Preview

Medical Immunology (Russia)

Advanced search

MALDI-TOF mass spectrometric protein profiling of microvesicles produced by the NK-92 natural killer cell line

https://doi.org/10.15789/1563-0625-MMS-1976

Abstract

Extracellular vesicles that are shed from the plasma membrane contain a wide range of molecules, among  which  are proteins, lipids, nucleic  acids,  and sugars. The cytotoxic proteins of natural killer cells play a key role in the implementation of their cytolytic  functions. One of the important steps in understanding the distant  communication of cells is the determination of the proteome of microvesicles. This study was aimed at the protein profiling of the microvesicles produced by the NK-92 natural killer cell line. 986 proteins with a variety of functions were identified in the lysate of microvesicles using the MALDI-TOF mass spectrometric analysis.  With automated methods of functional analysis  applied, it has been  shown  that  the  largest  protein groups  are  hypothetical proteins, proteins with  unknown functions, and  domains. The  most  representative groups  are  also  comprised by  transcription  regulators; intracellular  signaling  proteins; RNA  translation, transcription, processing, and utilization regulators; receptors; protein processing  and proteolysis regulators; amino acid metabolism enzymes, as well as transport proteins and transport regulators. Minor functional groups are represented by vitamins and mineral metabolism enzymes, membrane and microdomain-forming proteins, hormones, hemostatic regulators, regulators of sensory  systems,  specific  mitochondrial and  Golgi  apparatus proteins, and extracellular signaling proteins. An intermediate position is occupied by various functional groups, including cytoskeleton and motor proteins; proteins of centrioles; ion channels and their regulators; proteins of the ubiquitin-proteasome pathway  of protein degradation; lipid,  steroid, and fatty acid metabolism enzymes; nucleic  acid  base and  carbohydrate metabolism enzymes, as well as energy  metabolism enzymes  and  other proteins involved  in intermediate metabolism; proteins of the immune response  and  inflammation; antigens and histocompatibility proteins; cytokines and growth factors; regulators of apoptosis, autophagy, endocytosis, and  exocytosis;  regulators of the  cell cycle and  division;  regulators of proliferation, cell differentiation, and morphogenesis; regulators of cell adhesion and  matrix  metabolism; nuclear transport proteins; transposition proteins; DNA  replication and  repair  proteins, as well as inactive  proteins. The  data  obtained expand  the existing knowledge of the distant  communication of cells and indicate new mechanisms of interaction between natural killer and target cells.

About the Authors

A. V. Korenevsky
D.O. Ott Research Institute of Obstetrics, Ginecology, and Reproductology
Russian Federation

Korenevsky Andrey Valentinovich - PhD, MD (Biology), Leading Research Associate, Proteomic Immunoregulation  Group, Department of Immunology and Cell Interactions.

199034, St. Petersburg, Mendeleyevskaya line, 3, Phone: 7 (812) 328-98-91, 323-75-45. Fax: 7 (812) 323-75-45


Competing Interests: Authors declare no conflict of interests


A. D. Shcherbitskaia
I. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Russian Federation

Shcherbitskaya Anastasiia Dmitrievna - PhD (Biology), Research Associate, Laboratory of Comparative Physiology and Pathology of the Central Nervous System.

St. Petersburg


Competing Interests: Authors declare no conflict of interests


M. E. Berezkina
D. Ott Research Institute of Obstetrics, Gynecology, and Reproductology
Russian Federation

Berezkina Maryana Eduardivna - Research Assistant, Laboratory of Cell Interactions, Department of Immunology and Cell Interactions.

St. Petersburg

Competing Interests: Authors declare no conflict of interests


K. L. Markova
D. Ott Research Institute of Obstetrics, Gynecology, and Reproductology
Russian Federation

Markova Kseniya Lvovna -  Junior Research Associate, Laboratory of Cell Interactions, Department of Immunology and Cell Interactions.

St. Petersburg

Competing Interests: Authors declare no conflict of interests


E. P. Alexandrova
D. Ott Research Institute of Obstetrics, Gynecology, and Reproductology
Russian Federation

Alexandrova Ekaterina Pavlovna - Research Assistant, Laboratory of Cell Interactions, Department of Immunology and Cell Interactions.

St. Petersburg


Competing Interests: Authors declare no conflict of interests


O. A. Balabas
Chemical Analysis and Materials Research Centre, St. Petersburg State University
Russian Federation

Balabas Olga Alexeyevna - Leading Specialist, Chemical Analysis and Materials Research Centre.

St. Petersburg

Competing Interests: Authors declare no conflict of interests


S. A. Selkov
.D. Ott Research Institute of Obstetrics, Gynecology, and Reproductology; First St. Petersburg State I. Pavlov Medical University
Russian Federation

Selkov Sergey Alexeyevich - PhD, MD (Medicine), Professor, Head, Department of Immunology and Cell Interactions, D. Ott RIO, GR; Professor, Department of Immunology, First St. Petersburg State I. Pavlov MU.

