Chelyabinsk, Br. Kashirin str., 129. Phone: 7 (351) 799-71-76. Fax: 7 (351) 742-09-25


Competing Interests: not


References

1. Réale D., Garant D., Humphries M.M., Bergeron P., Careau V. Montiglio P.O. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans. R. Soc. Lond. B Biol. Sci., 2010, Vol. 365, pp. 4051-4063.

2. Saresella M., Marventano I., Guerini F.R., Mancuso R., Ceresa L., Zanzottera M., Rusconi B., Maggioni E., Tinelli C., Clerici M. An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biol. Psychiatry., 2009, Vol. 66, no. 10, pp. 978-984.

3. Saresella M., Marventano I., Guerini F.R., Mancuso R., Ceresa L., Zanzottera M., Rusconi B., Maggioni E., Tinelli C., Clerici M. An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biol. Psychiatry., 2009, Vol. 66, no. 10, pp. 978-984.

4. Burmistova A.L., Filippova Yu.Yu., Timofeeva A.V. Microbial consortium and oxytocin in the social behavior of children with autism spectrum disorders. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology Epidemiology Immunobiology, 2018, Vol. 4, pp. 62-67. (In Russ.)

5. Schläger C., Körner H., Krueger M., Vidoli S., Haberl M., Mielke D., Brylla E., Issekutz T., Cabañas C., Nelson P.J., Ziemssen T., Rohde V., Bechmann I., Lodygin D., Odoardi F., Flügel A. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature, 2016, Vol. 530, pp. 349-353.

6. Schläger C., Körner H., Krueger M., Vidoli S., Haberl M., Mielke D., Brylla E., Issekutz T., Cabañas C., Nelson P.J., Ziemssen T., Rohde V., Bechmann I., Lodygin D., Odoardi F., Flügel A. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature, 2016, Vol. 530, pp. 349-353.

7. Sealey L.A., Hughes B.W., Sriskanda A.N., Guest J.R., Gibson A.D., Johnson-Williams L., Pace D.G., Bagasra O. Environmental factors in the development of autism spectrum disorders. Environment Int., 2016, Vol. 88, pp. 288-298.

8. Bukharin O.V. Infectious symbiology. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2015, no. 4, pp. 4-9. (In Russ.)

9. Stefanik L., Erdman L., Ameis S.H., Foussias G., Mulsant B.H., Behdinan T., Goldenberg A., O’Donnell L.J., Voineskos A.N. Brain-behavior participant similarity networks among youth and emerging adults with schizophrenia spectrum, autism spectrum, or bipolar disorder and matched controls. Neuropsychopharmacology, 2018, Vol. 43, no. 5, pp. 1180-1188.

10. Sealey L.A., Hughes B.W., Sriskanda A.N., Guest J.R., Gibson A.D., Johnson-Williams L., Pace D.G., Bagasra O. Environmental factors in the development of autism spectrum disorders. Environment Int., 2016, Vol. 88, pp. 288-298.

11. Stilling R.M., Bordenstein S.R., Dinan T.G., Cryan J.F. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front. Cell. Infect. Microbiol., 2014, Vol. 4, no. 147, pp. 1-17.

12. Kuzmina E.G., Zatsarenko S.V. Multivariate modelling of the immune status in detection of secondary immunodeficiency and the allergy. Meditsinskaya immunologiya = Medical Immunology (Russia), 2017, Vol. 19, no. 3, pp. 275-284. (In Russ.) doi: 10.15789/1563-0625-2017-3-275-284.

13. Tonhajzerova I., Ondrejka I., Mestanik M., Mikolka P., Hrtánek I. Mestanikova A., Bujnakova I. Mokra D. Inflammatory activity in autism spectrum disorder. Adv. Exp. Med. Biol., 2015, Vol. 861, pp. 93-98.

14. Stefanik L., Erdman L., Ameis S.H., Foussias G., Mulsant B.H., Behdinan T., Goldenberg A., O’Donnell L.J., Voineskos A.N. Brain-behavior participant similarity networks among youth and emerging adults with schizophrenia spectrum, autism spectrum, or bipolar disorder and matched controls. Neuropsychopharmacology, 2018, Vol. 43, no. 5, pp. 1180-1188.

