MALDI-TOF mass spectrometric protein profiling of microvesicles produced by the NK-92 natural killer cell line
https://doi.org/10.15789/1563-0625-MMS-1976
Abstract
Extracellular vesicles that are shed from the plasma membrane contain a wide range of molecules, among which are proteins, lipids, nucleic acids, and sugars. The cytotoxic proteins of natural killer cells play a key role in the implementation of their cytolytic functions. One of the important steps in understanding the distant communication of cells is the determination of the proteome of microvesicles. This study was aimed at the protein profiling of the microvesicles produced by the NK-92 natural killer cell line. 986 proteins with a variety of functions were identified in the lysate of microvesicles using the MALDI-TOF mass spectrometric analysis. With automated methods of functional analysis applied, it has been shown that the largest protein groups are hypothetical proteins, proteins with unknown functions, and domains. The most representative groups are also comprised by transcription regulators; intracellular signaling proteins; RNA translation, transcription, processing, and utilization regulators; receptors; protein processing and proteolysis regulators; amino acid metabolism enzymes, as well as transport proteins and transport regulators. Minor functional groups are represented by vitamins and mineral metabolism enzymes, membrane and microdomain-forming proteins, hormones, hemostatic regulators, regulators of sensory systems, specific mitochondrial and Golgi apparatus proteins, and extracellular signaling proteins. An intermediate position is occupied by various functional groups, including cytoskeleton and motor proteins; proteins of centrioles; ion channels and their regulators; proteins of the ubiquitin-proteasome pathway of protein degradation; lipid, steroid, and fatty acid metabolism enzymes; nucleic acid base and carbohydrate metabolism enzymes, as well as energy metabolism enzymes and other proteins involved in intermediate metabolism; proteins of the immune response and inflammation; antigens and histocompatibility proteins; cytokines and growth factors; regulators of apoptosis, autophagy, endocytosis, and exocytosis; regulators of the cell cycle and division; regulators of proliferation, cell differentiation, and morphogenesis; regulators of cell adhesion and matrix metabolism; nuclear transport proteins; transposition proteins; DNA replication and repair proteins, as well as inactive proteins. The data obtained expand the existing knowledge of the distant communication of cells and indicate new mechanisms of interaction between natural killer and target cells.
Keywords
About the Authors
A. V. KorenevskyRussian Federation
Korenevsky Andrey Valentinovich - PhD, MD (Biology), Leading Research Associate, Proteomic Immunoregulation Group, Department of Immunology and Cell Interactions.
199034, St. Petersburg, Mendeleyevskaya line, 3, Phone: 7 (812) 328-98-91, 323-75-45. Fax: 7 (812) 323-75-45
Competing Interests: Authors declare no conflict of interests
A. D. Shcherbitskaia
Russian Federation
Shcherbitskaya Anastasiia Dmitrievna - PhD (Biology), Research Associate, Laboratory of Comparative Physiology and Pathology of the Central Nervous System.
St. Petersburg
Competing Interests: Authors declare no conflict of interests
M. E. Berezkina
Russian Federation
Berezkina Maryana Eduardivna - Research Assistant, Laboratory of Cell Interactions, Department of Immunology and Cell Interactions.
St. PetersburgCompeting Interests: Authors declare no conflict of interests
K. L. Markova
Russian Federation
Markova Kseniya Lvovna - Junior Research Associate, Laboratory of Cell Interactions, Department of Immunology and Cell Interactions.
St. PetersburgCompeting Interests: Authors declare no conflict of interests
E. P. Alexandrova
Russian Federation
Alexandrova Ekaterina Pavlovna - Research Assistant, Laboratory of Cell Interactions, Department of Immunology and Cell Interactions.
St. Petersburg
Competing Interests: Authors declare no conflict of interests
O. A. Balabas
Russian Federation
Balabas Olga Alexeyevna - Leading Specialist, Chemical Analysis and Materials Research Centre.
St. PetersburgCompeting Interests: Authors declare no conflict of interests
S. A. Selkov
Russian Federation
Selkov Sergey Alexeyevich - PhD, MD (Medicine), Professor, Head, Department of Immunology and Cell Interactions, D. Ott RIO, GR; Professor, Department of Immunology, First St. Petersburg State I. Pavlov MU.
St. Petersburg
Competing Interests: Authors declare no conflict of interests
D. I. Sokolov
Russian Federation
Sokolov Dmitry Igorevich - PhD, MD (Biology), Associate Professor, Head, Cell Interactions Laboratory, Department of Immunology and Cell Interactions, D. Ott RIO, GR; Associate Professor, Department of Immunology, First St. Petersburg State I. Pavlov MU.
