Preview

Medical Immunology (Russia)

Advanced search

Pathways of neuro-immune communication: past and present time, clinical application

https://doi.org/10.15789/1563-0625-PON-1974

Abstract

Fundamental studies in neuroimmunophysiology are the keystone for development of new therapeutic approaches to the treatment of infectious, allergic, oncologic and autoimmune diseases. The achievements in this field allowed approving new treatment methods based on irritation of afferent and efferent fibers of autonomic nerves. That became possible due to numerous studies of pathways between the immune and nervous systems performed over last two decades. The milestones in the history of neuroimmune communication research are represented here. The immune system organs – bone marrow, thymus and spleen are coupled to central nervous system (CNS) via sympathetic nerves. Information about LPS and bacteria emergence in peritoneum, intestine and parenchymal organs reaches the brain via parasympathetic pathways. After vagotomy, the brain neurons do not respond to this kind of antigens. The pattern of brain responses to different applied antigens (the EEG changes and the quantity of c-Fos-positive neurons) is specific for definite antigen, like as algorithms of electroneurogram after exposure to different cytokines. Activation of parasympathetic nerves causes the inhibition of inflammation. The entry of any antigens into the body initiates production of cytokines (IL-1, TNFα, IL-6, IFNγ etc.), via specific receptors which are present on peripheral neurons and terminals of vagus nerve, i.e. the vagal afferent terminals and neurons respond to cytokine action, and these signals are transmitted to CNS neurons. The afferent vagal fibers end on the dorsal vagal complex neurons in the caudal part of medulla oblongata. The information about bacterial antigens, LPS and inflammation is transmitted to the brain via afferent autonomic neural pathways. The speed of this process is high and significantly depends on the rates of cytokine production that are transmitters of signals upon the antigen exposure. It is important to emphasize that this events occur within minutes, and the response to the received information proceeds by reflex mechanisms, i.e., within fraction of a second, as exemplified by inflammation (“inflammation reflex”). This is a fundamentally new and revolutionary discovery in the functional studies of immune system regulation. Clinical efficiency of n. vagus stimulation by pulsed ultrasound was shown, being used for the treatment of inflammatory, allergic and autoimmune diseases, e.g., multiple sclerosis, rheumatoid arthritis, renal inflammatory diseases. Electrical stimulation of the vagus nerve reduces the death of animals in septic shock by 80%. The mentioned data have made a revolution in understanding the functional arrangement of immune system in the body. A hypothesis is represented, which suggests how the information on the antigen exposure is transmitted to the brain.

About the Author

E. A. Korneva
Institute of Experimental Medicine
Russian Federation

Korneva Elena A. – PhD, MD (Medicine), Professor, Full Member, Russian Academy of Sciences, Chief Research Associate, Department of General Pathology and Pathophysiology

197376, St. Petersburg, Acad. Pavlov str., 12.
Phone: 7 (812) 234-07-24.



References

1. Gordienko A.N. Neuro-Reflex mechanism of antibody production and phagocytosis regulation. Moscow: Medgiz, 1954. 123 p.

2. Klimenko V.M., Kaplunovsky A.S. Statistical investigation into the impulse activity of neurons in the rabbit hypothalamic areas. Fiziologicheskiy zhurnal SSSR imeni I.M. Sechenova= Sechenov Physiological Journal of the USSR, 1972, Vol. 58, no. 10, pp. 1484-1493. (In Russ.)

3. Korneva E.A. Neurohumoral regulation of immune homeostasis. Fiziologiya cheloveka = Human Physiology, 1976, Vol. 2, no. 3, pp. 469-481. (In Russ.)

4. Korneva E.A., Grigoriev V.A., Klimenko V.M., Stolyarov I. D. Electrophysiological phenomena of the brain in the process of immunological reactions. Leningrad: Nauka, 1989. 150 p.

5. Korneva E.A., Klimenko V.M., Shkhinek E.K. To the analysis of mechanisms of neurohumoral support of the reaction to antigen in the whole organism. Fiziologicheskiy zhurnal SSSR imeni I.M. Sechenova = Sechenov Physiological Journal of the USSR, 1974, Vol. 60, no. 4, pp. 556-565. (In Russ.)