15. Yirmiya R., Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun., 2011, Vol. 25, no. 2, pp. 181-213.

16. Nikiforova T.A., Peskov S.A., Doronina O.B. Analysis of the current state of clinical and experimental data on the interaction of the nervous and immune systems. Byulleten sibirskoy meditsiny = Bulletin of Siberian Medicine, 2014, Vol. 13, no. 6, pp. 72-80. (In Russ.)

17. van Lange P.A.M., Rinderu M.I., Bushman B.J. Aggression and violence around the world: A model of CLimate, Aggression, and Self-control in Humans (CLASH). Behav. Brain Sci., 2017, Vol. 40, e75. doi: 10.1017/S0140525X16000406.

18. Stilling R.M., Bordenstein S.R., Dinan T.G., Cryan J.F. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front. Cell. Infect. Microbiol., 2014, Vol. 4, no. 147, pp. 1-17.

19. Veiga-Fernandes H., Freitas А.А. The s(c)ensory immune system theory. Trends Immunol., 2017, Vol. 38, no. 10, pp. 777-788.

20. Semina I.I., Mukharyamova L.M., Sabirov I.S., Valeeva E.V., Safiullina L.R., Nikitin D.O. The current state of the problem of autism spectrum disorders – some biomedical and socio-humanitarian aspects. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal, 2019, Vol. 100, no. 6, pp. 918-929. (In Russ.)

21. Vorstman J.A.S., Burbach J.P.H. Autism and schizophrenia: genetic and phenotypic relationships. In: Patel V., Preedy V., Martin C. (eds) Comprehensive Guide to Autism. Springer, New York, 2014, pp. 1645-1662.

22. Tonhajzerova I., Ondrejka I., Mestanik M., Mikolka P., Hrtánek I. Mestanikova A., Bujnakova I. Mokra D. Inflammatory activity in autism spectrum disorder. Adv. Exp. Med. Biol., 2015, Vol. 861, pp. 93-98.

23. Ashwood P., Krakowiak P., Hertz-Picciotto I., Hansen R., Pessah I., van de Water J. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav. Immun., 2011, Vol. 25, no. 1, pp. 40-45.

24. Yirmiya R., Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun., 2011, Vol. 25, no. 2, pp. 181-213.

25. Arendt D. The evolution of cell types in animals: emerging principles from molecular studies. Nat. Rev. Genet., 2008, Vol. 9, no. 11, pp. 868-882.

26. van Lange P.A.M., Rinderu M.I., Bushman B.J. Aggression and violence around the world: A model of CLimate, Aggression, and Self-control in Humans (CLASH). Behav. Brain Sci., 2017, Vol. 40, e75. doi: 10.1017/ S0140525X16000406.

27. Barlati S., Deste G., Ariu C., Vita A. Autism spectrum disorder and schizophrenia: do they overlap? Int. J. Emerg. Ment. Health, Vol. 18, no. 1, pp. 760-763.

28. Veiga-Fernandes H., Freitas А.А. The s(c)ensory immune system theory. Trends Immunol., 2017, Vol. 38, no. 10, pp. 777-788.

29. Baron-Cohen S. Editorial perspective: neurodiversity – a revolutionary concept for autism and psychiatry. J. Child. Psychol. Psychiatry, 2017, Vol. 58, no. 6, pp. 744-747.

30. Vorstman J.A.S., Burbach J.P.H. Autism and schizophrenia: genetic and phenotypic relationships. In: Patel V., Preedy V., Martin C. (eds) Comprehensive Guide to Autism. Springer, New York, 2014, pp. 1645-1662.

31. Baron-Cohen S. Two new theories of autism: hyper-systemising and assortative mating. Arch. Dis. Child., 2006, Vol. 91, no. 1, pp. 2-5.

32. Baruch K., Deczkowska A., David E., Castellano J.M., Miller O., Kertser A., Berkutzki T., Barnett-Itzhaki Z., Bezalel D., Wyss-Coray T., Amit I., Schwartz M. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science, 2014, Vol. 346, pp. 89-93.

33. Besedovsky H.O. The immune system as a sensorial system that can modulate brain functions and reset homeostasis. Ann. N. Y. Acad. Sci., 2019, Vol. 1437, no. 1, pp. 5-14.

34. Canitano R., Pallagrosi M. Autism spectrum disorders and schizophrenia spectrum disorders: excitation/inhibition imbalance and developmental trajectories. Front. Psychiatry, 2017, Vol. 8, 69. doi:10.3389/fpsyt.2017.00069.

