Preview

Medical Immunology (Russia)

Advanced search

Inflammaging as the basis of age-associated diseases

https://doi.org/10.15789/1563-0625-IAT-1938

Abstract

Aging is one of the most complex biological phenomena that affects all human physiological systems, including the immune system. Immunosenescence is understood as structural and functional changes in both adaptive and innate immunity systems. The so-called inflammaging is among manifestations of immune aging. It is an age-related increase in inflammatory mediators and development of an inflammatory phenotype. An important role in development of inflammaging is assigned to chronic stimulation of immune system by exogenous and endogenous danger signals (pathogen-associated molecular pattern, PAMP and damage-associated molecular pattern, DAMP), which include viruses, microbiota of the gastrointestinal tract, free radicals, etc. PAMP and DAMP are recognized by the innate immunity system cells through the pattern recognition receptors (PRR), e.g., Toll-like receptors (TLR), RIG-I-like receptors (RLR), NODlike receptors (NLR), lectin receptors. Stimulation of PRR leads to activation of intracellular signaling and increased expression of pro-inflammatory factors. PAMPs are the most powerful activators of PRR and inflammation triggers; DAMPs can activate the same receptors and signaling pathways, causing the development of a sterile inflammatory response. The NF-kB signaling pathway is considered as a key signaling pathway for inflammaging. NLR stimulation also leads to formation of inflammasome. Its function is to transform the pro-inflammatory cytokines to a biologically active form, which is an important for the formation of a pro-inflammatory phenotype and development of inflammaging. This process is considered an important risk factor for morbidity and mortality among older people. Chronic inflammation underlies pathogenesis of many age-related diseases, such as osteoporosis, atherosclerosis, Alzheimer’s disease, Parkinson’s disease, type 2 diabetes. Various chronic diseases associated with age are directly related to PAMP and DAMP-induced TLR or NLRP3-mediated inflammatory response. Hence, these ligands and their receptors can be suggested as biomarkers and interventional targets for age-related disorders. Despite numerous studies in age-associated pathology, there are only few works on the contribution of innate immunity in healthy aging. It remains unclear whether the inflammatory phenotype is a manifestation of healthy aging, or it is associated with development of age-related pathology. Further study of the mechanisms of inflammatory aging will reveal biomarkers of healthy aging and potential targets for the treatment of age-associated diseases.

About the Authors

O. V. Artemyeva
N. Pirogov Russian National Research Medical University
Russian Federation

Artemyeva Olga V. – PhD (Medicine), Associate Professor, Department of Immunology

101000, Moscow, Chistoprudny blvd, 9, apt 41.
Phone: 7 (916) 678-92-01.



L. V. Gankovskaya
N. Pirogov Russian National Research Medical University
Russian Federation

PhD, MD (Medicine), Professor, Head, Department of Immunology

Moscow



References

1. Agrawal A., Agrawal S., Cao J.N., Su H., Osann K., Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J. Immunol., 2007, Vol. 178, no. 11, pp. 6912-6922.

2. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell, 2006, Vol. 124, no. 4, pp. 783-801.

3. Alvarez-Erviti L., Couch Y., Richardson J., Cooper J.M., Wood M.J. Alpha-synuclein release by neurons activates the inflammatory response in a microglial cell line. Neurosci. Res., 2011, Vol. 69, no. 4, pp. 337-342.

4. Asea A. Toll-like receptors (TLRs) and innate immunity. Handb. Exp. Pharmacol. Ed. Bauer S., Hartmann G. Springer, 2008, pp. 111-127.

5. Barrat F.J., Meeker T., Gregorio J., Chan J.H., Uematsu S., Akira S., Chang B., Duramad O., Coffman R.L. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupuse erythematosus. J. Exp. Med., 2005, Vol. 202, no. 8, pp. 1131-1139.

6. Bauernfeind F.G., Horvath G., Stutz A., Alnemri E.S., MacDonald K., Speert D., Fernandes-Alnemri T., Wu J., Monks B.G., Fitzgerald K.A., Hornung V., Latz E. Cutting edge: NF-kappa B activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol., 2009, Vol. 183, no. 2, pp. 787-791.