St. Petersburg


Competing Interests: Authors declare no conflict of interests


D. I. Sokolov
D. Ott Research Institute of Obstetrics, Gynecology, and Reproductology; First St. Petersburg State I. Pavlov Medical University
Russian Federation

Sokolov Dmitry Igorevich - PhD, MD (Biology), Associate Professor, Head, Cell Interactions Laboratory, Department of Immunology and Cell Interactions, D. Ott RIO, GR; Associate Professor, Department of Immunology, First St. Petersburg State I. Pavlov MU.

St. Petersburg

Competing Interests: Authors declare no conflict of interests


References

1. Brittoli A., Fallarini S., Zhang H., Pieters R.J., Lombardi G. “In vitro” studies on galectin-3 in human natural killer cells. Immunol. Lett., 2018, Vol. 194, pp. 4-12.

2. Burbano C., Rojas M., Vasquez G., Castano D. Microparticles that form immune complexes as modulatory structures in autoimmune responses. Mediators Inflamm., 2015, Vol. 2015, 267590. doi: 10.1155/2015/267590.

3. Cepero-Donates Y., Rakotoarivelo V., Mayhue M., Ma A., Chen Y.G., Ramanathan S. Homeostasis of IL-15 dependent lymphocyte subsets in the liver. Cytokine, 2016, Vol. 82, pp. 95-101.

4. Haraszti R.A., Didiot M.C., Sapp E., Leszyk J., Shaffer S.A., Rockwell H.E., Gao F., Narain N.R., DiFiglia M., Kiebish M.A., Aronin N., Khvorova A. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J. Extracell. Vesicles, 2016, Vol. 5, no. 1, 32570. doi: 10.3402/jev.v5.32570.

5. Holt D., Ma X., Kundu N., Fulton A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol. Immunother., 2011, Vol. 60, no. 11, pp. 1577-1586.

6. Honorati M.C., Neri S., Cattini L., Facchini A. IL-17 enhances the susceptibility of U-2 OS osteosarcoma cells to NK cell lysis. Clin. Exp. Immunol., 2003, Vol. 133, no. 3, pp. 344-349.

7. Jaime P., Garcia-Guerrero N., Estella R., Pardo J., Garcia-Alvarez F., Martinez-Lostao L. CD56(+)/CD16(-) Natural killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis. Osteoarthritis Cartilage, 2017, Vol. 25, no. 10, pp. 1708-1718.

8. Jong A.Y., Wu C.H., Li J., Sun J., Fabbri M., Wayne A.S., Seeger R.C. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J. Extracell. Vesicles, 2017, Vol. 6, no. 1, 1294368. doi: 10.1080/20013078.2017.1294368.

9. Keerthikumar S., Gangoda L., Gho Y.S., Mathivanan S. Exosomes and microvesicles. Methods in molecular biology. Ed. Hill A., Humana Press, 2017, pp. 189-196.

10. Khurana D., Arneson L.N., Schoon R.A., Dick C.J., Leibson P.J. Differential regulation of human NK cellmediated cytotoxicity by the tyrosine kinase Itk. J. Immunol., 2007, Vol. 178, no. 6, pp. 3575-3582.

11. Ko Y.H., Park S., Jin H., Woo H., Lee H., Park C., Kim K. Granzyme B leakage-induced apoptosis is a crucial mechanism of cell death in nasal-type NK/T-cell lymphoma. Lab. Invest., 2007, Vol. 87, no. 3, pp. 241-250.

12. Korenevskii A.V., Milyutina Y.P., Zhdanova A.A., Pyatygina K.M., Sokolov D.I., Sel’kov S.A. Massspectrometric analysis of proteome of microvesicles produced by NK-92 natural killer cells. Bull. Exp. Biol. Med., 2018, Vol. 165, no. 4, pp. 564-571.

13. Kumar D., Hosse J., von Toerne C., Noessner E., Nelson P.J. JNK MAPK pathway regulates constitutive transcription of CCL5 by human NK cells through SP1. J. Immunol., 2009, Vol. 182, no. 2, pp. 1011-1020.

14. Kweon S., Phan M.T., Chun S., Yu H., Kim J., Kim S., Lee J., Ali A.K., Lee S.H., Kim S.K., Doh J., Cho D. Expansion of human NK cells using K562 cells expressing OX40 ligand and short exposure to IL-21. Front. Immunol., 2019, Vol. 10, 879. doi: 10.3389/fimmu.2019.00879.

15. Liu X.C., Liang H., Tian Z., Ruan Y.S., Zhang L., Chen Y. Proteomic analysis of human NK-92 cells after NK cell-mediated cytotoxicity against K562 cells. Biochemistry Moscow, 2007, Vol. 72, no. 7, pp. 716-727.