St. PetersburgCompeting Interests: Authors declare no conflict of interests
References
1. Brittoli A., Fallarini S., Zhang H., Pieters R.J., Lombardi G. “In vitro” studies on galectin-3 in human natural killer cells. Immunol. Lett., 2018, Vol. 194, pp. 4-12.
2. Burbano C., Rojas M., Vasquez G., Castano D. Microparticles that form immune complexes as modulatory structures in autoimmune responses. Mediators Inflamm., 2015, Vol. 2015, 267590. doi: 10.1155/2015/267590.
3. Cepero-Donates Y., Rakotoarivelo V., Mayhue M., Ma A., Chen Y.G., Ramanathan S. Homeostasis of IL-15 dependent lymphocyte subsets in the liver. Cytokine, 2016, Vol. 82, pp. 95-101.
4. Haraszti R.A., Didiot M.C., Sapp E., Leszyk J., Shaffer S.A., Rockwell H.E., Gao F., Narain N.R., DiFiglia M., Kiebish M.A., Aronin N., Khvorova A. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J. Extracell. Vesicles, 2016, Vol. 5, no. 1, 32570. doi: 10.3402/jev.v5.32570.
5. Holt D., Ma X., Kundu N., Fulton A. Prostaglandin E(2) (PGE (2)) suppresses natural killer cell function primarily through the PGE(2) receptor EP4. Cancer Immunol. Immunother., 2011, Vol. 60, no. 11, pp. 1577-1586.
6. Honorati M.C., Neri S., Cattini L., Facchini A. IL-17 enhances the susceptibility of U-2 OS osteosarcoma cells to NK cell lysis. Clin. Exp. Immunol., 2003, Vol. 133, no. 3, pp. 344-349.
7. Jaime P., Garcia-Guerrero N., Estella R., Pardo J., Garcia-Alvarez F., Martinez-Lostao L. CD56(+)/CD16(-) Natural killer cells expressing the inflammatory protease granzyme A are enriched in synovial fluid from patients with osteoarthritis. Osteoarthritis Cartilage, 2017, Vol. 25, no. 10, pp. 1708-1718.
8. Jong A.Y., Wu C.H., Li J., Sun J., Fabbri M., Wayne A.S., Seeger R.C. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J. Extracell. Vesicles, 2017, Vol. 6, no. 1, 1294368. doi: 10.1080/20013078.2017.1294368.
9. Keerthikumar S., Gangoda L., Gho Y.S., Mathivanan S. Exosomes and microvesicles. Methods in molecular biology. Ed. Hill A., Humana Press, 2017, pp. 189-196.
10. Khurana D., Arneson L.N., Schoon R.A., Dick C.J., Leibson P.J. Differential regulation of human NK cellmediated cytotoxicity by the tyrosine kinase Itk. J. Immunol., 2007, Vol. 178, no. 6, pp. 3575-3582.
11. Ko Y.H., Park S., Jin H., Woo H., Lee H., Park C., Kim K. Granzyme B leakage-induced apoptosis is a crucial mechanism of cell death in nasal-type NK/T-cell lymphoma. Lab. Invest., 2007, Vol. 87, no. 3, pp. 241-250.
12. Korenevskii A.V., Milyutina Y.P., Zhdanova A.A., Pyatygina K.M., Sokolov D.I., Sel’kov S.A. Massspectrometric analysis of proteome of microvesicles produced by NK-92 natural killer cells. Bull. Exp. Biol. Med., 2018, Vol. 165, no. 4, pp. 564-571.
13. Kumar D., Hosse J., von Toerne C., Noessner E., Nelson P.J. JNK MAPK pathway regulates constitutive transcription of CCL5 by human NK cells through SP1. J. Immunol., 2009, Vol. 182, no. 2, pp. 1011-1020.
14. Kweon S., Phan M.T., Chun S., Yu H., Kim J., Kim S., Lee J., Ali A.K., Lee S.H., Kim S.K., Doh J., Cho D. Expansion of human NK cells using K562 cells expressing OX40 ligand and short exposure to IL-21. Front. Immunol., 2019, Vol. 10, 879. doi: 10.3389/fimmu.2019.00879.
15. Liu X.C., Liang H., Tian Z., Ruan Y.S., Zhang L., Chen Y. Proteomic analysis of human NK-92 cells after NK cell-mediated cytotoxicity against K562 cells. Biochemistry Moscow, 2007, Vol. 72, no. 7, pp. 716-727.
16. Lugini L., Cecchetti S., Huber V., Luciani F., Macchia G., Spadaro F., Paris L., Abalsamo L., Colone M., Molinari A., Podo F., Rivoltini L., Ramoni C., Fais S. Immune surveillance properties of human NK cell-derived exosomes. J. Immunol., 2012, Vol. 189, no. 6, pp. 2833-2842.