6. Korneva E.A., Petyaeva A.V., Fedotkina T.V., Churilov L.P., Shoenfeld Y. Synopsis and prospects of autoimmunology development worldwide (after the materials of the 11 th International Congress in Lisbon, May 16-20, 2018). Preceding I: First Academy of Autoimmunity. Meditsinskaya immunologiya = Medical Immunology (Russia), 2019, Vol. 21, no. 1, pp. 171-188. (In Russ.) doi: 10.15789/1563-0625-2019-1-171-188

7. Korneva E.A., Khay L.M. Effect of destruction of areas of the hypothalamic region on the process of immunogenesis. Fiziologicheskiy zhurnal SSSR imeni I.M. Sechenova = Sechenov Physiological Journal of the USSR, 1963, Vol. 49, no. 1, pp. 42-48. (In Russ.)

8. Korneva E.A., Shanin S.N., Novikova N.S., Pugach V.A. Cell-molecular basis ofneuroimmune interactions during stress. Rossiiskiy fiziologicheskiy zhurnal imeni I.M. Sechenova = Russian Journal of Physiology, 2017, Vol. 103, no. 3, pp. 217-229. (In Russ.)

9. Korneva E.A., Shekoyan V.A. Regulation of protective functions of the body. Leningrad: Nauka, 1982. 138 p.

10. Novikova N.S., Perekrest S.V., Shainidze K.Z., Korneva E.A. Response of hypothalamic orexin-containing neurons to stimuli of antigen and non-antigen nature. Rossiiskiy fiziologicheskiy zhurnal imeni I.M. Sechenova = Russian Journal of Physiology, 2009, Vol. 95, no. 12, pp. 1309-1323. (In Russ.)

11. Perekrest S.V., Shainidze K.Z., Loskutov Yu.V., Abramova T.V., Novikova N.S., Korneva E.A. Immunoreactivity of orexin-containing hypothalamus neurons and the level of preproorexin gene expression in them after lipopolysaccharide administration. Rossiiskiy fiziologicheskiy zhurnal imeni I.M. Sechenova = Russian Journal of Physiology, 2011, Vol. 97, no. 6, pp. 573-579. (In Russ.)

12. Pugach V.A., Perekrest S.V., Novikova N.S., Korneva E.A. Orexin A- and orexin B-containing neurons in the rat hypothalamus after lipopolysaccharide injection. Tsitokiny i vospalenie = Cytokines and Inflammation, 2015, Vol. 14, no. 3, pp. 71-75. (In Russ.)

13. Abraham C.S., Harada N., Deli M.A., Niwa M. Transient forebrain ischemia increases the blood-brain barrier permeability for albumin in stroke – prone spontaneously hypertensive rats. Cell Mol. Neurobiol., 2003, Vol. 22, no. 4, pp. 455-462

14. Andersson U., Tracey K.J. Neural reflexes in inflammation and immunity. J. Exp. Med., 2012, Vol. 209, no. 6, pp. 1057-1068.

15. Andersson U., Tracey K.J. Reflex principles of immunological homeostasis. Annual Reviews of Immunology, 2012, Vol. 30, pp. 313-335.

16. Arima Y., Harada M., Kamimura D., Park J.H., Kawano F., Yull F.E., Kawamoto T., Iwakura Y., Betz U.A., Márquez G., Blackwell T.S., Ohira Y., Hirano T., Murakami M. Regional neural activation defines a gateway for autoreactive t cells to cross the blood-brain barrier. Cell, 2012, Vol. 148, no. 3, pp. 447-457.

17. Arima Y., Kamimura D., Atsumi T., Harada M., Kawamoto T., Nishikawa N., Stofkova A., Ohki T., Higuchi K., Morimoto Y., Wieghofer P., Okada Y., Mori Y., Sakoda S., Saika S., Yoshioka Y., Komuro I., Yamashita T., Hirano T., Prinz M., Murakami M.. A pain-mediated neural signal induces relapse in murine autoimmune encephalomyelitis, a multiple sclerosis model. eLife, 2015, Vol. 4, e08733. doi: 10.7554/elife.08733.