35. Choi G.B., Yim Y.S., Wong H., Kim S., Kim H., Kim S.V., Hoeffer C.A., Littman D.R., Huh J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 2016, Vol. 351, pp. 933-939.

36. Craddock N., Owen M.J. The Kraepelinian dichotomy – going, going... but still not gone. Br. J. Psychiatry, 2010, Vol. 196, no. 2, pp. 92-95.

37. de Lacy N., King B.H. Revisiting the relationship between autism and schizophrenia: toward an integrated neurobiology. Annu. Rev. Clin. Psychol., 2013, Vol. 9, pp. 555-587.

38. del Giudice M., Klimczuk A.C.E., Traficonte D.M., Maestripieri D. Autistic-like and schizotypal traits in a life history perspective: diametrical associations with impulsivity, sensation seeking, and sociosexual behavior. Evol. Hum. Behav., 2014, Vol. 35, no. 5, pp. 415-424.

39. del Rey A., Besedovsky H.O. Immune-neuro-endocrine reflexes, circuits, and networks: physiologic and evolutionary implications. Front. Horm. Res., 2017, Vol. 48, pp. 1-18.

40. Derecki N.C., Cardani-Boulton A.N., Yang C.H., Quinnies K.M., Crihfield A., Lynch K.R., Kipnis J. Regulation of learning and memory by meningeal immunity: a key role for IL-4. J. Exp. Med., 2010, Vol. 207, no. 5, pp. 1067-1080.

41. Draghi J.A., Whitlock M.C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution, 2012, Vol. 66, no. 9, pp. 2891-2902.

42. Engelhardt B. T cell migration into the central nervous system during health and disease: Different molecular keys allow access to different central nervous system compartments. Clin. Exp. Neuroimmunol., 2010, Vol. 1, pp. 79-93.

43. Engelhardt B., Ransohoff R.M. Capture, crawl, cross: the T cell code to breach the blood-brain barriers. Trends Immunol., 2012, Vol. 33, no. 12, pp. 579-589.

44. Filiano A.J., Xu Y., Tustison N.J., Marsh R.L., Baker W., Smirnov I., Overall C.C., Gadani S.P., Turner S.D., Weng Z., Peerzade S.N., Chen H., Lee K.S., Scott M.M., Beenhakker M.P., Litvak V., Kipnis J. Unexpected role of interferon-γ in regulating neuronal connectivity and social behavior. Nature, 2016, Vol. 535, no. 7612, pp. 425-429.

45. Flandroy L., Poutahidis T., Berg G., Clarke G., Dao M.C., Decaestecker E., Furman E., Haahtela T., Massart S., Plovier H., Sanz Y., Rook G. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ., 2018, Vol. 627, pp. 1018-1038.

46. Gandal M.J, Zhang P., Hadjimichael E., Walker R.L., Chen C., Liu S., Won H., van Bakel H., Varghese M., Wang Y., Shieh A.W., Haney J., Parhami S., Belmont J., Kim M., Losada P.M., Khan Z., Mleczko J., Xia Y., Dai R., Wang D., Yang Y.T., Xu M., Fish K., Hof P.R., Warrell J., Fitzgerald D., White K., Jaffe A.E., PsychENCODE Consortium, Peters M.A., Gerstein M., Liu C., Iakoucheva L.M., Pinto D., Geschwind D.H., Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science, 2018, Vol. 362, eaat8127. doi:10.1126/science.aat8127.

47. García-Bueno B., Caso J.R., Leza J.C. Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci. Biobehav. Rev., 2008, Vol. 32, no. 6, pp. 1136-1151.

48. Gomez-Fernandez A., de la Torre-Aguilar M.J., Gil-Campos M., Flores-Rojas K., Cruz-Rico M.D., MartinBorreguero P., Perez-Navero J.L. Children with autism spectrum disorder with regression exhibit a different profile in plasma cytokines and adhesion molecules compared to children without such regression. Front. Pediatr., 2018, Vol. 6, 264. doi: 10.3389/fped.2018.00264.

49. Kawakami N., Bartholomäus I., Pesic M., Mues M. An autoimmunity odyssey: how autoreactive T cells infiltrate into the CNS. Immunol. Rev., 2012, Vol. 248, no. 1, pp. 140-155.