7. Bauernfeind F., Bartok E., Rieger A., Franchi L., Núnez G., Hornung V. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J. Immunol., 2011, Vol. 187, no. 2, pp. 613-617.

8. Béraud D., Twomey M., Bloom B., Mittereder A., Ton V., Neitzke K., Chasovskikh S., Mhyre T.R., Maguire-Zeiss K.A. α-Synuclein alters Toll-like receptor expression. Front. Neurosci., 2011, Vol. 5, 80. doi: 10.3389/fnins.2011.00080.

9. Biragyn A., Ruffini P.A., Leifer C.A., Klyushnenkova E., Shakhov A., Chertov O., Shirakawa A.K., Farber J.M., Segal D.M., Oppenheim J.J., Kwak L.W. Toll-likereceptor 4-dependent activation of dendritic cells by beta-defensin 2. Science, 2002, Vol. 298, pp. 1025-1029.

10. Bruunsgaard H., Andersen-Ranberg K., Hjelmborg J.V., Pedersen B.K., Jeune B. Elevated levels of tumor necrosis factor alpha and mortality in centenarians. Am. J. Med., 2003, Vol. 115, no. 4, pp. 278-283.

11. Bruunsgaard H., Pedersen M., Pedersen B. K. Aging and proinflammatory cytokines. Curr. Opin. Hematol., 2001, Vol. 8, no. 3, pp. 131-136.

12. Bsibsi M., Ravid R., Gveric D., van Noort J.M. Broad expression of Toll-like receptors in the human central nervous system. J. Neuropathol. Exp. Neurol., 2002, Vol. 61, no. 11, pp. 1013-1021.

13. Chen G.Y., Brown N.K., Zheng P., Liu Y. Siglec-G/10 in self-nonself discrimination of innate and adaptive immunity. Glycobiology, 2014, Vol. 24, no. 9, pp. 800-806.

14. Chen G.Y., Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol., 2010, Vol. 10, no. 12, pp. 826-837.

15. Chung H.Y., Cesari M., Anton S., Marzetti E., Giovannini S., Seo A.Y. Carter C., Yu B.P., Leeuwenburgh C. Molecular inflammation: underpinnings of aging and age-related diseases. Ageing Res. Rev., 2009, Vol. 8, no. 1, pp. 18-30.

16. Codolo G., Plotegher N., Pozzobon T., Brucale M., Tessari I., Bubacco L., de Bernard M. Triggering of inflammasome by aggregated α-synuclein, an inflammatory response in synucleinopathies. PLoS ONE, 2013, Vol. 8, no. 1, e55375. doi: 10.1371/journal.pone.0055375.

17. de Bouteiller O., Merck E., Hasan U.A., Hubac S., Benguigui B., Trinchieri G., Bates E.E., Caux C. Recognition of double-stranded RNA by human Toll-likereceptor 3 and downstream receptor signaling requires multimerization and an acidic pH. J. Biol. Chem., 2005, Vol. 280, no. 46, pp. 38133-38145.

18. Deeks S.G. HIV: How to escape treatment. Nature, 2011, Vol. 477, pp. 36-37.

19. Dias V., Junn E., Mouradian M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, Vol. 3, no. 4, pp. 461-491.

20. Duewell P., Kono H., Rayner K.J., Sirois C.M., Vladimer G., Bauernfeind F.G., Abela G.S., Franchi L., Nunez G., Schnurr M., Espevik T., Lien E., Fitzgerald K.A., Rock K.L., Moore K.J., Wright S.D., Hornung V., Latz E. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature, 2010, Vol. 464, no. 7293, pp. 1357-1361.

21. Ershler W.B. Interleukin-6: a cytokine for gerontologists. J. Am. Geriatr. Soc., 1993, Vol. 41, no. 2, pp. 176-181.

22. Ferrucci L., Corsi A., Lauretani F., Bandinelli S., Bartali B., Taub D.D., Guralnik J.M., Longo D.L. The origins of age related proinflammatory state. Blood, 2005, Vol. 105, no. 6, pp. 2294-2299.