18. Arima Y., Ohki T., Nishikawa N., Higuchi K., Ota M., Tanaka Y., Nio-Kobayashi J., Elfeky M., Sakai R., Mori Y., Kawamoto T., Stofkova A., Sakashita Y., Morimoto Y., Kuwatani M., Iwanaga T., Yoshioka Y., Sakamoto N., Yoshimura A., Takiguchi M., Sakoda S., Prinz M., Kamimura D., Murakami M. Brain micro-inflammation at specific vessels dysregulates organ-homeostasis via the activation of a new neural circuit. Elife, 2017, Vol. 6, e25517. doi: 10.7554/elife.25517.

19. Banks W.A., Kastin A.J., Gutierrez E.G. Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci. Lett., 1994, Vol. 179, no. 1-2, pp. 53-56.

20. Bashi T., Shovman O., Fridkin M., Volkov A., Barshack I., Blank M., Shoenfeld Y. Novel therapeutic compound tuftsin–phosphorylcholine attenuates collagen-induced arthritis. Clinical and Experimental Immunology, 2016, Vol. 184, no. 1, P. 19-28.

21. Berthoud H.R., Neuhuber W.L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci., 2000, Vol. 85, no. 1-3, pp. 1-17.

22. Besedovsky H.O., Del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocrine Reviews, 1996, Vol. 17, no. 1, pp. 64-102.

23. Besedovsky H.O., Del Rey A., Sorkin E. Neuroendocrine immunoregulation. Immunoregulation, Ed. Fabris N. , Garaci E., Hadden J., Mitchison N.A., New York, 1983, pp. 315-339.

24. Besedovsky H., Sorkin E., Felix D., Haas H. Hypothalamic changes during the immune response. Eur. J. Immunology, 1977, Vol. 7, no. 5, pp. 323-325.

25. Blalock J.E. A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol. Rev., 1989, Vol. 69, no. 1, pp. 1-32.

26. Blalock J.E. The immune system as a sensory organ. J. Immunol, 1984, Vol. 132, no. 3, pp. 1067-1070.

27. Blalock J.E., Smith E.M. Human leukocyte interferon: structural and biological relatedness to adrenocorticotropic hormone and endorphins. Proc. Nat. Sci. USA, 1980, Vol. 77, no. 10, pp. 5972-5974

28. Blank M., Bashi T., Lachnish J., Ben-Ami-Shor D., Shovman O., Fridkin M., Eisenstein M., Volkov A., Barshack I., Shoenfeld Y. Helminths-based bi-functional molecule, tuftsin-phosphorylcholine (TPC), ameliorates an established murine arthritis. PLOS ONE, 2018, Vol. 13, no. 8, e0200615. doi: 10.1371/journal.pone.0200615.

29. Bonaz B., Sinniger V., Hoffmann D., Clarençon D., Mathieu N., Dantzer C., Vercueil L., Picq C., Trocmé C., Faure P., Cracowski J., Pellissier S. Chronic vagus nerve stimulation in Crohn's disease: a 6‐month follow‐up pilot study. Neurogastroenterology and motility, 2016, Vol. 28, no. 6, pp. 948-953.

30. Bonaz B., Sinniger V., Pellissier S. Vagus nerve stimulation: a new promising therapeutic tool in inflammatory bowel disease. J. Intern. Med., 2017, Vol. 282, no. 1, pp. 46-63.

31. Borovikova L.V., Ivanova S., Zhang M., Yang H., Botchkina G.I., Watkins L.R., Wang H., Abumrad N., Eaton J.W., Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 2000, Vol. 405, no. 6785, pp. 458-462.

32. Bouton C.E. Cracking the neural code, treating paralysis and the future of bioelectronic. Journal of Internal Medicine, 2017, Vol. 282, no. 1, pp. 37-45.

33. Buck L., Axel R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 1991, Vol. 65, no. 1, pp. 175-187.

34. Bulloch K. Neuroanatomy of lymphoid tissue: a review. Neural modulation of immunity. New York: Raven Press, 1985, pp. 111-140.

35. Calvo W. The innervation of the bone marrow in laboratory animals. J. Anat., 1968, Vol. 123, no. 2, pp. 315-328.

36. Cano G., Sved A.F., Rinaman L., Rabin B.S., Card J.P. Characterization of the central nervous system innervation of the rat spleen using viral transneuronal tracing. J. Comp. Neurol., 2001, Vol. 439, no. 1, pp. 1-18.