50. Kelley K.W., McCusker R.H. Getting nervous about immunity. Semin. Immunol., 2014, Vol. 26, no. 5, pp. 389-393.

51. Kioussis D., Pachnis V. Immune and nervous systems: more than just a superficial similarity? Immunity, 2009, Vol. 31, no. 5, pp. 705-710.

52. Kipnis J., Gadani S., Derecki N.C. Pro-cognitive properties of T cells. Nat. Rev. Immunol., 2012, Vol. 12, no. 9, pp. 663-669.

53. Kipnis J. Multifaceted Interactions between adaptive immunity and the central nervous system. Science, 2016, Vol. 353, pp. 766-771.

54. Kivisäkk P., Imitola J., Rasmussen S., Elyaman W., Zhu B., Ransohoff R.M., Khoury S.J. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol., 2009, Vol. 65, no. 4, pp. 457-469.

55. Korn T., Kallies A. T cell responses in the central nervous system. Nat. Rev. Immunol., 2017, Vol. 17, no. 3, pp. 179-194.

56. Kroken R.A., Sommer I.E., Steen V.M., Dieset I., Johnsen E. Constructing the immune signature of schizophrenia for clinical use and research; an integrative review translating descriptives into diagnostics. Front. Psychiatry., 2019, Vol. 9, 753. doi: 10.3389/fpsyt.2018.00753.

57. Marin I.A., Kipnis J. Central nervous system: (immunological) ivory tower or not? Neuropsychopharmacology, 2017, Vol. 42, no. 1, pp. 28-35.

58. Marin I., Kipnis J. Learning and memory … and the immune system. Learn Mem., 2013, Vol. 20, no. 10, pp. 601-606.

59. Mouridsen S., Rich, B., Isager T. Psychiatric disorders in adults diagnosed as children with atypical autism. A case control study. J. Neural Transm., 2008, Vol. 115, pp. 135-138.

60. Napolioni V., Ober-Reynolds B., Szelinger S., Corneveaux J.J, Pawlowski T., Ober-Reynolds S., Kirwan J., Persico A.M., Melmed R., Craig D., Smith C.J., Matthew J. Huentelman. Plasma cytokine profiling in sibling pairs discordant for autism spectrum disorder. J. Neuroinflammation, 2013, Vol. 10, 38. doi: 10.1186/1742-2094-10-38.

61. Pfau M.L., Russo S.J. Peripheral and central mechanisms of stress resilience. Neurobiol. Stress., 2015, Vol. 1, pp. 66-79.

62. Prata J., Santos S.G., Almeida M. I., Coelho R., Barbosa M.A. Bridging autism spectrum disorders and schizophrenia through inflammation and biomarkers – pre-clinical and clinical investigations. J. Neuroinflammation, 2017, Vol. 14, no. 1, 179. doi: 10.1186/s12974-017-0938-y.

63. Raison C.L., Miller A.H. Malaise, melancholia and madness: the evolutionary legacy of an inflammatory bias. Brain Behav. Immun., 2013, Vol. 31, pp. 1-8.

64. Ransohoff R.M., Kivisäkk P., Kidd G. Three or more routes for leukocyte migration into the central nervous system. Nat. Rev. Immunol., 2003, Vol. 3, pp. 569-581.

65. Rapoport J., Chavez A., Greenstein D., Addington A., Gogtay N. Autism-spectrum disorders and childhood onset schizophrenia: clinical and biological contributions to a relationship revisited. J. Am. Acad. Child. Adolesc. Psychiatry, 2009, Vol. 48, no. 1, pp. 10-18.

66. Réale D., Garant D., Humphries M.M., Bergeron P., Careau V. Montiglio P.O. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos Trans. R. Soc. Lond. B Biol. Sci., 2010, Vol. 365, pp. 4051-4063.

67. Saresella M., Marventano I., Guerini F.R., Mancuso R., Ceresa L., Zanzottera M., Rusconi B., Maggioni E., Tinelli C., Clerici M. An autistic endophenotype results in complex immune dysfunction in healthy siblings of autistic children. Biol. Psychiatry., 2009, Vol. 66, no. 10, pp. 978-984.

68. Schläger C., Körner H., Krueger M., Vidoli S., Haberl M., Mielke D., Brylla E., Issekutz T., Cabañas C., Nelson P.J., Ziemssen T., Rohde V., Bechmann I., Lodygin D., Odoardi F., Flügel A. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature, 2016, Vol. 530, pp. 349-353.