17. Ma D., Cao W., Kapur A., Felder M., Scarlett C.O., Patankar M.S., Li L. Differential expression of proteins in naive and IL-2 stimulated primary human NK cells identified by global proteomic analysis. J. Proteomics, 2013, Vol. 91, pp. 151-163.
18. Malloci M., Perdomo L., Veerasamy M., Andriantsitohaina R., Simard G., Martinez M.C. Extracellular vesicles: mechanisms in human health and disease. Antioxid. Redox Signal., 2019, Vol. 30, no. 6, pp. 813-856.
19. Malorni W., Quaranta M.G., Straface E., Falzano L., Fabbri A., Viora M., Fiorentini C. The Rac-activating toxin cytotoxic necrotizing factor 1 oversees NK cell-mediated activity by regulating the actin/microtubule interplay. J. Immunol., 2003, Vol. 171, no. 8, pp. 4195-4202.
20. Manzini C., Vene R., Cossu I., Gualco M., Zupo S., Dono M., Spagnolo F., Queirolo P., Moretta L., Mingari M.C., Pietra G. Cytokines can counteract the inhibitory effect of MEK-i on NK-cell function. Oncotarget, 2016, Vol. 7, no. 38, pp. 60858-60871.
21. Mizrahi S., Markel G., Porgador A., Bushkin Y., Mandelboim O. CD100 on NK cells enhance IFNgamma secretion and killing of target cells expressing CD72. PLoS ONE, 2007, Vol. 2, no. 9, e818. doi: 10.1371/journal.pone.0000818.
22. Nawrot R., Barylski J., Schulze W.X. Incorrectly annotated keratin derived peptide sequences lead to misleading MS/MS data interpretation. J. Proteomics, 2013, Vol. 91, pp. 270-273.
23. Ochoa M.C., Minute L., Rodriguez I., Garasa S., Perez-Ruiz E., Inoges S., Melero I., Berraondo P. Antibodydependent cell cytotoxicity (ADCC): immunotherapy strategies enhancing effector NK cells. Immunol. Cell Biol., 2017, no. 4, pp. 347-355.
24. Oykhman P., Timm-McCann M., Xiang R.F., Islam A., Li S.S., Stack D., Huston S.M., Ma L.L., Mody C.H. Requirement and redundancy of the Src family kinases Fyn and Lyn in perforin-dependent killing of Cryptococcus neoformans by NK cells. Infect. Immun., 2013, Vol. 81, no. 10, pp. 3912-3922.
25. Pesce S., Carlomagno S., Moretta A., Sivori S., Marcenaro E. Uptake of CCR7 by KIR2DS4(+) NK cells is induced upon recognition of certain HLA-C alleles. J. Immunol. Res., 2015, Vol. 2015, 754373. doi: 10.1155/2015/754373.
26. Scheiter M., Lau U., van Ham M., Bulitta B., Grobe L., Garritsen H., Klawonn F., Konig S., Jansch L. Proteome analysis of distinct developmental stages of human natural killer (NK) cells. Mol. Cell. Proteomics, 2013, Vol. 12, no. 5, pp. 1099-1114.
27. Singh U.P., Singh S., Singh R., Cong Y., Taub D.D., Lillard J.W., Jr. CXCL10-producing mucosal CD4+ T cells, NK cells, and NKT cells are associated with chronic colitis in IL-10(-/-) mice, which can be abrogated by antiCXCL10 antibody inhibition. J. Interferon Cytokine Res., 2008, Vol. 28, no. 1, pp. 31-43.
28. Sokolov D.I., Markova K.L., Mikhailova V.A., Vyazmina L.P., Milyutina Y.P., Kozyreva A.R., Zhdanova A.A., Malygina D.A., Onokhin K.V., Ivanova A.N., Korenevsky A.V., Selkov S.A. Phenotypic and functional characteristics of microvesicles produced by natural killer cells. Medical Immunology (Russia), 2019, Vol. 21, no. 4, pp. 669-688. doi: 10.15789/1563-0625-2019-4-669-688.
29. Sokolov D.I., Ovchinnikova O.M., Korenkov D.A., Viknyanschuk A.N., Benken K.A., Onokhin K.V., Selkov S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl. Res., 2016, Vol. 170, pp. 112-123.
30. Thery C., Zitvogel L., Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol., 2002, Vol. 2, no. 8, pp. 569-579.
31. Tramontano A.F., Lyubarova R., Tsiakos J., Palaia T., Deleon J.R., Ragolia L. Circulating endothelial microparticles in diabetes mellitus. Mediators Inflamm., 2010, Vol. 2010, 250476. doi: 10.1155/2010/250476.
32. van der Pol E., Coumans F.A., Grootemaat A.E., Gardiner C., Sargent I.L., Harrison P., Sturk A., van Leeuwen T.G., Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. Thromb. Haemost., 2014, Vol. 12, no. 7, pp. 1182-1192.
