Preview

Медицинская иммунология

Расширенный поиск

Физиологическая и патогенетическая роль рецепторов-мусорщиков у человека

https://doi.org/10.15789/1563-0625-PAP-1893

Полный текст:

Аннотация

Рецепторы мусорщики – SR (scavenger receptor) включают более 30 отдельных представителей, разделенных по структурному принципу на 11 классов (A-L). Они экспрессируются преимущественно на стромальных макрофагах, их экспрессия на клетках может увеличиваться в прямой зависимости от концентрации их лигандов. По своему строению SR гетерогенны, но их объединяет общая функциональная направленность. Так, различные классы SR могут участвовать в поглощении модифицированных липопротеинов низкой плотности, гликированных белков, апоптозных, стареющих и поврежденных клеток, измененных эритроцитов и тромбоцитов, а также большого числа других эндогенных лигандов из разряда метаболического и клеточного «мусора». Также общим свойством SR является их участие в удалении из кровотока и других тканей относительно небольших количеств патогенов, регулирование процессов клеточного и тканевого стресса, способность образовывать сложные рецепторные комплексы с другими типами рецепторов, включая интегрины и Toll-подобные рецепторы. В отличие от классических паттерн-распознающих рецепторов (ПРР), задействование SR не всегда приводит к выраженной активации клеток и развитию провоспалительного клеточного стресса. Функциональные эффекты SR обеспечивают взаимосвязь различных физиологических процессов с иммунной системой, включая процессы нейроэндокринной и метаболической регуляции. Эти механизмы не только обеспечивают стабильность гомеостаза, но также лежат на границе нормы и патологии, участвуя в патогенезе переходных состояний, а также в процессах физиологического старения. Одновременно с этим связанные с SR процессы являются одними из ключевых факторов патогенеза различных соматических заболеваний, в том числе ассоциированных с хроническим воспалением низкой интенсивности, включая ожирение, диабет 2-го типа, атеросклероз, гипертонию, различные варианты нейродегенерации. Также SR вовлечены в процессы опухолевой трансформации и противоопухолевого иммунитета, в различные процессы классического воспаления, начиная с презентации антигенов и заканчивая процессами морфофункциональной поляризации макрофагов и Т-клеток в очаге воспаления и иммунокомпетентных органов. SR играют противоречивую роль в развитии острого системного воспаления – главную причину летальных исходов в палатах интенсивной терапии. Целенаправленное воздействие на SR является перспективным направлением терапии очень широкого круга заболеваний, а определение мембранных и растворимых форм SR – методами диагностики и мониторинга многих патологий человека.

Об авторах

Е. Ю. Гусев
ФГБУН «Институт иммунологии и физиологии» Уральского отделения Российской академии наук
Россия

Гусев Е.Ю. – д.м.н., профессор, заведующий лабораторией иммунологии воспаления

г. Екатеринбург



Н. В. Зотова
ФГБУН «Институт иммунологии и физиологии» Уральского отделения Российской академии наук; ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»
Россия

Зотова Н.В. – к.б.н., старший научный сотрудник; доцент кафедры медицинской биохимии и биофизики

620049, г. Екатеринбург, ул. Первомайская, 106



Ю. А. Журавлева
ФГБУН «Институт иммунологии и физиологии» Уральского отделения Российской академии наук
Россия

Журавлева Ю.А. – к.б.н., старший научный сотрудник лаборатории иммунологии воспаления 

г. Екатеринбург



В. А. Черешнев
ФГБУН «Институт иммунологии и физиологии» Уральского отделения Российской академии наук
Россия

Черешнев В.А. – д.м.н., профессор, академик РАН, научный руководитель

г. Екатеринбург



Список литературы

1. Головкин А.С., Асадуллина И.А., Кудрявцев И.В. Пуринергическая регуляция основных физиологических и патологических процессов // Медицинская иммунология, 2018. Т. 20, № 4. С. 463-476. [Golovkin A.S., Asadullina I.A., Kudryavtsev I.V. Purinergic regulation of basic physiological and pathological processes. Meditsinskaya immunologiya = Medical Immunology (Russia), 2018, Vol. 20, no. 4, pp. 463-476. (In Russ.)] doi: 10.15789/1563-0625-2018-4-463-476.

2. Гусев Е.Ю., Журавлева Ю.А., Зотова Н.В. Взаимосвязь эволюции иммунитета и воспаления у позвоночных // Успехи современной биологии, 2019. Т. 139, № 1. С. 59-74. [Gusev E.Yu., Zhuravleva Yu.A., Zotova N.V. Correlation of immunity evolution and inflammation in vertebrates. Uspekhi sovremennoy biologii = Biology Bulletin Reviews, 2019, Vol. 139, no. 1, pp. 59-74 (In Russ.)]

3. Черешнев В.А., Гусев Е.Ю. Иммунологические и патофизиологические механизмы системного воспаления // Медицинская иммунология, 2012. Т. 14, № 1-2. С. 9-20. [Chereshnev V.A., Gusev E.Yu. Immunological and pathophysiological mechanisms of systemic inflammation. Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, Vol. 14, no. 1-2, pp. 9-20. (In Russ.)] doi: 10.15789/1563-0625-2012-1-2-9-20.

4. Abbas A.K., Lichtman A.H., Pillai S. Cellular and molecular immunology. Philadelphia: Elsevier, 2018. 579 p.

5. Acton S., Resnick D., Freeman M., Ekkel Y., Ashkenas J., Krieger M. The collagenous domains of macrophage scavenger receptors and complement component C1q mediate their similar, but not identical, binding specificities for polyanionic ligands. J. Biol. Chem., 1993, Vol. 268, no. 5, pp. 3530–3537.

6. Acton S., Rigotti A., Landschulz K.T., Xu S., Hobbs H.H., Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science, 1996, Vol. 271, no. 5248, pp. 518-520.

7. Adachi H., Tsujimoto M. FEEL-1, a novel scavenger receptor with in vitro bacteria-binding and angiogenesismodulatingactivities. J. Biol. Chem., 2002, Vol. 277, no. 37, pp. 34264-34270.

8. Al-Banna N., Lehmann C. Oxidized LDL and LOX-1 in experimental sepsis. Mediators Inflamm., 2013, Vol. 2013, 761789. doi: 10.1155/2013/761789.

9. Alvarado-Vazquez P.A., Bernal L., Paige C.A., Grosick R.L., Moracho Vilrriales C., Ferreira D.W., UleciaMorón C., Romero-Sandoval E.A. Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophagesresults in an M2 phenotype under inflammatory conditions. Immunobiology, 2017, Vol. 222, no. 8-9, pp. 900-912.

10. Armengol C., Bartolí R., Sanjurjo L., Serra I., Amézaga N., Sala M., Sarrias M.R. Role of scavenger receptors in the pathophysiology of chronic liver diseases. Crit. Rev. Immunol., 2013, Vol. 33, no. 1, pp. 57-96.

11. Arredouani M., Yang Z., Ning Y., Qin G., Soininen R., Tryggvason K., Kobzik L. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J. Exp. Med., 2004, Vol. 200, no. 2, pp. 267-272.

12. Asea A., Rehli M., Kabingu E., Boch J.A., Bare O., Auron P.E., Stevenson M.A., Calderwood S.K. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem., 2002, Vol. 277, no. 17, pp. 15028-15034.

13. Baid K., Nellimarla S., Huynh A., Boulton S., Guarné A., Melacini G., Collins S.E., Mossman K.L. Direct binding and internalization of diverse extracellular nucleic acid species through the collagenous domain of class A scavenger receptors. Immunol. Cell Biol., 2018, Vol. 96, no. 9, pp. 922-934.

14. Balzan S., Lubrano V. LOX-1 receptor: A potential link in atherosclerosis and cancer. Life Sci., 2018, Vol. 198, pp. 79-86.

15. Baquero M., Martin N. Depressive symptoms in neurodegenerative diseases. World J. Clin. Cases, 2015, Vol. 3, no. 8, pp. 682-693.

16. Bergheanu S.C., Bodde M.C., Jukema J.W. Pathophysiology and treatment of atherosclerosis: Current view and future perspective on lipoprotein modification treatment. Neth. Heart J., 2017, Vol. 25, no. 4, pp. 231-242.

17. Berwin B., Hart J.P., Rice S., Gass C., Pizzo S.V., Post S.R., Nicchitta C.V. Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J., 2003, Vol. 22, pp. 6127-6136.

18. Bisht K., Sharma K., Tremblay M.È. Chronic stress as a risk factor for Alzheimer’s disease: Roles of microgliamediated synaptic remodeling, inflammation, and oxidative stress. Neurobiol. Stress, 2018, Vol. 9, pp. 9-21.

19. Biswas S.K. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid. Med. Cell Longev., 2016, Vol. 2016, 5698931. doi: 10.1155/2016/5698931.

20. Boucher P., Gotthardt M., Li W.P., Anderson R.G., Herz J. Science. LRP: role in vascular wall integrity and protection from atherosclerosis. Science, 2003, Vol. 300, no. 5617, pp. 329-332.