69. Sealey L.A., Hughes B.W., Sriskanda A.N., Guest J.R., Gibson A.D., Johnson-Williams L., Pace D.G., Bagasra O. Environmental factors in the development of autism spectrum disorders. Environment Int., 2016, Vol. 88, pp. 288-298.

70. Stefanik L., Erdman L., Ameis S.H., Foussias G., Mulsant B.H., Behdinan T., Goldenberg A., O’Donnell L.J., Voineskos A.N. Brain-behavior participant similarity networks among youth and emerging adults with schizophrenia spectrum, autism spectrum, or bipolar disorder and matched controls. Neuropsychopharmacology, 2018, Vol. 43, no. 5, pp. 1180-1188.

71. Stilling R.M., Bordenstein S.R., Dinan T.G., Cryan J.F. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front. Cell. Infect. Microbiol., 2014, Vol. 4, no. 147, pp. 1-17.

72. Tonhajzerova I., Ondrejka I., Mestanik M., Mikolka P., Hrtánek I. Mestanikova A., Bujnakova I. Mokra D. Inflammatory activity in autism spectrum disorder. Adv. Exp. Med. Biol., 2015, Vol. 861, pp. 93-98.

73. Yirmiya R., Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav. Immun., 2011, Vol. 25, no. 2, pp. 181-213.

74. van Lange P.A.M., Rinderu M.I., Bushman B.J. Aggression and violence around the world: A model of CLimate, Aggression, and Self-control in Humans (CLASH). Behav. Brain Sci., 2017, Vol. 40, e75. doi: 10.1017/S0140525X16000406.

75. Veiga-Fernandes H., Freitas А.А. The s(c)ensory immune system theory. Trends Immunol., 2017, Vol. 38, no. 10, pp. 777-788.

76. Vorstman J.A.S., Burbach J.P.H. Autism and schizophrenia: genetic and phenotypic relationships. In: Patel V., Preedy V., Martin C. (eds) Comprehensive Guide to Autism. Springer, New York, 2014, pp. 1645-1662.


Supplementary files

1. Метаданные
Subject
Type Исследовательские инструменты
Download (35KB)    
Indexing metadata ▾
2. Подписи авторов
Subject
Type Исследовательские инструменты
Download (344KB)    
Indexing metadata ▾
3. Титульный лист
Subject
Type Исследовательские инструменты
Download (36KB)    
Indexing metadata ▾
4. Резюме
Subject
Type Исследовательские инструменты
Download (45KB)    
Indexing metadata ▾
5. Литература
Subject
Type Исследовательские инструменты
Download (106KB)    
Indexing metadata ▾
6. Таблица 1
Subject
Type Исследовательские инструменты
Download (16KB)    
Indexing metadata ▾
7. Таблица 2
Subject
Type Исследовательские инструменты
Download (17KB)    
Indexing metadata ▾
8. Название, подписи к рисунку 1
Subject
Type Исследовательские инструменты
Download (13KB)    
Indexing metadata ▾
9. Рисунок 1
Subject
Type Исследовательские инструменты
Download (9MB)    
Indexing metadata ▾
10. Статья с исправлениями
Subject
Type Other
Download (37KB)    
Indexing metadata ▾
11. Резюме исправлено
Subject
Type Other
Download (16KB)    
Indexing metadata ▾
12. ТАБЛИЦА 2. МАТРИЦА ФАКТОРНЫХ НАГРУЗОК ПОКАЗАТЕЛЕЙ ИММУННОЙ И НЕЙРОЭНДОКРИННОЙ СИСТЕМ ДЕТЕЙ С РАС, РШС И ТРД, ПОЛУЧЕННАЯ В ХОДЕ НЕЛИНЕЙНОГО АНАЛИЗА ГЛАВНЫХ КОМПОНЕНТ
Subject
Type Other
Download (20KB)    
Indexing metadata ▾
13. Литература дополнена
Subject
Type Other
Download (126KB)    
Indexing metadata ▾
14. Рисунок исправлен
Subject
Type Other
Download (57MB)    
Indexing metadata ▾

Review

For citations:


Burmistrova A.L., Filippova Yu.Yu. Congruency and phenotypic plasticity of immune and nervous systems in children with autism spectrum disorders compared to schizophrenia spectrum disorders”, Medical Immunology (Russia). Medical Immunology (Russia). 2020;22(4):703-716. (In Russ.) https://doi.org/10.15789/1563-0625-CAP-1968

Views: 853


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)