23. Fettelschoss A., Kistowska M., Leibund Gut-Landmann S., Beer H.D., Johansen P., Senti G., Contassot E., Bachmann M.F., French L.E., Oxenius A., Kundig T.M. Inflammasome activation and IL-1β target IL-1α for secretion as opposed to surface expression. Proc. Natl. Acad. Sci. USA, 2011, Vol. 108, no. 44, pp. 18055-18060.

24. Foell D., Wittkowski H., Vogl T., Roth J. S100 proteins expressed in phagocytes: a novel group of damageassociated molecular pattern molecules. J. Leukoc. Biol., 2007, Vol. 81, no. 1, pp. 28-37.

25. Franceschi C., Bonafe M., Valensin S., Olivieri F., de Luca M., Ottaviani E., de Benedictis G. Inflammaging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci., 2000, Vol. 908, pp. 208-218.

26. Franceschi C., Campisi J. Chronic inflammation (inflammaging) and its potential contribution to ageassociated diseases. J. Gerontol. A Biol. Sci. Med. Sci., 2014, Vol. 69, Suppl. 1, pp. S4-S9.

27. Frey H., Schroeder N., Manon-Jensen T., Iozzo R.V., Schaefer L. Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J., 2013, Vol. 280, no. 10, pp. 2165-2179.

28. Fulop T., Witkowski J.M., Olivieri F., Larbi A. The integration of inflammaging in age-related diseases. Semin. Immunol., 2018, Vol. 40, pp. 17-35.

29. Gangemi S., Basile G., Merendino R.A., Minciullo P.L., Novick D., Rubinstein M., Dinarello C.A., lo Balbo C., Franceschi C., Basili S., d’Urbano E., Daví G., Nicita-Mauro V., Romano M. Increased circulating Interleukin-18 levels in centenarians with no signs of vascular disease: another paradox of longevity? Exp. Gerontol., 2003, Vol. 38, no. 6, pp. 669-672.

30. Gangemi S., Basile G., Monti D., Merendino R.A., di Pasquale G., Bisignano U., Nicita-Mauro V., Franceschi C. Age-related modifications in circulating IL-15 levels in humans. Mediators Inflamm., 2005, Vol. 2005, no 4, pp. 245-247.

31. Ghaemi-Oskouie F., Shi Y. The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr. Rheumatol. Rep., 2011, Vol. 13, no. 2, pp. 160-166.

32. Giovannini S., Onder G., Liperoti R., Russo A., Carter C., Capoluongo E., Pahor M., Bernabei R., Landi F. Interleukin-6, C-reactive protein, and tumor necrosis factor-alpha as predictors of mortality in frail, communityliving elderly individuals. J. Am. Geriatr. Soc., 2011, Vol. 59, no. 9, pp. 1679-1685.

33. Gregor M.F., Hotamisligil G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol., 2011, Vol. 29, pp. 415-445.

34. Gross O., Yazdi A.S., Thomas C.J., Masin M., Heinz L.X., Guarda G., Quadroni M., Drexler S.K., Tschopp J. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity, 2012, Vol. 36, no. 3, pp. 388-400.

35. Halle A., Hornung V., Petzold G.C., Stewart C.R., Monks B.G., Reinheckel T., Fitzgerald K.A., Latz E., Moore K.J., Golenbock D.T. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol., 2008, Vol. 9, no. 8, pp. 857-865.

36. Heintz C., Mair W. You are what you host: microbiome modulation of the aging process. Cell, 2014, Vol. 156, no. 3, pp. 408-411.

37. Jin C., Frayssinet P., Pelker R., Cwirka D., Hu B., Vignery A., Eisenbarth S.C., Flavell R.A. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc. Natl. Acad. Sci. USA, 2011, Vol. 108, pp. 14867-14872.

38. Jing Y., Shaheen E., Drake R.R., Chen N., Gravenstein S., Deng Y. Aging is associated with a numerical and functional decline in plasmacytoid dendritic cells, whereas myeloid dendritic cells are relatively unaltered in human peripheral blood. Hum. Immunol., 2009, Vol. 70, no. 10, pp. 777-784.

39. Johnson G.B., Brunn G.J., Kodaira Y., Platt J.L. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J. Immunol., 2002, Vol. 168, no. 10, pp. 5233-5239.

40. Kaisho T., Akira S. Toll-like receptor function and signaling. J. Allergy Clin. Immunol., 2006, Vol. 117, no. 5, pp. 979-987.