21. Boullier A., Bird D.A., Chang M.K., Dennis E.A., Friedman P., Gillotre-Taylor K., Hörkkö S., Palinski W., Quehenberger O., Shaw P., Steinberg D., Terpstra V., Witztum J.L. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. N.Y. Acad. Sci., 2001, Vol. 947, pp. 214-223.

22. Brifault C., Gilder A.S., Laudati E., Banki M., Gonias S.L. Shedding of membrane-associated LDL receptorrelated protein-1 from microglia amplifies and sustains neuroinflammation. J. Biol. Chem., 2017, Vol. 292, no. 45, pp. 18699-18712.

23. Broders-Bondon F., Nguyen Ho-Bouldoires T.H., Fernandez-Sanchez M.E., Farge E. Mechanotransduction in tumor progression: The dark side of the force. J. Cell Biol., 2018, Vol. 217, no. 5, pp. 1571-1587.

24. Brown M.S., Goldstein J.L. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc. Natl. Acad. Sci. USA, 1979, Vol. 76, no. 7, pp. 3330-3337.

25. Bruneau N., Richard S., Silvy F., Verine A., Lombardo D. Lectin-like Ox-LDL receptor is expressed in human INT-407 intestinal cells: involvement in the transcytosis of pancreatic bile salt-dependent lipase. Mol. Biol. Cell, 2003, Vol. 14, no. 7, pp. 2861-2875.

26. Butler M., Morel A.S., Jordan W.J., Eren E., Hue S., Shrimpton R.E., Ritter M.A. Altered expression and endocytic function of CD205 in human dendritic cells, and detection of a CD205-DCL-1 fusion protein upon dendritic cell maturation. Immunology, 2007, Vol. 120, no. 3, pp. 362-371.

27. Cai L., Wang Z., Ji A., Meyer J.M., van der Westhuyzen D.R. Scavenger receptor CD36 expression contributes to adipose tissue inflammation and cell death in diet-induced obesity. PLoS ONE, 2012, Vol. 7, no. 5, e36785. doi: 10.1371/journal.pone.0036785.

28. Canton J., Neculai D., Grinstein S. Scavenger receptors in homeostasis and immunity. Nat. Rev. Immunol., 2013, Vol. 13, no. 9, pp. 621-634.

29. Carniglia L., Ramírez D., Durand D., Saba J., Turati J., Caruso C., Scimonelli T.N., Lasaga M. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediators Inflamm., 2017, Vol. 2017, 5048616. doi: 10.1155/2017/5048616.

30. Chen C.K., Chan N.L., Wang A.H. The many blades of the β-propeller proteins: conserved but versatile. Trends Biochem. Sci., 2011, Vol. 36, no. 10, pp. 553-561.

31. Chimal-Ramírez G.K., Espinoza-Sánchez N.A., Chávez-Sánchez L., Arriaga-Pizano L., Fuentes-Pananá E.M. Monocyte differentiation towards protumor activity does not correlate with M1 or M2 phenotypes. J. Immunol. Res., 2016, Vol. 2016, 6031486. doi: 10.1155/2016/6031486.

32. Chistiakov D.A., Killingsworth M.C., Myasoedova V.A., Orekhov A.N., Bobryshev Y.V. CD68/macrosialin: not just a histochemical marker. Lab. Invest., 2017, Vol. 97, no. 1, pp. 4-13.

33. Cho J., Kim H., Song J., Cheong J.W., Shin J.W., Yang W.I., Kim H.O. Platelet storage induces accelerated desialylation of platelets and increases hepatic thrombopoietin production. J. Transl. Med., 2018, Vol. 16, no. 1, 199. doi: 10.1186/s12967-018-1576-6.

34. Cornejo F., von Bernhardi R. Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer’s disease. Mediators Inflamm., 2013, Vol. 2013, 895651. doi: 10,1155/2013/895651.

35. Creagh E.M., O’Neill L.A. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol., 2006, Vol. 27, no. 8, pp. 352-357.

36. Dai Y., Condorelli G., Mehta J.L. Scavenger receptors and non-coding RNAs: relevance in atherogenesis. Cardiovasc. Res., 2016, Vol. 109, no. 1, pp. 24-33.

37. de Paoli F., Staels B., Chinetti-Gbaguidi G. Macrophage phenotypes and their modulation in atherosclerosis. Circ. J., 2014, Vol. 78, no. 8, pp. 1775-1781.

38. de Siqueira J., Abdul Zani I., Russell D.A., Wheatcroft S.B., Ponnambalam S., Homer-Vanniasinkam S. Clinical and preclinical use of LOX-1-specific antibodies in diagnostics and therapeutics. J. Cardiovasc. Transl. Res., 2015, Vol. 8, no. 8, pp. 458-465.

39. de Witte L., Nabatov A,. Pion M., Fluitsma D., de Jong M.A., de Gruijl T., Piguet V., van Kooyk Y., Geijtenbeek T.B. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med., 2007, Vol. 13, no. 3, pp. 367-371.

40. Deitch E.A., Condon M., Feketeova E., Machiedo G.W., Mason L., Vinluan G.M., Alli V.A., Neal M.D., Tomaio J.N., Fishman J.E., Durán W.N., Spolarics Z. Trauma-hemorrhagic shock induces a CD36-dependent RBC endothelial-adhesive phenotype. Crit. Care Med., 2014, Vol. 42, no. 3, pp. e200-e210.

41. Delia D., Mizutani S. The DNA damage response pathway in normal hematopoiesis and malignancies. Int. J. Hematol., 2017, Vol. 106, no. 3, pp. 328-334.

42. DeMarco V.G., Aroor A.R., Sowers J.R. The pathophysiology of hypertension in patients with obesity. Nat. Rev. Endocrinol., 2014, Vol. 10, no. 6, pp. 364-376.

43. den Dunnen J., Gringhuis S.I., Geijtenbeek T.B.H. Innate signaling by the C-type lectin DC-SIGN dictates immune responses. Cancer Immunol. Immunother., 2009, Vol. 58, no. 7, pp. 1149-1157.

44. Deng L., Chen N., Li Y., Zheng H., Lei Q. CXCR6/CXCL16 functions as a regulator in metastasis and progression of cancer. Biochim. Biophys. Acta, 2010, Vol. 1806, no. 1, pp. 42-49.

45. Drummond R., Cauvi D.M., Hawisher D., Song D., Niño D.F., Coimbra R., Bickler S., De Maio A. Deletion of scavenger receptor A gene in mice resulted in protection from septic shock and modulation of TLR4 signaling in isolated peritoneal macrophages. Innate Immun., 2013, Vol. 19, no. 1, pp. 30-41.

46. Dunkel J., Viitala M., Karikoski M., Rantakari P., Virtakoivu R., Elima K., Hollmén M., Jalkanen S., Salmi M. Enhanced Antibody Production in Clever-1/Stabilin-1-Deficient Mice. Front. Immunol., 2018, Vol. 9, 2257. doi: 10.3389/fimmu.2018.02257.

47. Dunne D.W., Resnick D., Greenberg J., Krieger M., Joiner K.A. The type I macrophage scavenger receptor binds to gram-positive bacteria and recognizes lipoteichoic acid. Proc. Natl. Acad. Sci. USA, 1994, Vol. 91, no. 5, pp. 1863-1867.

48. Elewa U., Sanchez-Niño M.D., Mahillo-Fernández I., Martin-Cleary C., Belen Sanz A., Perez-Gomez M.V., Fernandez-Fernandez B., Ortiz A. Circulating CXCL16 in Diabetic Kidney Disease. Kidney Blood Press. Res., 2016, Vol. 41, no. 5, pp. 663-671.

49. Emard J.F., Thouez J.P., Gauvreau D. Neurodegenerative diseases and risk factors: a literature review. Soc. Sci. Med., 1995, Vol. 40, no. 6, pp. 847-858.

50. Etzerodt A., Maniecki M.B., Graversen J.H., Møller H.J., Torchilin V.P., Moestrup S.K. Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163. J. Control Release, 2012, Vol. 160, no. 1, pp. 72-80.

51. Etzerodt A., Moestrup S.K. CD163 and inflammation: biological, diagnostic, and therapeutic aspects. Antioxid. Redox Signal, 2013, Vol. 18, no. 17, pp. 2352-2363.

52. Eugenín J., Vecchiola A., Murgas P., Arroyo P., Cornejo F., von Bernhardi R. Expression pattern of scavenger receptors and amyloid-β phagocytosis of astrocytes and microglia in culture are modified by acidosis: implications for alzheimer’s disease. J. Alzheimers Dis., 2016, Vol. 53, no. 3, pp. 857-873.

53. Fabriek B.O., van Bruggen R., Deng D.M., Ligtenberg A.J., Nazmi K., Schornagel K., Vloet R.P., Dijkstra C.D., van den Berg T.K. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria. Blood, 2009, Vol. 113, no. 4, pp. 887-892.

54. Febbraio M., Hajjar D.P., Silverstein R.L. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J. Clin. Invest., 2001, Vol. 108, no. 6, pp. 785-791.

55. Feng L., Zhou X., Su L.X, Feng D., Jia Y.H., Xie L.X. Clinical significance of soluble hemoglobin scavenger receptor CD163 (sCD163) in sepsis, a prospective study. PLoS ONE, 2012, Vol. 7, no. 7, e38400. doi: 10.1371/journal.pone.0038400.