37. Chavan S.S., Pavlov V.A., Tracey K.J. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity, 2017, Vol. 46, no. 6, pp. 927-942.

38. Chavan S.S., Tracey K.J. Essential Neuroscience in Immunology. J. Immunol., 2017, Vol. 198, no. 9, pp. 3389-3397.

39. Chiu I. M., Christian A. von Hehn, Woolf C. J. Neurogenic inflammation – the peripheral nervous system’s role in host defense and immunopathology. Nat. Neurosci., 2012, Vol.15, no. 8, pp. 1063-1067.

40. Chunchai T., Samniang B., Sripetchwandee J., Pintana H., Pongkan W., Kumfu S., Shinlapawittayatorn K., KenKnight B.H., Chattipakorn N., Chattipakorn S.C. Vagus Nerve Stimulation Exerts the Neuroprotective Effects in Obese-Insulin Resistant Rats, Leading to the Improvement of Cognitive Function. Scientific Reports, 2016, Vol. 6, no. 26866.

41. Dahan S., Segal Y., Watad A., Azrielant S., Shemer A., Maymon D., Stroev Y.I., Sobolevskaya P.A., Korneva E.A., Blank M., Gilburd B., Shovman O., Amital H., Ehrenfeld M., Tanay A., Kivity S., Pras E., Chapman J., Damoiseaux J., Cervera R., Putterman C., Shapiro I., Mouthon L., Perricone R., Bizzaro N., Koren O., Riemekasten G., Chereshnev V.A., Mazurov V.I., Goloviznin M., Gurevich V., Churilov L.P., Shoenfeld Y. Novelties in the field of autoimmunity – 1st Saint Petersburg congress of autoimmunity, the bridge between east and west. Autoimmunity Reviews, 2017, Vol. 16, no. 12, pp. 1175-1184.

42. Day H.E., Curran E.J., Watson S.J. Jr., Akil H. Distinct neurochemical populations in the rat central nucleus of the amygdala and bed nucleus of the stria terminalis: evidence for their selective activation by interleukin-1beta. J. Comp. Neurol., 1999, Vol. 413, no. 1, pp. 113-128.

43. Dénes A., Boldogkoi Z., Uhereczky G., Hornyák A., Rusvai M., Palkovits M., Kovács K.J. Central autonomic control of the bone marrow: multisynaptic tract tracing by recombinant pseudorabies virus. Neuroscience, 2005, Vol. 134, no. 3, pp. 947-963.

44. Deutschman C.S., Tracey K.J. Sepsis: current dogma and new perspectives. Immunity, 2014, Vol. 40, no. 4, pp. 463-475.

45. Ek M., Kurosawa M., Lundeberg T., Ericsson A. Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J. Neurosci., 1998, Vol. 18, no. 22, pp. 9471-9479.

46. Ericsson, A., Kovacs, K.J., Sawchenko, P.E. A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J. Neurosci., 1994, Vol. 14, no. 2, pp. 897-913.

47. Felten D.L., Felten S.Y., Carison S.L., Olschowka I.A., Livnat S. Noradrenergic and peptidergic innervations of lymphoid tissue. J.Immunol, 1985, Vol. 135, no. 2, pp. 755-765.

48. Fillip G. Mechanism of suppressing anaphylaxis through electrolytic lesion of the tuberal region of the hypothalamus. Ann. Allergy, 1973, Vol. 36, pp. 272-278.

49. Fleshner M., Goehler L.E., Hermann J., Relton J.K., Maier S.F., Watkins L.R. Interleukin-1beta induced corticosterone elevation and hypothalamic NE depletion is vagally mediated. Brain Res. Bull., 1995, Vol. 37, no. 6, pp. 605-610.

50. Gavrilov Y.V., Perekrest S.V., Novikova N.S., Korneva E.A. Stress – induced changes in cellular responses in hypothalamic structures to administration of an antigen (lipopolysacchapide) (in terms of c-Fos protein expression). Neurosci. Behav. Physiol., 2008, Vol. 38, no. 2, pp. 189-194.