33. van Helden M.J., Zaiss D.M., Sijts A.J. CCR2 defines a distinct population of NK cells and mediates their migration during influenza virus infection in mice. PLoS ONE, 2012, Vol. 7, no. 12, e52027. doi: 10.1371/journal.pone.0052027.
34. van Niel G., d’Angelo G., Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat. Rev. Mol. Cell Biol., 2018, Vol. 19, no. 4, pp. 213-228.
35. Vasilopoulou E., Loubiere L.S., Lash G.E., Ohizua O., McCabe C.J., Franklyn J.A., Kilby M.D., Chan S.Y. Triiodothyronine regulates angiogenic growth factor and cytokine secretion by isolated human decidual cells in a cell-type specific and gestational age-dependent manner. Hum. Reprod., 2014, Vol. 29, no. 6, pp. 1161-1172.
36. Veerman R.E., Gucluler Akpinar G., Eldh M., Gabrielsson S. Immune cell-derived extracellular vesicles –functions and therapeutic applications. Trends Mol. Med., 2019, Vol. 25, no. 5, pp. 382-394.
37. Voigt J., Malone D.F.G., Dias J., Leeansyah E., Bjorkstrom N.K., Ljunggren H.G., Grobe L., Klawonn F., Heyner M., Sandberg J.K., Jansch L. Proteome analysis of human CD56neg NK cells reveals a homogeneous phenotype surprisingly similar to CD56dim NK cells. Eur. J. Immunol., 2018, Vol. 48, no. 9, pp. 1456-1469.
38. Wagstaffe H.R., Nielsen C.M., Riley E.M., Goodier M.R. IL-15 promotes polyfunctional NK cell responses to influenza by boosting IL-12 production. J. Immunol., 2018, Vol. 200, no. 8, pp. 2738-2747.
39. Wang W., Guo H., Geng J., Zheng X., Wei H., Sun R., Tian Z. Tumor-released galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J. Biol. Chem., 2014, Vol. 289, no. 48, pp. 33311-33319.
40. Zhu L., Aly M., Kuon R.J., Toth B., Wang H., Karakizlis H., Weimer R., Morath C., Ibrahim E., Ekpoom N., Opelz G., Daniel V. Patients with idiopathic recurrent miscarriage have abnormally high TGFss+ blood NK, NKT and T cells in the presence of abnormally low TGFss plasma levels. BMC Immunol., 2019, Vol. 20, no. 1, 10. doi: 10.1186/s12865-019-0290-3.
Supplementary files
![]() |
1. Metadata | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(15KB)
|
Indexing metadata ▾ |
![]() |
2. Title Page | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(17KB)
|
Indexing metadata ▾ |
![]() |
3. Abstract | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(14KB)
|
Indexing metadata ▾ |
![]() |
4. Figure 1a | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
5. Figure 1b | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
6. Figure 1c | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(2MB)
|
Indexing metadata ▾ |
![]() |
7. Figure 2 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(15MB)
|
Indexing metadata ▾ |
![]() |
8. Figure 3 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(851KB)
|
Indexing metadata ▾ |
![]() |
9. Table | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(14KB)
|
Indexing metadata ▾ |
![]() |
10. Supplement | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(258KB)
|
Indexing metadata ▾ |
![]() |
11. Метаданные_Подписи | |
Subject | ||
Type | Other | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
12. Signatures | |
Subject | ||
Type | Other | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
13. Figure Legends | |
Subject | ||
Type | Other | |
Download
(48KB)
|
Indexing metadata ▾ |
![]() |
14. Список литературы | |
Subject | ||
Type | Other | |
Download
(51KB)
|
Indexing metadata ▾ |
![]() |
15. Podpisi k risunkam | |
Subject | ||
Type | Other | |
Download
(15KB)
|
Indexing metadata ▾ |
![]() |
16. Corrected article | |
Subject | ||
Type | Other | |
Download
(41KB)
|
Indexing metadata ▾ |
![]() |
17. Corrected table 1 | |
Subject | ||
Type | Other | |
Download
(16KB)
|
Indexing metadata ▾ |
![]() |
18. Corrected references | |
Subject | ||
Type | Other | |
Download
(33KB)
|
Indexing metadata ▾ |
Review
For citations:
Korenevsky A.V., Shcherbitskaia A.D., Berezkina M.E., Markova K.L., Alexandrova E.P., Balabas O.A., Selkov S.A., Sokolov D.I. MALDI-TOF mass spectrometric protein profiling of microvesicles produced by the NK-92 natural killer cell line. Medical Immunology (Russia). 2020;22(4):633-646. https://doi.org/10.15789/1563-0625-MMS-1976