56. Finn A.V., Nakano M., Polavarapu R., Karmali V., Saeed O., Zhao X., Yazdani S., Otsuka F., Davis T., Habib A., Narula J., Kolodgie F.D., Virmani R. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J. Am. Coll. Cardiol., 2012, Vol. 59, no. 2, pp. 166-177.

57. Fisher C.E., Howie S.E. The role of megalin (LRP-2/Gp330) during development. Dev. Biol., 2006, Vol. 296, no. 2, pp. 279-297.

58. Flacher V., Douillard P., Aït-Yahia S., Stoitzner P., Clair-Moninot V., Romani N., Saeland S. Expression of langerin/CD207 reveals dendritic cell heterogeneity between inbred mouse strains. Immunology, 2008, Vol. 123, no. 3, pp. 339-347.

59. Flütsch A., Henry K., Mantuano E., Lam M.S., Shibayama M., Takahashi K., Gonias S.L., Campana W.M. Evidence that LDL receptor-related protein 1 acts as an early injury detection receptor and activates c-Jun in Schwann cells. Neuroreport, 2016, Vol. 27, no. 18, pp. 1305-1311.

60. Foster T.J. The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus. Eur. J. Clin. Microbiol. Infect. Dis., 2016, Vol. 35, no. 12, pp. 1923-1931.

61. Fowler D.E., Yang S., Zhou M., Chaudry I.H., Simms H.H., Wang P. J. Adrenomedullin and adrenomedullin binding protein-1: their role in the septic response. Surg. Res., 2003, Vol. 109, no. 2, pp. 175-181.

62. Franceschi C., Campisi J. Chronic inflammation (inflammaging) and its potential contribution to ageassociated diseases. J. Gerontol. A Biol. Sci. Med. Sci., 2014, Vol. 69, Suppl. 1, pp. S4-S9.

63. Frenkel D., Wilkinson K., Zhao L., Hickman S.E., Means T.K., Puckett L., Farfara D., Kingery N.D., Weiner H.L., El Khoury J. Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat. Commun., 2013, Vol. 4, p. 2030.

64. Gaertner F., Ahmad Z., Rosenberger G., Fan S., Nicolai L., Busch B., Yavuz G., Luckner M., IshikawaAnkerhold H., Hennel R., Benechet A., Lorenz M., Chandraratne S., Schubert I., Helmer S., Striednig B., Stark K., Janko M., Böttcher R.T., Verschoor A., Leon C., Gachet C., Gudermann T., Mederos Y., Schnitzler M., Pincus Z., Iannacone M., Haas R., Wanner G., Lauber K., Sixt M., Massberg S. Migrating platelets are mechano-scavengers that collect and bundle bacteria. Cell, 2017, Vol. 171, no. 6, pp. 1368-1382.

65. Garg A.D., Romano E., Rufo N., Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ., 2016, Vol. 23, no. 6, pp. 938-951.

66. Garton T., Keep R.F., Hua Y., Xi G. CD163, a hemoglobin/haptoglobin scavenger receptor, after intracerebral hemorrhage: functions in microglia/macrophages versus neurons. Transl. Stroke Res., 2017, Vol. 8, no. 6, pp. 612-616.

67. Gasparotto J., Girardi C.S., Somensi N., Ribeiro C.T., Moreira J.C.F., Michels M., Sonai B., Rocha M., Steckert A.V., Barichello T., Quevedo J, Dal-Pizzol F., Gelain D.P. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J. Biol. Chem., 2018, Vol. 293, no. 1, pp. 226-244.

68. Gaus H., Miller C.M., Seth P.P., Harris E.N. Structural determinants for the interactions of chemically modified nucleic acids with the Stabilin-2 clearance receptor. Biochemistry, 2018, Vol. 57, no. 14, pp. 2061-2064.

69. Geissmann F., Manz M.G., Jung S., Sieweke M.H., Merad M., Ley K. Development of monocytes, macrophages, and dendritic cells. Science, 2010, Vol. 327, no. 5966, pp. 656-661.

70. Gensel J.C., Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res., 2015, no. 1619, pp. 1-11.

71. Georgoudaki A.M., Prokopec K.E., Boura V.F., Hellqvist E., Sohn S., Östling J., Dahan R., Harris R.A., Rantalainen M., Klevebring D., Sund M., Brage S.E., Fuxe J., Rolny C., Li F., Ravetch J.V., Karlsson M.C. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell. Rep., 2016, Vol. 15, no. 9, pp. 2000-2011.

72. Gilibert S., Galle-Treger L., Moreau M., Saint-Charles F., Costa S., Ballaire R., Couvert P., Carrié A., Lesnik P., Huby T. Adrenocortical scavenger receptor class B type I deficiency exacerbates endotoxic shock and precipitates sepsis-induced mortality in mice. J. Immunol., 2014, Vol. 193, no. 2, pp. 817-826.

73. Giuliano J.S. Jr., Lahni P.M., Wong H.R, Wheeler D.S. Pediatric Sepsis – Part V: Extracellular heat shock proteins: alarmins for the host immune system. Open Inflamm. J., 2011, Vol. 4, pp. 49-60.

74. Goedert M. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science, 2015, Vol. 349, no. 6248, 1255555. doi: 10.1126/science.1255555.

75. Goldstein J.L., Ho Y.K., Basu S.K., Brown M.S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl. Acad. Sci. USA, 1979, Vol. 76, no. 1, pp. 333-337.

76. Gong J., Zhu B., Murshid A., Adachi H., Song B., Lee A., Liu C., Calderwood S.K. T cell activation by heat shock protein 70 vaccine requires TLR signaling and scavenger receptor expressed by endothelial cells-1. J. Immunol., 2009, Vol. 183, no. 5, pp. 3092-3098.

77. Goodridge H.S., Reyes C.N., Becker C.A., Katsumoto T.R., Ma J., Wolf A.J., Bose N., Chan A.S., Magee A.S., Danielson M.E., Weiss A., Vasilakos J.P., Underhill D.M. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature, 2011, Vol. 472, no. 7344, pp. 471-475.

78. Goyal T., Mitra S., Khaidakov M., Wang X., Singla S., Ding Z., Liu S., Mehta J.L. Current concepts of the role of oxidized LDL receptors in atherosclerosis. Curr. Atheroscler. Rep., 2012, Vol. 14, pp. 150-159.

79. Gronlund J., Vitved L., Lausen M., Skjodt K., Holmskov U. Cloning of a novel scavenger receptorcysteinerich type I transmembrane molecule (M160) expressed by human macrophages. J. Immunol., 2000, Vol. 165, no. 11, pp. 6406-6415.

80. Grove T.Z., Cortajarena A.L., Regan L. Ligand binding by repeat proteins: natural and designed. Curr. Opin. Struct. Biol., 2008, Vol. 18, no. 4, pp. 507-515.

81. Guo L., Song Z., Li M., Wu Q., Wang D., Feng H., Bernard P., Daugherty A., Huang B., Li X.A. Scavenger receptor BI protects against septic death through its role in modulating inflammatory response. J. Biol. Chem., 2009, Vol. 284, no. 30, pp. 19826-19834.

82. Guo L., Zheng Z., Ai J., Huang B., Li X.A. Hepatic scavenger receptor BI protects against polymicrobialinduced sepsis through promoting LPS clearance in mice. J. Biol. Chem., 2014, Vol. 289, no. 21, pp. 14666-14673.

83. Gusev E.Yu., Zotova N.V.Cellular stress and general pathological processes. Curr. Pharmac. Design, 2019, Vol. 25, pp. 251-297.

84. Habib A., Finn A.V. The role of iron metabolism as a mediator of macrophage inflammation and lipid handling in atherosclerosis. Front. Pharmacol., 2014, Vol. 5, p. 195.

85. Hajer G.R., van Haeften T.W., Visseren F.L. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur. Heart. J., 2008, Vol. 29, no. 24, pp. 2959-2971.

86. Hampton R.Y., Golenbock D.T., Penman M., Krieger M., Raetz C.R. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature, 1991, Vol. 352, pp. 342-344.

87. Han H.J., Tokino T., Nakamura Y. CSR, a scavenger receptor-like protein with a protective role against cellular damage caused by UV irradiation and oxidative stress. Human Mol. Genet., 1998, Vol. 7, no. 6, pp. 1039-1046.

88. Han X.Q., Gong Z.J., Xu S.Q., Li X., Wang L.K., Wu S.M., Wu J.H., Yang H.F. Advanced glycation end products promote differentiation of CD4(+) T helper cells toward pro-inflammatory response. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2014, Vol. 34, no. 1, pp. 10-17.

89. Harwani S.C. Macrophages under pressure: the role of macrophage polarization in hypertension. Transl. Res., 2018, Vol. 191, pp. 45-63.

90. Heit B., Kim H., Cosío G., Castaño D., Collins R., Lowell C.A., Kain K.C., Trimble W.S., Grinstein S. Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev. Cell., 2013, Vol. 24, no. 4, pp. 372-383.