51. Goehler L.E., Gaykema R.P., Hansen M.K., Anderson K., Maier S.F., Watkins L.R. Vagal immune-to-brain communication: a visceral chemosensory pathway. Auton. Neurosci., 2000, Vol. 85, no. 1-3, pp. 49-59.

52. Goehler L.E., Gaykema R.P., Opitz N., Reddaway R., Badr N., Lyte M. Activation in vagal afferents and central autonomic pathways: early responses to intestinal infection with Campylobacter jejuni. Brain Behav. Immun., 2005, Vol. 19, no. 4, pp. 334-344.

53. Goehler L.E., Gaykema R.P.A., Hammack S.E., Maier S.F., Watkins L.R. Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res., 1998, Vol. 804, no. 2, pp. 306-310.

54. Gutierrez E.G., Banks W.A., Kastin A.J. Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. J. Neuroimmunol., 1993, Vol. 47, no. 2, pp. 169-176.

55. Hohlfeld R., Dornmair K., Meinl E., Wekerle H. The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. The Lancet Neurology, 2016, Vol. 15, no 2, pp. 198-209.

56. Howland R.H. Vagus nerve stimulation. Curr. Behav. Neurosci. Rep., 2014, Vol. 1, no. 2, pp. 64-73.

57. Inoue T., Abe C., Sung S.S., Moscalu S., Jankowski J., Huang L., Ye H., Rosin D.L., Guyenet P.G., Okusa M.D. Vagus nerve stimulation mediates protection from kidney ischemia-reperfusion injury through α7nAChR+ splenocytes. J. Clin. Invest., 2016, Vol. 126, no. 5, pp. 1939-1952

58. Jose Ordovas-Montanes, Seth Rakoff-Nahoum, Siyi Huang, Lorena Riol-Blanco, Olga Barreiro, and Ulrich H. von Andrian. The regulation of immunological processes by peripheral neurons in homeostasis and disease. Trends in Immunology, 2015, Vol. 36, no. 10, pp. 578-604.

59. Kamimura D., Ohki T., Arima Y., Murakami M. Gateway reflex: neural activation-mediated immune cell gateways in the central nervous system. International Immunology, 2018, Vol. 30, no. 7, pp. 281–289.

60. Kazakova T.B., Barabanova S.V., Novikova N.S., Nosov M.A., RogersV.V., Korneva E.A. Induction of c-fos and interleukin-2 genes expression in the central nervous system following stressor stimuli. Pathophysiology, 2000, Vol. 7, no. 1, pp. 53-61.

61. Koopman F.A., Chavan S.S., Miljko S., Grazio S., Sokolovic S., Schuurman P.R., Mehta A.D., Levine Y.A., Faltys M., Zitnik R., Tracey K.J., Tak P.P. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA, 2016, Vol. 113, no. 29, pp. 8284-8289.

62. Koopman F.A., Schuurman P.R., Vervoordeldonk M.J., Tak P.P. Vagus nerve stimulation: a new bioelectronics approach to treat rheumatoid arthritis? Best Practice and Research Clinical Rheumatology, 2014, Vol. 28, no. 4, pp. 625-635.

63. Koopman F.A., van Maanen M.A., Vervoordeldonk M.J., Tak P.P. Balancing the autonomic nervous system to reduce inflammation in rheumatoid arthritis. Journal of Internal Medicine, 2017, Vol. 282, no. 1, pp. 64-75.

64. Korneva E. A. Concluding Remarks. Cytokines and the Brain, Elsevier, 2008, Vol. 6, pp. 567-570.

65. Korneva E.A., Klimenko V.M., Shkhinek E.K. Neurohumoral maintenance of Immune Homeostasis. Chicago: The Univ. Of Chicago Press, 1985, 253 p.

66. Korneva E.A., Novikova N.S. Brain Responses to Antigenic Challenges. NeuroImmune Biology. Elsevier, 2010, Vol. 9, pp. 113-121.

67. Korneva E.A., Perekrest S.V., Shainidze K.Z., Novikova N.S., Pugach V.A., Nasredinova A.A. Effects of restraint stress on lipopolysaccharide-induced reactions of orexinergic system. Advances in Neuroimmune Biology, 2017, Vol. 6, no. 3-4, pp. 131-138.