16. Lugini L., Cecchetti S., Huber V., Luciani F., Macchia G., Spadaro F., Paris L., Abalsamo L., Colone M., Molinari A., Podo F., Rivoltini L., Ramoni C., Fais S. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol., 2012, Vol. 189, no. 6, pp. 2833-2842.

17. Ma D., Cao W., Kapur A., Felder M., Scarlett C.O., Patankar M.S., Li L. Differential expression of proteins in naive and IL-2 stimulated primary human NK cells identified by global proteomic analysis. J. Proteomics, 2013, Vol. 91, pp. 151-163.

18. Malloci M., Perdomo L., Veerasamy M., Andriantsitohaina R., Simard G., Martinez M.C. Extracellular vesicles: mechanisms in human health and disease. Antioxid. Redox Signal., 2019, Vol. 30, no. 6, pp. 813-856.

19. Malorni W., Quaranta M.G., Straface E., Falzano L., Fabbri A., Viora M., Fiorentini C. The Rac-activating toxin cytotoxic necrotizing factor 1 oversees NK cell-mediated activity by regulating the actin/microtubule interplay. J. Immunol., 2003, Vol. 171, no. 8, pp. 4195-4202.

20. Manzini C., Vene R., Cossu I., Gualco M., Zupo S., Dono M., Spagnolo F., Queirolo P., Moretta L., Mingari M.C., Pietra G. Cytokines can counteract the inhibitory effect of MEK-i on NK-cell function. Oncotarget, 2016, Vol. 7, no. 38, pp. 60858-60871.

21. Mizrahi S., Markel G., Porgador A., Bushkin Y., Mandelboim O. CD100 on NK cells enhance IFNgamma secretion and killing of target cells expressing CD72. PLoS ONE, 2007, Vol. 2, no. 9, e818. doi: 10.1371/journal.pone.0000818.

22. Nawrot R., Barylski J., Schulze W.X. Incorrectly annotated keratin derived peptide sequences lead to misleading MS/MS data interpretation. J. Proteomics, 2013, Vol. 91, pp. 270-273.

23. Ochoa M.C., Minute L., Rodriguez I., Garasa S., Perez-Ruiz E., Inoges S., Melero I., Berraondo P. Antibodydependent cell cytotoxicity (ADCC): immunotherapy strategies enhancing effector NK cells. Immunol. Cell Biol., 2017, no. 4, pp. 347-355.

24. Oykhman P., Timm-McCann M., Xiang R.F., Islam A., Li S.S., Stack D., Huston S.M., Ma L.L., Mody C.H. Requirement and redundancy of the Src family kinases Fyn and Lyn in perforin-dependent killing of Cryptococcus neoformans by NK cells. Infect. Immun., 2013, Vol. 81, no. 10, pp. 3912-3922.

25. Pesce S., Carlomagno S., Moretta A., Sivori S., Marcenaro E. Uptake of CCR7 by KIR2DS4(+) NK cells is induced upon recognition of certain HLA-C alleles. J. Immunol. Res., 2015, Vol. 2015, 754373. doi: 10.1155/2015/754373.

26. Scheiter M., Lau U., van Ham M., Bulitta B., Grobe L., Garritsen H., Klawonn F., Konig S., Jansch L. Proteome analysis of distinct developmental stages of human natural killer (NK) cells. Mol. Cell. Proteomics, 2013, Vol. 12, no. 5, pp. 1099-1114.

27. Singh U.P., Singh S., Singh R., Cong Y., Taub D.D., Lillard J.W., Jr. CXCL10-producing mucosal CD4+ T cells, NK cells, and NKT cells are associated with chronic colitis in IL-10(-/-) mice, which can be abrogated by antiCXCL10 antibody inhibition. J. Interferon Cytokine Res., 2008, Vol. 28, no. 1, pp. 31-43.

28. Sokolov D.I., Markova K.L., Mikhailova V.A., Vyazmina L.P., Milyutina Y.P., Kozyreva A.R., Zhdanova A.A., Malygina D.A., Onokhin K.V., Ivanova A.N., Korenevsky A.V., Selkov S.A. Phenotypic and functional characteristics of microvesicles produced by natural killer cells. Medical Immunology (Russia), 2019, Vol. 21, no. 4, pp. 669-688. doi: 10.15789/1563-0625-2019-4-669-688.

29. Sokolov D.I., Ovchinnikova O.M., Korenkov D.A., Viknyanschuk A.N., Benken K.A., Onokhin K.V., Selkov S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res., 2016, Vol. 170, pp. 112-123.

30. Thery C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol., 2002, Vol. 2, no. 8, pp. 569-579.

31. Tramontano A.F., Lyubarova R., Tsiakos J., Palaia T., Deleon J.R., Ragolia L. Circulating endothelial microparticles in diabetes mellitus. Mediators Inflamm., 2010, Vol. 2010, 250476. doi: 10.1155/2010/250476.