91. Helming L., Winter J., Gordon S. The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J. Cell Sci., 2009, Vol. 122, Pt 4, pp. 453-459.

92. Henderson B., Nair S., Pallas J., Williams M.A. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol. Rev., 2011, Vol. 35, no. 1, pp. 147-200.

93. Hirahara K., Nakayama T. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int. Immunol., 2016, Vol. 28, no. 4, pp. 163-171.

94. Hoffmeister K.M., Falet H. Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thromb Res., 2016, Vol. 141, Suppl. 2, pp. S68-S72.

95. Holm D., Fink D.R., Steffensen M.A., Schlosser A., Nielsen O., Moeller J.B., Holmskov U. Characterization of a novel human scavenger receptor cysteine-rich molecule SCART1 expressed by lymphocytes. Immunobiology, 2013, Vol. 218, no. 3, pp. 408-417.

96. Holmskov U., Malhotra R., Sim R.B., Jensenius J.C. Collectins: collagenous C-type lectins of the innate immune defense system. Immunol. Today, 1994, Vol. 15, no. 2, pp. 67-74.

97. Holness C.L., Simmons D.L. Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood, 1993, Vol. 81, no. 6, pp. 1607-1613.

98. Huber O., Sumper M. Algal-CAMs: isoforms of a cell adhesion molecule in embryos of the alga Volvox with homology to Drosophila fasciclin I. EMBO J., 1994, Vol. 13, no. 18, pp. 4212-4222.

99. Imran M., Mahmood S. An overview of human prion diseases. Virol. J., 2011, Vol. 8, 559. doi: 10.1186/1743-422X-8-559.

100. Ingersoll M.A., Spanbroek R., Lottaz C., Gautier E.L., Frankenberger M., Hoffmann R., Lang R., Haniffa M., Collin M., Tacke F., Habenicht A.J., Ziegler-Heitbrock L., Randolph G.J. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood, 2010, Vol. 115, pp. e10-e19.

101. Iram T., Ramirez-Ortiz Z., Byrne M.H., Coleman U.A., Kingery N.D., Means T.K., Frenkel D., El Khoury J. Megf10 is a receptor for C1Q that mediates clearance of apoptotic cells by astrocytes. J. Neurosci., 2016, Vol. 36, no. 19, pp. 5185-5192.

102. Ishii J., Adachi H., Aoki J., Koizumi H., Tomita S., Suzuki T., Tsujimoto M., Inoue K., Arai H. SREC-II, a new member of the scavenger receptor type F family, trans-interacts with SREC-I through its extracellular domain. J. Biol. Chem., 2002, Vol. 277, no. 42, pp. 39696-39702.

103. Jiang Y., Oliver P., Davies K., Platt N. Identification and characterization of murine SCARA5, a novel class A scavenger receptor that is expressed by populations of epithelial cells. J. Biol. Chem., 2006, Vol. 281, no. 17, pp. 11834-11845.

104. Jones D.P., Go Y-M. Redox compartmentalization and cellular stress. Diabetes Obes. Metab., 2010, Vol. 12, no. 2, pp. 116-125.

105. Józefowski S., Arredouani M., Sulahian T., Kobzik L. Disparate regulation and function of the class A scavenger receptors SR-AI/II and MARCO. J. Immunol., 2005, Vol. 175, no. 12, pp. 8032-8041.

106. Kaku Y., Imaoka H., Morimatsu Y., Komohara Y., Ohnishi K., Oda H., Takenaka S., Matsuoka M., Kawayama T., Takeya M., Hoshino T. Overexpression of CD163, CD204 and CD206 on alveolar macrophages in the lungs of patients with severe chronic obstructive pulmonary disease. PLoS ONE, 2014, Vol. 9, no. 1, e87400. doi: 10.1371/journal.pone.0087400.

107. Kato M., Neil T.K., Clark G.J., Morris C.M., Sorg R.V., Hart D.N. cDNA cloning of human DEC-205, a putative antigen-uptake receptor on dendritic cells. Immunogenetics, 1998, Vol. 47, no. 6, pp. 442-450.

108. Ke L.Y., Chan H.C., Chan H.C., Kalu F.C.U., Lee H.C., Lin I.L., Jhuo S.J., Lai W.T., Tsao C.R., Sawamura T., Dixon R.A., Chen C.H., Chu C.S., Shin S.J. Electronegative low-density lipoprotein L5 induces adipose tissue inflammation associated with metabolic syndrome. J. Clin. Endocrinol. Metab., 2017, Vol. 102, no. 12, pp. 4615-4625.

109. Kee J.Y., Ito A., Hojo S., Hashimoto I., Igarashi Y., Tsuneyama K., Tsukada K., Irimura T., Shibahara N., Takasaki I., Inujima A., Nakayama T., Yoshie O., Sakurai H., Saiki I., Koizumi K. CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages. BMC Cancer, 2014, Vol. 14, 949. doi: 10.1186/1471-2407-14-949.

110. Kelley J.L., Ozment T.R., Li C., Schweitzer J.B., Williams D.L. Scavenger receptor-A (CD204): a two-edged sword in health and disease. Crit. Rev. Immunol., 2014, Vol. 34, no. 3, pp. 241-261.

111. Khaidakov M., Mitra S., Kang B.Y., Wang X., Kadlubar S., Novelli G., Raj V., Winters M., Carter W.C., Mehta J.L. Oxidized LDL receptor 1 (OLR1) as a possible link between obesity, dyslipidemia and cancer. PLoS ONE, 2011, Vol. 6, no. 5, e20277. doi: 10.1371/journal.pone.0020277.

112. Khoo U.S., Chan K.Y., Chan V.S., Lin C.L. DC-SIGN and L-SIGN: the SIGNs for infection. J. Mol. Med. (Berl.), 2008, Vol. 86, no. 8, pp. 861-874.

113. Klionsky D.J., Baehrecke E.H., Brumell J.H., Chu C.T., Codogno P., Cuervo A.M., Debnath J., Deretic V., Elazar Z., Eskelinen E.L., Finkbeiner S., Fueyo-Margareto J., Gewirtz D., Jäättelä M., Kroemer G., Levine B., Melia T.J., Mizushima N., Rubinsztein D.C., Simonsen A., Thorburn A., Thumm M., Tooze S.A. A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy, 2011, Vol. 7, no. 11, pp. 1273-1294.

114. Kneidl J., Löffler B., Erat M.C., Kalinka J., Peters G., Roth J., Barczyk K. Soluble CD163 promotes recognition, phagocytosis and killing of Staphylococcus aureus via binding of specific fibronectin peptides. Cell Microbiol., 2012, Vol. 14, no. 6, pp. 914-936.

115. Knudson C.B. Hyaluronan and CD44: strategic players for cell-matrix interactions during chondrogenesis and matrix assembly. Birth Defects Res. C. Embryo Today, 2003, Vol. 69, no. 2, pp. 174-196.

116. Kodama T., Freeman M., Rohrer L., Zabrecky J., Matsudaira P., Krieger M. Type I macrophage scavenger receptor contains α-helical and collagen-like coiled coils. Nature, 1990, Vol. 343, pp. 531-535.

117. Kosswig N., Rice S., Daugherty A., Post S.R. Сlass A scavenger receptor-mediated adhesion and internalization require distinct cytoplasmic domains. JBC, 2003, Vol. 278, pp. 34219-34225.

118. Kraal G., van der Laan L., Elomaa O., Tryggvason K. The macrophage receptor MARCO. Microbes Infect., 2000, Vol. 2, no. 3, pp. 313-316.

119. Kristiansen L.V., Hortsch M. Fasciclin II: the NCAM ortholog in Drosophila melanogaster. Adv. Exp. Med. Biol., 2010, Vol. 663, pp. 387-401.

120. Kubota K., Moriyama M., Furukawa S., Rafiul H.A.S.M., Maruse Y., Jinno T., Tanaka A., Ohta M., Ishiguro N., Yamauchi M., Sakamoto M., Maehara T., Hayashida J.N, Kawano S., Kiyoshima T., Nakamura S. CD163+CD204+ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. Sci. Rep., 2017, Vol. 7, no. 1, 1755. doi:10.1038/s41598-017-01661-z.

121. Kyaw T., Peter K., Li Y., Tipping P., Toh B.H., Bobik A. Cytotoxic lymphocytes and atherosclerosis: significance, mechanisms and therapeutic challenges. Br. J. Pharmacol., 2017, Vol. 174, no. 22, pp. 3956-3972.

122. Kzhyshkowska J., Gratchev A., Goerdt S. Stabilin-1, a homeostatic scavenger receptor with multiple functions. J. Cell Mol. Med., 2006, Vol. 10, no. 3, pp. 635-649.

123. Lamkanfi M., Dixit V.M. Mechanisms and functions of inflammasomes. Cell, 2014, Vol. 157, pp. 1013-1022.

124. Lee M.Y., Huang C.H., Kuo C.J., Lin C.L., Lai W.T., Chiou S.H. Clinical proteomics identifies urinary CD14 as a potential biomarker for diagnosis of stable coronary artery disease. PLoS ONE, 2015, Vol. 10, no. 2, e0117169. doi: 10.1371/journal.pone.0117169.