68. Lai N.Y., Mills K., Chiu I.M. Sensory neuron regulation of gastrointestinal inflammation and bacterial host defence. Journal of Internal Medicine, 2017, Vol. 282, no. 1, pp. 5-23.

69. Loffler S., Melican K., Nilsson K.P., Richter-Dahlfors A. Organic bioelectronics in medicine. Journal of Internal Medicine, 2017, Vol. 282, no. 1, pp. 24-36.

70. Lu B., Kwan K., Levine Y.A., Olofsson P.S., Yang H., Li J., Joshi S.,Wang H., Andersson U., Chavan S.S., Tracey K.J. Alpha 7 nicotinic acetylcholine receptor signaling inhibits inflammasome activation by preventing mitochondrial DNA release. Molecular Medicine, 2014, Vol. 20, no. 1, pp. 350-358.

71. Martelli D., Yao S.T., McKinley M.J., McAllen R.M. Reflex control of inflammation by sympathetic nerves, not the vagus. J. Physiol., 2014, Vol. 592, no. 7, pp. 1677-1686.

72. McCusker R.H., Kelley K.W. Immune-neural connections: how the immune system's response to infectious agents influences behavior. J. Exp. Biol., 2013, Vol. 216, no. 1, pp. 84-98.

73. Mirakaj V., Dalli J., Granja T., Rosenberger P., Serhan C.N. Vagus nerve controls resolution and pro-resolving mediators of inflammation. J. Exp. Med., 2014, Vol. 211, no. 6, pp. 1037-1048.

74. Nonaka N., Hileman S.M., Shioda S., Vo P., Banks W.A. Effect of lipopolysaccharide on leptin transport across the blood-brain barrier. Brain Res., 2004, Vol. 1016, no. 1, pp. 58-65.

75. Nonaka N., Shioda S., Banks W.A. Effect of lipopolysaccharide on the transport of pituitary adenylatecyclase activating polypeptide across the blood-brain barrier. Exp. Neurol., 2005, Vol. 191, no. 1, pp. 137-144.

76. Nosov M. A., Korneva E. A., Kazakova T. B., Barabanova S. V., Glushikhina M. S. Cell activation in the hypothalamus after exposure to an antigen (based on c-fos gene expression). Rossiiskii fiziologicheskii zhurnal imeni I.M. Sechenova, 2001, Vol. 87, no. 3, pp. 331-340.

77. Novikova N.S., Korneva H.A. Orexin-containing neurons and the immune system. Neuroimmune Biology, 2010, Vol. 9, pp. 91-100.

78. Ohki T., Kamimura D., Arima Y., Murakami M. Gateway reflexes: a new paradigm of neuroimmune interactions. Clinical and Experimental Neuroimmunology, 2017, Vol. 8, no. 1, pp. 23-32.

79. Okusa M.D., Rosin D.L., Tracey K.J. Targeting neural reflex circuits in immunity to treat kidney disease. Nature Reviews Nephrology, 2017, Vol. 13, no. 11, pp. 669-680.

80. Olofsson P.S., Levine Y.A., Caravaca A., Chavan S.S., Pavlov V.A., Faltys M., Tracey K.J. Single-pulse and unidirectional electrical activation of the cervical vagus nerve reduces tumor necrosis factor in endotoxemia. Bioelectronic Medicine, 2015, Vol. 2, pp. 37-42.

81. Olofsson P.S., Tracey K.J. Bioelectronic medicine: technology targeting molecular mechanisms for therapy. Journal of Internal Medicine, 2017, Vol. 282, no. 1, pp. 3-4.

82. Padegimas B., Korneva E. Changes of biopotentials of the cerebral cortex and hypothalamus in sensitized rabbits under the influence of antigen. Medicina. Vilnius: Mintis, 1966, Vol. 8, pp. 135-141.

83. Padro C.J., Sanders V.M. Neuroendocrine regulation of inflammation. Seminars in Immunology, 2014, Vol. 26, no. 5, pp. 357- 368.