41. Kawai T., Akira S. TLR signaling. Semin. Immunol., 2007, Vol. 19, no. 1, pp. 24-32.

42. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, Vol. 11, no. 5, pp. 373-384.

43. Kim J.J., Jo E.K. NLRP3 inflammasome and host protection against bacterial infection. J. Korean Med. Sci., 2013, Vol. 28, no. 10, pp. 1415-1423.

44. Kong K.F., Delroux K., Wang X., Qian F., Arjona A., Malawista S.E., Fikrig E., Montgomery R.R. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J. Virol., 2008, Vol. 82, pp. 7613-7623.

45. Latz E., Duewell P. NLRP3 inflammasome activation in inflammaging. Semin. Immunol., 2018, Vol. 40, pp. 61-73.

46. Latz E., Xiao T.S., Stutz A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol., 2013, Vol. 13, no. 6, pp. 397-411.

47. Liu D., Zeng X., Li X., Mehta J.L. Wang X. Role of NLRP3 inflammasome in the pathogenesis of cardiovascular diseases. Basic Res. Cardiol., 2018, Vol. 113, no. 1, 5. doi: 10.1007/s00395-017-0663-9.

48. Liu Y., Chen G.Y., Zheng P. CD24-Siglec G/10 discriminates danger- from pathogen-associated molecular patterns. Trends Immunol., 2009, Vol. 30, no. 12, pp. 557-561.

49. Lumeng C.N., Liu J., Geletka L., Delaney C., DelProposto J., Desai A., Oatmen K., Martinez-Santibanez G., Anabelle J., Garg S., Yung R. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. J. Immunol., 2011, Vol. 187, no. 12, pp. 6208-6216.

50. Mariathasan S., Weiss D.S., Newton K., McBride J., O’Rourke K., Roose-Girma M., Lee W.P., Weinrauch Y., Monack D.M., Dixit V.M. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature, 2006, Vol. 440, pp. 228-232.

51. Masters S.L., Dunne A., Subramanian S.L., Hull R.L., Tannahill G.M., Sharp F.A., Becker C., Franchi L., Yoshihara E., Chen Z., Mullooly N., Mielke L.A., Harris J., Coll R.C., Mills K.H., Mok K.H., Newsholme P., Nu˜nez G., Yodoi J., Kahn S.E., Lavelle E.C., O’Neill L.A. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol., 2010, Vol. 11, no. 10, pp. 897-904.

52. Medzhitov R. Origin and physiological roles of inflammation. Nature, 2008, Vol. 454, pp. 428-435.

53. Meier J., Sturm A. The intestinal epithelial barrier: does it become impaired with age? Dig. Dis., 2009, Vol. 27, no. 3, pp. 240-245.

54. Miao E.A., Leaf I.A., Treuting P.M., Mao D.P., Dors M., Sarkar A., Warren S.E., Wewers M.D., Aderem A. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol., 2010, Vol. 11, no. 12, pp. 1136-1142.

55. Michaud M., Balardy L., Moulis G., Gaudin C., Peyrot C., Vellas B., Cesari M., Nourhashemi F. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc., 2013, Vol. 14, no. 12, pp. 877-882.

56. Miyake K. Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. Semin. Immunol., 2007, Vol. 19, no. 1, pp. 3-10.

57. Mkaddem S.B., Bens M., Vandewalle A. Differential activation of Toll-like receptor-mediated apoptosis induced by hypoxia. Oncotarget, 2010, Vol. 1, no. 8, pp. 741-750.

58. Nyugen J., Agrawal S., Gollapudi S., Gupta S. Impaired functions of peripheral blood monocyte subpopulations in aged humans. J. Clin. Immunol., 2010, Vol. 30, no. 6, pp. 806-813.

59. Okamura Y., Watari M., Jerud E.S., Young D.W., Ishizaka S.T., Rose J., Chow J.C., Strauss J.F. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem., 2001, Vol. 276, pp. 10229-10233.