125. Lee S.A., Kwak M.S., Kim S., Shin J.S. The role of high mobility group box 1 in innate immunity. Yonsei Med. J., 2014, Vol. 55, no. 5, pp. 1165-1176.

126. Lee W., Park S.Y., Yoo Y., Kim S.Y., Kim J.E., Kim S.W., Seo Y.K., Park E.K., Kim I.S., Bae J.S. Macrophagic Stabilin-1 restored disruption of vascular integrity caused by sepsis. Thromb. Haemost., 2018, Vol. 118, no. 10, pp. 1776-1789.

127. Ley K., Pramod A.B., Croft M., Ravichandran K.S., Ting J.P. How mouse macrophages sense what is going on. Front. Immunol., 2016, Vol. 7, 204. doi: 10.3389/fimmu.2016.00204.

128. Liliensiek B., Weigand M.A., Bierhaus A., Nicklas W., Kasper M., Hofer S., Plachky J., Gröne H.J., Kurschus F.C., Schmidt A.M., Yan S.D., Martin E., Schleicher E., Stern D.M., Hämmerling G. Gü, Nawroth P.P., Arnold B. Receptor for advancedglycationendproducts (RAGE) regulatessepsis but not the adaptiveimmuneresponse. J. Clin. Invest., 2004, Vol. 113, no. 11, pp. 1641-1650.

129. Lillis A.P., van Duyn L.B., Murphy-Ullrich J.E., Strickland D.K. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev., 2008, Vol. 88, no. 3, pp. 887-918.

130. Lloyd C.M., Hessel E.M. Functions of T cells in asthma: more than just T(H)2 cells. Nat. Rev. Immunol., 2010, Vol. 10, no. 12, pp. 838-848.

131. Lozano F., Martínez-Florensa M. Commentary: The scavenger receptor SSc5D physically interacts with bacteria through the SRCR-containing N-terminal domain. Front. Immunol., 2017, Vol. 8, 366. doi: 10.3389/fimmu.2017.00366.

132. Luckheeram R.V., Zhou R. Verma A.D., Xia B. CD4+T cells: differentiation and functions. Clin. Dev. Immunol., 2012, Vol. 2012, 925135. doi: 10.1155/2012/925135.

133. Lupas A.N., Gruber M. The structure of alpha-helical coiled coils. Adv. Protein Chem., 2005, Vol. 70, pp. 37-78.

134. Ma K., Xu Y., Wang C., Li N., Li K., Zhang Y., Li X., Yang Q., Zhang H., Zhu X., Bai H., Ben J., Ding Q., Li K., Jiang Q., Xu Y., Chen Q. A cross talk between class A scavenger receptor and receptor for advanced glycation end-products contributes to diabetic retinopathy. Am. J. Physiol. Endocrinol. Metab., 2014, Vol. 307, no. 12, pp. E1153-E1165.

135. Maenhaut N., van de Voorde J. Regulation of vascular tone by adipocytes. BMC Med., 2011, Vol. 9, 25. doi: 10.1186/1741-7015-9-25.

136. Mahajan A., Herrmann M., Muñoz L.E. Clearance deficiency and cell death pathways: a model for the pathogenesis of SLE. Front. Immunol., 2016, Vol. 7, 35. doi: 10.3389/fimmu.2016.00035.

137. Manfredi A.A., Capobianco A., Esposito A., de Cobelli F., Canu T., Monno A., Raucci A., Sanvito F., Doglioni C., Nawroth P.P., Bierhaus A., Bianchi M.E., Rovere-Querini P., del Maschio A. Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodes. J. Immunol., 2008, Vol. 180, no. 4, pp. 2270-2275.

138. Mantovani A., Sozzani S., Locati M., Allavena P., Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 2002, Vol. 23, no. 11, pp. 549-555.

139. Mantuano E., Brifault C., Lam M.S., Azmoon P., Gilder A.S., Gonias S.L. LDL receptor-related protein-1 regulates NFκB and microRNA-155 in macrophages to control the inflammatory response. Proc. Natl. Acad. Sci. USA, 2016, Vol. 113, no. 5, pp. 1369-1374.

140. Martinez F.O., Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000 Prime Rep., 2014, Vol. 6, 13. doi: 10.12703/P6-13.

141. Martínez V.G., Moestrup S.K, Holmskov U., Mollenhauer J., Lozano F. The conserved scavenger receptor cysteine-rich superfamily in therapy and diagnosis. Pharmacol. Rev., 2011, Vol. 63, no. 4, pp. 967-1000.

142. Martinez-Pomares L. The mannose receptor. J. Leukoc. Biol., 2012, Vol. 92, no. 6, pp. 1177-1186.

143. McConnell K.W., Fox A.C., Clark A.T., Chang N.Y., Dominguez J.A., Farris A.B., Buchman T.G., Hunt C.R., Coopersmith C.M. The role of heat shock protein 70 in mediating age-dependent mortality in sepsis. J. Immunol., 2011, Vol. 186, no. 6, pp. 3718-3725.

144. McEwen B.S., Wingfield J.C. The concept of allostasis in biology and biomedicine. Horm. Behav., 2003, Vol. 43, no. 1, pp. 2-15.

145. Mehta J.L., Li D. Identification, regulation and function of a novel lectin-like oxidized low-density lipoprotein receptor. J. Am. Coll. Cardiol., 2002, Vol. 39, no. 9, pp. 1429-1435.

146. Milisav I., Poljšak B., Ribarič S. Reduced risk of apoptosis: mechanisms of stress responses. Apoptosis, 2017, Vol. 22, no. 2, pp. 265-283.

147. Minihane A.M., Vinoy S., Russell W.R., Baka A., Roche H.M., Tuohy K.M., Teeling J.L., Blaak E.E., Fenech M., Vauzour D., McArdle H.J., Kremer B.H., Sterkman L., Vafeiadou K., Benedetti M.M., Williams C.M., Calder P.C. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br. J. Nutr., 2015, Vol. 114, no. 7, pp. 999-1012.

148. Moeller J.B., Nielsen M.J., Reichhardt M.P., Schlosser A., Sorensen G.L., Nielsen O., Tornøe I., Grønlund J., Nielsen M.E., Jørgensen J.S., Jensen O.N., Mollenhauer J., Moestrup S.K., Holmskov U. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response. J. Immunol., 2012, Vol. 188, no. 5, pp. 2399-2409.

149. Mooberry L.K., Sabnis N.A., Panchoo M., Nagarajan B., Lacko A.G. Targeting the SR-B1 receptor as a gateway for cancer therapy and imaging. Front. Pharmacol., 2016, Vol. 7, 466. doi: 10.3389/fphar.2016.00466.

150. Morawietz H., Duerrschmidt N., Niemann B., Galle J., Sawamura T., Holtz J. Induction of the oxLDL receptor LOX-1 by endothelin-1 in human endothelial cells. Biochem. Biophys. Res. Commun., 2001, Vol. 284, no. 4, pp. 961-965.

151. Motoshima T., Miura Y., Wakigami N., Kusada N., Takano T., Inoshita N., Okaneya T., Sugiyama Y., Kamba T., Takeya M., Komohara Y. Phenotypical change of tumor-associated macrophages in metastatic lesions of clear cell renal cell carcinoma. Med. Mol. Morphol., 2018, Vol. 51, no. 1, pp. 57-63.

152. Muresan X.M., Sticozzi C., Belmonte G., Cervellati F., Ferrara F., Lila M.A., Valacchi G. SR-B1 involvement in keratinocytes in vitro wound closure. Arch. Biochem. Biophys., 2018, Vol. 658, pp. 1-6.

153. Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T., Locati M., Mantovani A., Martinez F.O., Mege J.L., Mosser D.M., Natoli G., Saeij J.P., Schultze J.L., Shirey K.A., Sica A., Suttles J., Udalova I., van Ginderachter J.A., Vogel S.N., Wynn T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity, 2014, Vol. 41, no. 1, pp. 14-20.

154. Murthy S., Larson-Casey J.L., Ryan A.J., He C., Kobzik L., Carter A.B. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure. FASEB J., 2015, Vol. 29, no. 8, pp. 3527-3536.

155. Nahrendorf M., Swirski F.K. Abandoning M1/M2 for a network model of macrophage function. Circ. Res., 2016, Vol. 119, no. 3, pp. 414-417.

156. Nakamura K., Funakoshi H., Miyamoto K., Tokunaga F., Nakamura T. Molecular cloning and functional characterization of a human Scavenger Receptor with C-Type Lectin (SRCL), a novel member of a scavenger receptor family. Biochem. Biophys. Res. Commun., 2001, Vol. 280, no. 4, pp. 1028-1035.

157. Nellimarla S., Baid K., Loo Y.M., Gale M., Bowdish D.M., Mossman K.L. Class A Scavenger receptormediated double-stranded RNA internalization is independent of innate antiviral signaling and does not require phosphatidylinositol 3-kinase activity. J. Immunol., 2015, Vol. 195, no. 8, pp. 3858-3865.