84. Pavlov V.A., Tracey K.J. Neural circuitry and immunity. Immunol. Res., 2015, Vol. 63, no. 1-3, pp. 38-57.

85. Pavlov V.A., Tracey K.J. Neural regulation of immunity: molecular mechanisms and clinical translation. Nature Neuroscience, 2017, Vol. 20, no. 2, pp. 156-166.

86. Perekrest S.V., Abramova T.V., Novikova N.S., Loskutov Yu.V., Rogers V.J., Korneva E.A. Changes in immunoreactivity of Orexin-A-Positive Neurons after an Intravenous Lipopolysaccharide injection. Medical Science Monitoring, 2008, Vol. 14, no. 7, pp. 127-133.

87. Perekrest S.V., Novikova N.S., Korneva E.A. Brain Reactions Caused by Administration of Antigen. Advances in Neuroimmune Biology, 2011, Vol. 1, no. 1, pp. 25-37

88. Perekrest S.V., Shainidze K.Z., Novikova N.S., Kazakova T.B., Korneva, E.A. Hypothalamic Neuron Activation Under Stress and During Antigen Application. Advances in Neuroimmune Biology,2012, Vol. 3, № 3-4, pp. 243-253

89. Perekrest S.V., Shteintcaig A.D., Kawakami Naoto, Wekerle Hartmut, Korneva H. A. Morpho-Functional Characteristics of Hypothalamic Orexin Neurons During Experimental Autoimmune Encephalomyelitis. Advances in Neuroimmune Biology, 2014, Vol. 5, no. 3, pp. 171-180.

90. Perricone C., Shoenfeld N., Agmon-Levin N., de Carolis C., Perricone R., Shoenfeld Y. Smell and autoimmunity: a comprehensive review. Clinical Reviews in Allergy and Immunology, 2013, Vol. 45, no. 1, pp. 87-96.

91. Pinho-Riberio F.A., Waldiceu A., Verri Jr., Chiu I.M. Nociceptor sensory neuron-immune interactions in pain and inflammation. Trends in Immunology, 2017, Vol. 38, no. 1, pp. 5-19.

92. Plotkin S.R., Banks W.A., Kastin A.J. Comparison of saturable transport and extracellular pathways in the passage of interleukin-1 alpha across the blood-brain barrier. J. Neuroimmunol., 1996, Vol. 67, no. 1, pp. 41-47.

93. Roper S.D. Signal transduction and information processing in mammalian taste buds. Pflügers Archiv, 2007, Vol. 454, no. 5, pp. 759-776

94. Roper S.D., Chaudhari N. Taste buds: cells, signals and synapses. Nat. Rev. Neurosci., 2017, Vol. 18, no. 8, pp. 485-497.

95. Rosas-Ballina M., Valdés-Ferrer S.I., Dancho M.E., Ochani M., Katz D., Cheng K.F., Olofsson P.S., Chavan S.S., Al-Abed Y., Tracey K.J., Pavlov V.A. Xanomeline suppresses excessive pro-inflammatory cytokine responses through neural signal-mediated pathways and improves survival in lethal inflammation. Brain Behav. Immun., 2015, Vol. 44, pp. 19-27.

96. Sabharwal L., Kamimura D., Meng J., Bando H., Ogura H., Nakayama C., Jiang J., Kumai N., Suzuki H., Atsumi T., Arima Y., Murakami M. The gateway reflex, which is mediated by the inflammation amplifier, directs pathogenic immune cells into the CNS. J. Biochemistry, 2014, Vol. 156, no. 6, pp. 299-304.

97. Shainidze K.Z., Perekrest S.V., Novikova N.S., Kazakova T.B., Korneva E.A Stimulation of Orexinergic System in the CNS and in Immune Organs by Various Forms of Stress. Advances in Neuroimmune Biology, 2012, Vol. 3, no. 3-4, pp. 255-264.

98. Steinberg B.E., Silverman H.A., Robbiati S., Gunasekaran M.K., Tsaava T., Battinelli E., Stiegler A., Bouton C.E., Chavan S.S., Tracey K.J., Huerta P.T. Cytokine-specific neurograms in the sensory vagus nerve. Bioelectronic Medicine, 2016, Vol. 3, pp. 7-17.