60. Palmeri M., Misiano G., Malaguarnera M., Forte G.I., Vaccarino L., Milano S., Scola L., Caruso C., Motta M., Maugeri D., Lio D. Cytokine serum profile in a group of Sicilian nonagenarians. J. Immunoassay Immunochem., 2012, Vol. 33, no. 1, pp. 82-90.

61. Panda A., Qian F., Mohanty S., van Duin D., Newman F.K., Zhang L., Chen S., Towle V., Belshe R.B., Fikrig E., Allore H.G., Montgomery R.R., Shaw A.C. Ageassociated decrease in TLR function in primary human dendritic cells predicts influenza vaccine response. J. Immunol., 2010, Vol. 184, no. 5, pp. 2518-2527.

62. Pandey S., Agrawal D.K. Immunobiology of Toll-like receptors: emerging trends. Immunol. Cell. Biol., 2006, Vol. 84, no. 4, pp. 333-341.

63. Paulson J.C., Kawasaki N. Sialidase inhibitors DAMPen sepsis. Nat. Biotechnol., 2011, Vol. 29, no. 5, pp. 406-407.

64. Puzianowska-Kuźnicka M., Owczarz M., Wieczorowska-Tobis K., Nadrowski P., Chudek J., Slusarczyk P., Skalska A., Jonas M., Franek E., Mossakowska M. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun. Ageing, 2016, Vol. 13, 21. doi: 10.1186/s12979-016-0076-x.

65. Py B.F., Kim M.S., Vakifahmetoglu-Norberg H., Yuan J. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol. Cell, 2013, Vol. 49, no. 2, pp. 331-338.

66. Rajamäki K., Lappalainen J., Oörni K., Välimäki E., Matikainen S., Kovanen P.T., Eklund K.K. Cholesterol crystals activate the NLRP3 inflammasome in human macrophages: a novel link between cholesterol metabolism and inflammation. PLoS ONE, 2010, Vol. 5, no. 7, e11765. doi: 10.1371/journal.pone.0011765.

67. Rock K.L., Latz E., Ontiveros F., Kono H. The sterile inflammatory response. Annu. Rev. Immunol., 2010, Vol 28, pp. 321-342.

68. Roubenoff R., Parise H., Payette H.A., Abad L.W., d’Agostino R., Jacques P.F., Wilson P.W., Dinarello C.A., Harris T.B. Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study. Am. J. Med., 2003, Vol. 115, no. 6, pp. 429-435.

69. Sansoni P., Vescovini R., Fagnoni F.F., Akbar A., Arens R., Chiu Y.L., Cičin-Šain L., Dechanet-Merville J., Derhovanessian E., Ferrando-Martinez S., Franceschi C., Frasca D., Fulöp T., Furman D., Gkrania-Klotsas E., Goodrum F., Grubeck-Loebenstein B., Hurme M., Kern F., Lilleri D., López-Botet M., Maier A.B., Marandu T., Marchant A., Matheï C., Moss P., Muntasell A., Remmerswaal E.B., Riddell N.E., Rothe K., Sauce D., Shin E.C., Simanek A.M., Smithey M.J., Söderberg-Nauclér C., Solana R., Thomas P.G., van Lier R., Pawelec G., NikolichZugich J. New advances in CMV and immunosenescence. Exp. Gerontol., 2014, Vol. 55, pp. 54-62.

70. Sansoni P., Vescovini R., Fagnoni F., Biasini C., Zanni F., Zanlari L., Telera A., Lucchini G., Passeri G., Monti D., Franceschi C., Passeri M. The immune system in extreme longevity. Exp. Gerontol., 2008, Vol. 43, no. 2, pp. 61-65.

71. Scheibner K.A., Lutz M.A., Boodoo S., Fenton M.J., Powell J.D., Horton M.R. Hyaluronan fragments act as an endogenous danger signal by engaging TLR2. J. Immunol., 2006, Vol. 177, no. 2, pp. 1272-1281.

72. Schenk S., Saberi M., Olefsky J.M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest., 2008, Vol. 118, no. 9, pp. 2992-3002.

73. Schroder K., Zhou R., Tschopp J. The NLRP3 inflammasome: a sensor for metabolic danger? Science, 2010, Vol. 327, no. 5963, pp. 296-300.