158. Nomata Y., Kume N., Sasai H., Katayama Y., Nakata Y., Okura T., Tanaka K. Weight reduction can decrease circulating soluble lectin-like oxidized low-density lipoprotein receptor-1 levels in overweight middle-aged men. Metabolism, 2009, Vol. 58, no. 9, pp. 1209-1214.

159. Ohnishi K., Komohara Y., Fujiwara Y., Takemura K., Lei X., Nakagawa T., Sakashita N., Takeya M. Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204). Biochem. Biophys. Res. Commun., 2011, Vol. 411, no. 3, pp. 516-522.

160. Olson N.C., Sallam R., Doyle M.F., Tracy R.P., Huber S.A. Olson N.C., Sallam R., Doyle M.F., et al. T helper cell polarization in healthy people: implications for cardiovascular disease. J. Cardiovasc. Transl. Res., 2013, Vol. 6, no. 5, pp. 772-786.

161. Oshima K., Haeger S.M., Hippensteel J.A., Herson P.S., Schmidt E.P. More than a biomarker: the systemic consequences of heparan sulfate fragments released during endothelial surface layer degradation (2017 Grover Conference Series). Pulm. Circ., 2018, Vol. 8, no. 1, 2045893217745786. doi: 10.1177/2045893217745786.

162. Ott C., Jacobs K., Haucke E., Navarrete Santos A., Grune T., Simm A. Role of advanced glycation end products in cellular signaling. Redox Biol., 2014, Vol. 2, pp. 411-429.

163. Ozment T.R., Ha T., Breuel K.F., Ford T.R., Ferguson D.A., Kalbfleisch J., Schweitzer J.B., Kelley J.L., Li C., Williams D.L. Scavenger receptor class A plays a central role in mediating mortality and the development of the pro-inflammatory phenotype in polymicrobial sepsis. PLoS Pathog., 2012, Vol. 8, no. 10, e1002967. doi: 10.1371/journal.ppat.1002967.

164. Padilla O., Pujana M.A., López-de la Iglesia A., Gimferrer I., Arman M., Vilà J.M., Places L., Vives J., Estivill X., Lozano F. Cloning of S4D-SRCRB, a new soluble member of the group B scavenger receptor cysteinerich family (SRCR-SF) mapping to human chromosome 7q11.23. Immunogenetics, 2002, Vol. 54, no. 9, pp. 621-634.

165. Pandey M.S., Baggenstoss B.A., Washburn J., Harris E.N., Weigel P.H. The hyaluronan receptor for endocytosis (HARE) activates NF-κB-mediated gene expression in response to 40-400-kDa, but not smaller or larger, hyaluronans. J. Biol. Chem., 2013, Vol. 288, no. 20, pp. 14068-14079.

166. Pandey M.S., Miller C.M., Harris E.N., Weigel P.H. Activation of ERK and NF-κB during HARE-mediated heparin uptake require only one of the four endocytic motifs. PLoS ONE, 2016, Vol. 11, no. 4, e0154124. doi: 10.1371/journal.pone.0154124.

167. Patten D.A. SCARF1: a multifaceted, yet largely understudied, scavenger receptor. Inflamm. Res., 2018, Vol. 67, no. 8, pp. 627-632.

168. Pearson A.M. Scavenger receptors in innate immunity. Curr. Opin. Immunol., 1996, Vol. 8, pp. 20-28.

169. Pedersen B.K., Febbraio M.A. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev., 2008, Vol. 88, no. 4, pp. 1379-1406.

170. Penberthy K.K., Ravichandran K.S. Apoptotic cell recognition receptors and scavenger receptors. Immunol. Rev., 2016, Vol. 269, no. 1, pp. 44-59.

171. Pietzner M., Kaul A., Henning A.K., Kastenmüller G., Artati A., Lerch M.M., Adamski J., Nauck M., Friedrich N. Comprehensive metabolic profiling of chronic low-grade inflammation among generally healthy individuals. BMC Medicine, 2017, Vol. 15, no. 1, 210. doi: 10.1186/s12916-017-0974-6.

172. Plüddemann A., Neyen C., Gordon S. Macrophage scavenger receptors and host-derived ligands. Methods, 2007, Vol. 43, no. 3, pp. 207-217.

173. Porcheray F., Viaud S., Rimaniol A.C., Léone C., Samah B., Dereuddre-Bosquet N., Dormont D., Gras G. Macrophage activation switching: an asset for the resolution of inflammation. Clin. Exp. Immunol., 2005, Vol. 142, no. 2, pp. 481-489.

174. PrabhuDas M.R., Baldwin C.L., Bollyky P.L., Bowdish D.M.E., Drickamer K., Febbraio M., Herz J., Kobzik L., Krieger M., Loike J., McVicker B., Means T.K., Moestrup S.K., Post S.R., Sawamura T., Silverstein S., Speth R.C., Telfer J.C., Thiele G.M., Wang X.Y., Wright S.D., El Khoury J. A consensus definitive classification of scavenger receptors and their roles in health and disease. J. Immunol., 2017, Vol. 198, no. 10, pp. 3775-3789.

175. Pullerits R., Brisslert M., Jonsson I.M., Tarkowski A. Soluble receptor for advanced glycation end products triggers a proinflammatory cytokine cascade via beta2 integrin Mac-1. Arthritis Rheum., 2006, Vol. 54, no. 12, pp. 3898-3907.

176. Qian L., Li X., Fang R., Wang Z., Xu Y., Zhang H., Bai H., Yang Q., Zhu X., Ben J., Xu Y., Chen Q. Class A scavenger receptor deficiency augments angiotensin II-induced vascular remodeling. Biochem. Pharmacol., 2014, Vol. 90, no. 3, pp. 254-264.

177. Raggi F., Pelassa S., Pierobon D., Penco F., Gattorno M., Novelli F., Eva A., Varesio L., Giovarelli M., Bosco M.C. Regulation of human macrophage M1-M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells-1. Front. Immunol., 2017, Vol. 8, 1097. doi: 10.3389/fimmu.2017.01097.

178. Rahman N., Pervin M., Kuramochi M., Karim M.R., Izawa T., Kuwamura M., Yamate J. M1/M2-macrophage oolarization-based hepatotoxicity in d-galactosamine-induced acute liver injury in rats. Toxicol. Pathol., 2018, Vol. 46, no. 7, pp. 764-776.

179. Randle P.J., Garland P.B., Hales C.N., Newsholme E.A. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet, 1963, Vol. 281, no. 7285, pp. 785-789.

180. Ranoa D.R., Kelley S.L., Tapping R.I. Human lipopolysaccharide-binding protein (LBP) and CD14 independently deliver triacylated lipoproteins to Toll-like receptor 1 (TLR1) and TLR2 and enhance formation of the ternary signaling complex. J. Biol. Chem., 2013, Vol. 288, no. 14, pp. 9729-9741.

181. Rantakari P., Patten D.A., Valtonen J., Karikoski M., Gerke H., Dawes H., Laurila J., Ohlmeier S., Elima K., Hübscher S.G., Weston C.J., Jalkanen S., Adams D.H., Salmi M., Shetty S. Stabilin-1 expression defines a subset of macrophages that mediate tissue homeostasis and prevent fibrosis in chronic liver injury. Proc. Natl. Acad. Sci. USA, 2016, Vol. 113, no. 33, pp. 9298-9303.

182. Rasouli N., Yao-Borengasser A., Varma V., Spencer H.J., McGehee R.E. Jr, Peterson C.A., Mehta J.L., Kern .A. Association of scavenger receptors in adipose tissue with insulin resistance in nondiabetic humans. Arterioscler. Thromb. Vasc. Biol., 2009, Vol. 29, no. 9, pp. 1328-1335.

183. Raymond S.L., Holden D.C., Mira J.C., Stortz J.A., Loftus T.J., Mohr A.M., Moldawer L.L., Moore F.A., Larson S.D., Efron P.A. Microbial recognition and danger signals in sepsis and trauma. Biochim. Biophys. Acta Mol. Basis. Dis., 2017, Vol. 1863, no. 10, Pt. B, pp. 2564-2573.

184. Reaven E., Cortez Y., Leers-Sucheta S., Nomoto A., Azhar S. Dimerization of the scavenger receptor class B type I: formation, function, and localization in diverse cells and tissues. J. Lipid. Res., 2004, Vol. 45, no. 3, pp. 513-528.

185. Reid D.M., Montoya M., Taylor P.R., Borrow P., Gordon S., Brown G.D., Wong S.Y. Expression of the betaglucan receptor, Dectin-1, on murine leukocytes in situ correlates with its function in pathogen recognition and reveals potential roles in leukocyte interactions. J. Leukoc. Biol., 2004, Vol. 76, pp. 86-94.

186. Riehl A., Németh J., Angel P., Hess J. The receptor RAGE: bridging inflammation and cancer. Cell Commun. Signal., 2009, Vol. 7, 12. doi: 10.1186/1478-811X-7-12.

187. Roach J., Glusman G., Rowen L., Kaur A., Purcell M., Smith K., Hood L., Aderem A. The evolution of vertebrate toll-like receptors. Proc. National Acad. Sci. USA, 2005, Vol. 102, no. 27, pp. 9577-9582.