99. Steinberg B.E., Tracey K.J., Slutsky A.S. Bacteria and the neural code. N. Engl. J. Med., 2014, Vol. 371, no. 22, pp. 2131-2133.

100. Steinman L. Immunology of relapse and remission in multiple sclerosis. Annual Reviews of Immunology, 2014, Vol. 32, P. 257-281.

101. Tanaka Y., Arima Y., Kamimura D., Murakami M. The gateway reflex, a novel neuro-immune interaction for the regulation of regional vessels. Frontiers in Immunology, 2017, Vol. 8, no. 1321. doi: 10.3389/fimmu.2017.01321.

102. Tracey K.J. Approaching the next revolution? Evolutionary intergration of neural and immune pathogen sensing and response. Cold Spring Harb. Perspect. Biol., 2015, Vol. 7, no. 2, a016360

103. Tracey K.J. Reflex control of immunity. Nat. Rev. Immunol., 2009, Vol. 9, no. 6, pp. 418- 428.

104. Tracey K.J. Reflexes in Immunity. Cell, 2016, Vol. 164, no. 3, pp. 343-344

105. Tracey K.J. The inflammatory reflex. Nature, 2002, Vol. 420, no. 6917, pp. 853-859.

106. Trotter R.N., Stornetta R.L., Guyenet P.G., Roberts M.R. Transneuronal mapping of the CNS network controlling sympathetic outflow to the rat thymus. AutonNeurosci., 2007, Vol. 131, no. 1-2, pp. 9-20.

107. Undem B.J., Kollarik M. The role of vagal afferent nerves in chronic obstructive pulmonary disease. Proceedings of the American Thoracic Society, 2005, Vol. 2, no. 4, pp. 355-360; discussion 371-372

108. Vidal E.L., Patel N.A., Wu G., Fiala M., Chang S.L. Interleukin-1 induces the expression of μ opioid receptors in endothelial cells. Immunopharmacology, 1998, Vol. 38, no. 3, pp. 261-266.

109. Wang H.H., Yu M., Ochani M., Amella C.A., Tanovic M., SusarlaS., Li J.H., Yang H., Ulloa L., Al-Abed Y., Czura C.J., Tracey K.J. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 2003, Vol. 421, no. 6921, pp. 384-388.

110. Watkins L.R., Goehler L.E., Relton J.K., Tartaglia N., Silbert L., Martin D., Maier S.F. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci. Lett., 1995, Vol. 183, no. 1-2, pp. 27-31.

111. Watkins L.R., Maier S.F., Goehler L.E., Cytokine-to-brain communication: a review and analysis of alternative mechanisms. Life Sci., 1995, Vol. 57, no. 11, pp. 1011-1026.

112. Yoo B.B., Mazmanian S.K. The enteric network: interactions between the immune and nervous systems of the gut. Immunity, 2017, Vol. 46, no. 6, pp. 910-926.


Supplementary files

1. Metadata
Subject
Type Other
Download (27KB)    
Indexing metadata ▾
2. Title page
Subject
Type Other
Download (27KB)    
Indexing metadata ▾
3. Abstract
Subject
Type Other
Download (32KB)    
Indexing metadata ▾
4. Picture 1
Subject
Type Исследовательские инструменты
Download (891KB)    
Indexing metadata ▾
5. Picture 2
Subject
Type Исследовательские инструменты
Download (18MB)    
Indexing metadata ▾
6. Picture 3
Subject
Type Исследовательские инструменты
Download (24MB)    
Indexing metadata ▾
7. Подписи авторов
Subject
Type Исследовательские инструменты
Download (389KB)    
Indexing metadata ▾
8. References
Subject
Type Other
Download (B)    
Indexing metadata ▾
9. The titles of the figures
Subject
Type Other
Download (B)    
Indexing metadata ▾
10. Литература
Subject
Type Исследовательские инструменты
Download (60KB)    
Indexing metadata ▾
11. Сaptions
Subject
Type Other
Download (31KB)    
Indexing metadata ▾

Review

For citations:


Korneva E.A. Pathways of neuro-immune communication: past and present time, clinical application. Medical Immunology (Russia). 2020;22(3):405-418. (In Russ.) https://doi.org/10.15789/1563-0625-PON-1974

Views: 5230


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)