32. van der Pol E., Coumans F.A., Grootemaat A.E., Gardiner C., Sargent I.L., Harrison P., Sturk A., van Leeuwen T.G., Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. Thromb. Haemost., 2014, Vol. 12, no. 7, pp. 1182-1192.

33. van Helden M.J., Zaiss D.M., Sijts A.J. CCR2 defines a distinct population of NK cells and mediates their migration during influenza virus infection in mice. PLoS ONE, 2012, Vol. 7, no. 12, e52027. doi: 10.1371/journal.pone.0052027.

34. van Niel G., d’Angelo G., Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, Vol. 19, no. 4, pp. 213-228.

35. Vasilopoulou E., Loubiere L.S., Lash G.E., Ohizua O., McCabe C.J., Franklyn J.A., Kilby M.D., Chan S.Y. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner. Hum. Reprod., 2014, Vol. 29, no. 6, pp. 1161-1172.

36. Veerman R.E., Gucluler Akpinar G., Eldh M., Gabrielsson S. Immune cell-derived extracellular vesicles –functions and therapeutic applications. Trends Mol. Med., 2019, Vol. 25, no. 5, pp. 382-394.

37. Voigt J., Malone D.F.G., Dias J., Leeansyah E., Bjorkstrom N.K., Ljunggren H.G., Grobe L., Klawonn F., Heyner M., Sandberg J.K., Jansch L. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur. J. Immunol., 2018, Vol. 48, no. 9, pp. 1456-1469.

38. Wagstaffe H.R., Nielsen C.M., Riley E.M., Goodier M.R. IL-15 promotes polyfunctional NK cell responses to influenza by boosting IL-12 production. J. Immunol., 2018, Vol. 200, no. 8, pp. 2738-2747.

39. Wang W., Guo H., Geng J., Zheng X., Wei H., Sun R., Tian Z. Tumor-released galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J. Biol. Chem., 2014, Vol. 289, no. 48, pp. 33311-33319.

40. Zhu L., Aly M., Kuon R.J., Toth B., Wang H., Karakizlis H., Weimer R., Morath C., Ibrahim E., Ekpoom N., Opelz G., Daniel V. Patients with idiopathic recurrent miscarriage have abnormally high TGFss+ blood NK, NKT and T cells in the presence of abnormally low TGFss plasma levels. BMC Immunol., 2019, Vol. 20, no. 1, 10. doi: 10.1186/s12865-019-0290-3.


Supplementary files

1. Metadata
Subject
Type Исследовательские инструменты
Download (15KB)    
Indexing metadata ▾
2. Title Page
Subject
Type Исследовательские инструменты
Download (17KB)    
Indexing metadata ▾
3. Abstract
Subject
Type Исследовательские инструменты
Download (14KB)    
Indexing metadata ▾
4. Figure 1a
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾
5. Figure 1b
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾
6. Figure 1c
Subject
Type Исследовательские инструменты
Download (2MB)    
Indexing metadata ▾
7. Figure 2
Subject
Type Исследовательские инструменты
Download (15MB)    
Indexing metadata ▾
8. Figure 3
Subject
Type Исследовательские инструменты
Download (851KB)    
Indexing metadata ▾
9. Table
Subject
Type Исследовательские инструменты
Download (14KB)    
Indexing metadata ▾
10. Supplement
Subject
Type Исследовательские инструменты
Download (258KB)    
Indexing metadata ▾
11. Метаданные_Подписи
Subject
Type Other
Download (1MB)    
Indexing metadata ▾
12. Signatures
Subject
Type Other
Download (1MB)    
Indexing metadata ▾
13. Figure Legends
Subject
Type Other
Download (48KB)    
Indexing metadata ▾
14. Список литературы
Subject
Type Other
Download (51KB)    
Indexing metadata ▾
15. Podpisi k risunkam
Subject
Type Other
Download (15KB)    
Indexing metadata ▾
16. Corrected article
Subject
Type Other
Download (41KB)    
Indexing metadata ▾
17. Corrected table 1
Subject
Type Other
Download (16KB)    
Indexing metadata ▾
18. Corrected references
Subject
Type Other
Download (33KB)    
Indexing metadata ▾

Review

For citations:


Korenevsky A.V., Shcherbitskaia A.D., Berezkina M.E., Markova K.L., Alexandrova E.P., Balabas O.A., Selkov S.A., Sokolov D.I. MALDI-TOF mass spectrometric protein profiling of microvesicles produced by the NK-92 natural killer cell line. Medical Immunology (Russia). 2020;22(4):633-646. https://doi.org/10.15789/1563-0625-MMS-1976

Views: 1257


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)