188. Rødgaard-Hansen S., Rafique A., Christensen P.A., Maniecki M.B., Sandahl T.D., Nexø E., Møller H.J. A soluble form of the macrophage-related mannose receptor (MR/CD206) is present in human serum and elevated in critical illness. Clin. Chem. Lab. Med., 2014, Vol. 52, no. 3, pp. 453-461.

189. Rohrer L., Freeman M., Kodama T., Penman M., Krieger M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature, 1990, Vol. 343, pp. 570-572.

190. Rőszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm., 2015, Vol. 2015, 816460. doi: 10.1155/2015/816460.

191. Sachet M., Liang Y.Y., Oehler R. The immune response to secondary necrotic cells. Apoptosis, 2017, Vol. 22, pp. 1189-1204.

192. Sackstein R. Glycoengineering of HCELL, the human bone marrow homing receptor: sweetly programming cell migration. Ann. Biomed. Eng., 2012, Vol. 40, no. 4, pp. 766-776.

193. Saito A., Munakata H. Analysis of plasma proteins that bind to glycosaminoglycans. Biochim. Biophys. Acta, 2007, Vol. 1770, no. 2, pp. 241-246.

194. Sarrias M.R., Grønlund J., Padilla O., Madsen J., Holmskov U., Lozano F. The scavenger receptor cysteinerich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Crit. Rev. Immunol., 2004, Vol. 24, no. 1, pp. 1-37.

195. Schaer D.J., Alayash A.I., Buehler P.W. Gating the radical hemoglobin to macrophages: the anti-inflammatory role of CD163, a scavenger receptor. Antioxid. Redox Signal., 2007, Vol. 9, no. 7, pp. 991-999.

196. Schaffer J.E. Lipotoxicity: when tissues overeat. Curr. Opin. Lipidol., 2003, Vol. 14, no. 3, pp. 281-287.

197. Semple J.W., Freedman J. Plateletsand innate immunity. Cell Mol. Life Sci., 2010, Vol. 67, no. 4, pp. 499-511.

198. Senbanjo L.T., Chellaiah M.A. CD44: a multifunctional cell surface adhesion receptor is a regulator of progression and metastasis of cancer cells. Front. Cell Dev. Biol., 2017, Vol. 5, 18. doi: 10.3389/fcell.2017.00018.

199. Senn J.J. Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J. Biol. Chem., 2006, Vol. 281, no. 37, pp. 26865-26875.

200. Shevtsov M., Multhoff G. Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front. Immunol., 2016, Vol. 7, 171. doi: 10.3389/fimmu.2016.00171.

201. Shibata M., Ishii J., Koizumi H., Shibata N., Dohmae N., Takio K., Adachi H., Tsujimoto M., Arai H. Type F scavenger receptor SREC-I interacts with advillin, a member of the gelsolin/villin family, and induces neurite-like outgrowth. J. Biol. Chem., 2004, Vol. 279, no. 38, pp. 40084-40090.

202. Silverstein R.L., Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci. Signal., 2009, Vol. 2, no. 72, re3. doi: 10.1126/scisignal.272re3.

203. Sparvero L.J., Asafu-Adjei D., Kang R., Tang D., Amin N., Im J., Rutledge R., Lin B, Amoscato A.A., Zeh H.J., Lotze M.T.RAGE (Receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J. Transl. Med., 2009, Vol. 17, no. 7, 17. doi: 10.1186/1479-5876-7-17.

204. Stambach N.S., Taylor M.E. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology, 2003, Vol. 13, no. 5, pp. 401-410.

205. Stephen S.L., Freestone K., Dunn S., Twigg M.W., Homer-Vanniasinkam S., Walker J.H., Wheatcroft S.B., Ponnambalam S. Scavenger receptors and their potential as therapeutic targets in the treatment of cardiovascular disease. Int. J. Hypertens., 2010, Vol. 2010, 646929. doi: 10.4061/2010/646929.

206. Stetler R.A., Gan Y., Zhang W., Liou AK, Gao Y, Cao G, Chen J. Heat shock proteins: cellular and molecular mechanisms in the CNS. Prog. Neurobiol., 2010, Vol. 92, no. 2, pp. 184-211.

207. Stewart C.R., Stuart L.M., Wilkinson K., van Gils J.M., Deng J., Halle A., Rayner K.J., Boyer L., Zhong R., Frazier W.A., Lacy-Hulbert A, El Khoury J., Golenbock D.T., Moore K.J. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat. Immunol., 2010, Vol. 11, pp. 155-161.

208. Tabas I., Bornfeldt K.E. Macrophage phenotype and function in different stages of atherosclerosis. Circ. Res., 2016, Vol. 118, no. 4, pp. 653-667.

209. Tang D., Kang R., Coyne C.B., Zeh H.J., Lotze M.T. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol. Rev., 2012, Vol. 249, no. 1, pp. 158-175.

210. Tashima Y., Okajima T. Congenital diseases caused by defective O-glycosylation of Notch receptors. Nagoya J. Med. Sci., 2018, Vol. 80, no. 3, pp. 299-307.

211. Terpstra V., van Amersfoort E.S., van Velzen A.G., Kuiper J., van Berkel T.J. Hepatic and extrahepatic scavenger receptors: function in relation to disease. Arterioscler. Thromb. Vasc. Biol., 2000, Vol. 20, no. 8, pp. 1860-1872.

212. Terpstra V., van Berkel T.J. Scavenger receptors on liver Kupffer cells mediate the in vivo uptake of oxidatively damaged red blood cells in mice. Blood, 2000, Vol. 95, no. 6, pp. 2157-2163.

213. Tisi D., Talts J.F., Timpl R., Hohenester E. Structure of the C-terminal laminin G-like domain pair of the laminin alpha2 chain harbouring binding sites for alpha-dystroglycan and heparin. EMBO J., 2000, Vol. 19, no. 7, pp. 1432-1440.

214. Todt, J.C., Hu B., Curtis, J.L. The scavenger receptor SR-A I/II (CD204) signals via the receptor tyrosine kinase Mertk during apoptotic cell uptake by murine macrophages. J. Leukoc., 2008, Biol., Vol. 84, no. 2, pp. 510-518.

215. Toole B.P. Hyaluronan: from extracellular glue to pericellular cue. Nat. Rev. Cancer, 2004, Vol. 4, no. 7, pp. 528-539.

216. Tsai S., Clemente-Casares X., Revelo X.S., Winer S., Winer D.A. Are obesity-related insulin resistance and type 2 diabetes autoimmune diseases? Diabetes, 2015, Vol. 64, no. 6, pp. 1886-1897.

217. Tsoni S.V., Brown G.D. Beta-Glucans and dectin-1. Ann. N. Y. Acad. Sci., 2008, Vol. 1143, pp. 45-60.

218. Tumova J., Andel M., Trnka J. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle. Physiol. Res., 2016, Vol. 65, pp. 193-207.

219. Valenzuela-Sánchez F., Valenzuela-Méndez B., Rodríguez-Gutiérrez J.F., Estella-García Á., GonzálezGarcía M.Á. New role of biomarkers: mid-regional pro-adrenomedullin, the biomarker of organ failure. Ann. Transl. Med., 2016, Vol. 4, no. 17, p. 329.

220. van Gorp H., Delputte P.L., Nauwynck H.J. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol. Immunol., 2010, Vol. 47, no. 7-8, pp. 1650-1660.

221. van Tits L.J., Stienstra R., van Lent P.L., Netea M.G., Joosten L.A., Stalenhoef A.F. Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Krüppel-like factor 2. Atherosclerosis, 2011, Vol. 214, no. 2, pp. 345-349.

222. Vasquez M., Simões I., Consuegra-Fernández M., Aranda F., Lozano F., Berraondo P. Exploiting scavenger receptors in cancer immunotherapy: Lessons from CD5 and SR-B1. Eur. J. Immunol., 2017, Vol. 47, no. 7, pp. 1108-1118.

223. Vlassara H. The AGE-receptor in the pathogenesis of diabetic complications. Diabetes Metab. Res. Rev., 2001, Vol. 17, no. 6, pp. 436-443.

224. Wågsäter D., Olofsson PS, Norgren L, Stenberg B, Sirsjö A. The chemokine and scavenger receptor CXCL16/SR-PSOX is expressed in human vascularsmooth muscle cells and is induced by interferon gamma. Biochem. Biophys. Res. Commun., 2004, Vol. 325, no. 4, pp. 1187-1193.

225. Wang J.Y., Lai C.L., Lee C.T., Lin C.Y. Electronegative low-density lipoprotein L5 impairs viability and NGFinduced neuronal differentiation of PC12 cells via LOX-1. Int. J. Mol. Sci., 2017, Vol. 18, no. 8, E1744. doi: 10.3390/ijms18081744.

226. Wang Y., Souabni A., Flavell R.A., Wan Y.Y. An intrinsic mechanism predisposes Foxp3-expressing regulatory T cells to Th2 conversion in vivo. J. Immunol., 2010, Vol. 185, no. 10, pp. 5983-5992.

227. Whelan F.J., Meehan C.J., Golding G.B., McConkey B.J., Bowdish D.M. The evolution of the class A scavenger receptors. BMC Evol. Biol., 2012, Vol. 12, 227. doi: 10.1186/1471-2148-12-227.

228. White J.G. Why human platelets fail to kill bacteria. Platelets, 2006, Vol. 17, no. 3, pp. 191-200.

229. Wicker-Planquart C., Bally I., Fracher Ph., Delneste Y., Housset D., Thielens N.M. Scavenger receptors expressed by endothelial cells SREC-I/SR-F1 and SREC-II both interact with C1q and calreticulin. Molecul. Immunol., 2018, Vol. 102, p. 220.

230. Wilkinson K., El Khoury J. Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer’s disease. Int. J. Alzheimers Dis., 2012, Vol. 2012, 489456. doi: org/10.1155/2012/489456.

231. Wlodarska M., Thaiss C.A., Nowarski R., Henao-Mejia J., Zhang J.P., Brown E.M., Frankel G., Levy M., Katz M.N., Philbrick W.M., Elinav E., Finlay B.B., Flavell R.A. NLRP6 inflammasome orchestrates the colonic hostmicrobial interface by regulating goblet cell mucus secretion. Cell, 2014, Vol. 156, no. 5, pp. 1045-1059.

232. Wyllie A.H., Kerr J.F., Currie A.R. Cell death: the significance of apoptosis. Int. Rev. Cytol., 1980, Vol. 68, pp. 251-306.

233. Xia C., Rao X., Zhong J. Role of T lymphocytes in type 2 diabetes and diabetes-associated inflammation. J. Diabetes Res., 2017, Vol. 2017, 6494795. doi: 10.1155/2017/6494795.

234. Xu Z., Xu L., Li W., Jin X., Song X., Chen X., Zhu J., Zhou S., Li Y., Zhang W., Dong X., Yang X., Liu F., Bai H., Chen Q., Su C. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection. Nat. Commun., 2017, Vol. 8, 16035. doi: 10.1038/ncomms16035.

235. Yamaguchi T., Takizawa F., Fisher U., Dijkstra J.M. Along the axis between Type 1 and Type 2 immunity; principles conserved in evolution from fish to mammals. Biology (Basel), 2015, Vol. 4, no. 4, pp. 814-859.

236. Yang M., Kholmukhamedov A., Schulte M.L., Cooley B.C., Scoggins N.O., Wood J.P., Cameron S.J., Morrell C.N., Jobe S.M., Silverstein R.L. Platelet CD36 signaling through ERK5 promotes caspase-dependent procoagulant activity and fibrin deposition in vivo. Blood Adv., 2018, Vol. 2, no. 21, pp. 2848-2861.

237. Yang S., Vigerust D.J., Shepherd V.L. Interaction of members of the heat shock protein-70 family with the macrophage mannose receptor. J. Leukoc. Biol., 2013, Vol. 93, no. 4, pp. 529-536.

238. Yang X., Okamura D.M., Lu X., Chen Y., Moorhead J., Varghese Z., Ruan X.Z. CD36 in chronic kidney disease: novel insights and therapeutic opportunities. Nat. Rev. Nephrol., 2017, Vol. 13, no. 12, pp. 769-781.

239. Yi H., Zuo D., Yu X., Hu F., Manjili M.H., Chen .Z, Subjeck J.R., Wang X.Y. Suppression of antigen-specific CD4+ T cell activation by SRA/CD204 through reducing the immunostimulatory capability of antigen-presenting cell. J. Mol. Med. (Berl.), 2012, Vol. 90, no. 4, pp. 413-426.

240. Yoshida H., Quehenberger O., Kondratenko N., Green S., Steinberg D. Minimally oxidized low-density lipoprotein increases expression of scavenger receptor A, CD36, and macrosialin in resident mouse peritoneal macrophages. Arterioscler. Thromb. Vasc. Biol., 1998, Vol. 18, no. 5, pp. 794-802.

241. Yu H., Ha T., Liu L., Wang X., Gao M., Kelley J., Kao R., Williams D., Li C. Scavenger receptor A (SR-A) is required for LPS-induced TLR4 mediated NF-κB activation in macrophages. Biochim. Biophys. Acta, 2012, Vol. 1823, no. 7, pp. 1192-1198.

242. Yu X., Guo C., Fisher P.B., Subjeck J.R., Wang X.Y. Scavenger receptors: emerging roles in cancer biology and immunology. Adv. Cancer Res., 2015, Vol. 128, pp. 309-364.

243. Yu X., Yi H., Guo C., Zuo D., Wang Y., Kim H.L., Subjeck J.R., Wang X.Y. Pattern recognition scavenger receptor CD204 attenuates Toll-like receptor 4-induced NF-kappaB activation by directly inhibiting ubiquitination of tumor necrosis factor (TNF) receptor-associated factor 6. J. Biol. Chem., 2011, Vol. 286, no. 21, pp. 18795-18806.

244. Yuzefovych L.V., Solodushko V.A., Wilson G.L., Rachek L.I. Protection from palmitate-induced mitochondrial DNA damage prevents from mitochondrial oxidative stress, mitochondrial dysfunction, apoptosis, and impaired insulin signaling in rat l6 skeletal muscle cells. Endocrinology, 2012, Vol. 153, pp. 92-100.

245. Zani I.A., Stephen S.L., Mughal N.A., Russell D., Homer-Vanniasinkam S., Wheatcroft S.B., Ponnambalam S. Scavenger receptor structure and function in health and disease. Cells, 2015, Vol. 4, no. 2, pp. 178-201.

246. Zhang H., Zhang W., Sun X., Dang R., Zhou R., Bai H., Ben J., Zhu X, Zhang Y., Yang Q., Xu Y., Chen Q. Class A1 scavenger receptor modulates glioma progression by regulating M2-like tumor-associated macrophage polarization. Oncotarget, 2016, Vol. 7, no. 31, pp. 50099-50116.

247. Zhang L. Glycosaminoglycan (GAG) biosynthesis and GAG-binding proteins. Prog. Mol. Biol. Transl. Sci., 2010, Vol. 93, pp. 1-17.

248. Zhu H., Fang X., Zhang D., Wu W., Shao M., Wang L., Gu J. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen. Apoptosis, 2016, Vol. 21, no. 1, pp. 96-109.

249. Zhu X., Zong G., Zhu L., Jiang Y., Ma K., Zhang H., Zhang Y., Bai H., Yang Q., Ben J., Li X., Xu Y., Chen Q. Deletion of class A scavenger receptor deteriorates obesity-induced insulin resistance in adipose tissue. Diabetes, 2014, Vol. 63, no. 2, pp. 562-577.

250. Zmora N., Levy M., Pevsner-Fishcer M., Elinav E. Inflammasomes and intestinal inflammation. Mucosal Immunol., 2017, Vol. 10, no. 4, pp. 865-883.

251. Zotova N.V., Chereshnev V.A., Gusev E.Y. Systemic inflammation: methodological approaches to identification of the common pathological process. PLoS ONE, 2016, Vol. 11, no. 5, e0155138. doi:10.1371/journal.pone.0155138.

252. Zou Q., Wen W., Zhang X.C. Presepsin as a novel sepsis biomarker. World J. Emerg. Med., 2014, Vol. 5, no. 1, pp. 16-19.


Дополнительные файлы

1. Метаданные
Тема
Тип Исследовательские инструменты
Скачать (13KB)    
Метаданные
2. Титульный лист
Тема
Тип Исследовательские инструменты
Скачать (14KB)    
Метаданные
3. Резюме
Тема
Тип Исследовательские инструменты
Скачать (14KB)    
Метаданные
4. Характерная структура основных классов рецепторов-мусорщиков
Тема
Тип Исследовательские инструменты
Скачать (312KB)    
Метаданные
5. Возможное протективное и негативное значение SR при развитии системного воспаления
Тема
Тип Исследовательские инструменты
Скачать (17KB)    
Метаданные
6. Номенклатура, клеточная экспрессия и лиганды рецепторов-мусорщиков человека
Тема
Тип Исследовательские инструменты
Скачать (44KB)    
Метаданные
7. Подписи авторов
Тема
Тип Исследовательские инструменты
Скачать (288KB)    
Метаданные
8. Литература
Тема
Тип Прочее
Скачать (981KB)    
Метаданные
9. Abstract
Тема
Тип Прочее
Скачать (15KB)    
Метаданные
10. Метаданные
Тема
Тип Прочее
Скачать (13KB)    
Метаданные
11. Статья с рисунком и таблицами
Тема
Тип Прочее
Скачать (509KB)    
Метаданные

Для цитирования:


Гусев Е.Ю., Зотова Н.В., Журавлева Ю.А., Черешнев В.А. Физиологическая и патогенетическая роль рецепторов-мусорщиков у человека. Медицинская иммунология. 2020;22(1):7-48. https://doi.org/10.15789/1563-0625-PAP-1893

For citation:


Gusev E.Yu., Zotova N.V., Zhuravleva Yu.A., Chereshnev V.A. Physiological and pathogenic role of scavenger receptors in humans. Medical Immunology (Russia). 2020;22(1):7-48. (In Russ.) https://doi.org/10.15789/1563-0625-PAP-1893

Просмотров: 907


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)