74. Sepehri1 Z., Kiani Z., Nasiri A.A., Kohan F. Toll-like receptor 2 and type 2 diabetes. Cell. Mol. Biol. Lett., 2016, Vol. 21, 2. doi: 10.1186/s11658-016-0002-4.

75. Shin J.J., Lee E.K., Park T.J., Kim W. Damage-associated molecular patterns and their pathological relevance in diabetes mellitus. Ageing Res. Rev., 2015, Vol. 24, Part A, pp. 66-76.

76. Shoelson S.E., Lee J., Goldfine A.B. Inflammation and insulin resistance. J. Clin. Invest., 2006, Vol. 116, no. 7, pp. 1793-1801.

77. Smiley S.T., King J.A., Hancock W.W. Fibrinogen stimulates macrophage chemokine secretion through Toll-like receptor 4. J. Immunol., 2001, Vol. 167, no. 5, pp. 2887-2894.

78. Stienstra R., van Diepen J.A., Tack C.J., Zaki M.H., van de Veerdonk F.L., Perera D., Neale G.A., Hooiveld G.J., Hijmans A., Vroegrijk I., van den Berg S., Romijn J., Rensen P.C., Joosten L.A., Netea M.G., Kanneganti T.D. Inflammasomeis a central player in the induction of obesity and insulin resistance. Proc. Natl. Acad. Sci. USA, 2011, Vol. 108, no. 37, pp. 15324-15329.

79. Su X., Federoff H.J., Maguire-Zeiss K.A. Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox. Res., 2009, Vol. 16, no. 3, pp. 238-254.

80. Su X., Maguire-Zeiss K.A., Giuliano R., Prifti L., Venkatesh K., Federoff H.J. Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol. Aging, 2008, Vol. 29, no. 11, pp. 1690-1701.

81. Tang S.C., Arumugam T.V., Xu X., Cheng A., Mughal M.R., Jo D.G., Lathia J.D., Siler D.A., Chigurupati S., Ouyang X., Magnus T., Camandola S., Mattson M.P. Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc. Natl. Acad. Sci. USA., 2007, Vol. 104, no. 34, pp. 13798-13803.

82. Thundyil J., Lim K-L. DAMPs and neurodegeneration. Ageing Res. Rev., 2015, Vol. 24, Part A, pp. 17-28.

83. Vabulas R.M., Wagner H., Schild H. Heat shock proteins as ligands of toll-like receptors. Curr. Top. Microbiol. Immunol., 2002, Vol. 270, pp. 169-184.

84. van Duin D., Medzhitov R., Shaw A.C. Triggering TLR signaling in vaccination. Trends Immunol., 2006, Vol. 27, no. 1, pp. 49-55.

85. van Duin D., Mohanty S., Thomas V., Ginter S., Montgomery R.R., Fikrig E., Allore H.G., Medzhitov R., Shaw A.C. Age-associated defect in human TLR-1/2 function. J. Immunol., 2007, Vol. 178, no. 2, pp. 970-975.

86. van Duin D., Shaw A.C. Toll-like receptors in older adults. J. Am. Geriatr. Soc., 2007, Vol. 55, no. 9, pp. 1438-1444.

87. Vandanmagsar B., Youm Y.H., Ravussin A., Galgani J.E., Stadler K., Mynatt R.L., Ravussin E., Stephens J.M., Dixit V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med., 2011, Vol. 17, no. 2, pp. 179-188.

88. Wen H., Gris D., Lei Y., Jha S., Zhang L., Huang M.T., Brickey W.J., Ting J.P. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol., 2011, Vol. 12, no. 5, pp. 408-415.

89. Yamasaki K., Muto J., Taylor K.R., Cogen A.L., Audish D., Bertin J., Grant E.P., Coyle A.J., Misaghi A., Hoffman H.M., Gallo R.L. NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J. Biol. Chem., 2009, Vol. 284, pp. 12762-12771.

90. Yu L., Wang L., Chen S. Endogenous Toll-like receptor ligands and their biological significance. J. Cell. Mol. Med., 2010, Vol. 14, no. 11, pp. 2592-2603.

91. Yu M., Wang H., Ding A., Golenbock D.T., Latz E., Czura C.J., Fenton M.J., Tracey K. J., Yang H. HMGB1 signals through Toll-like receptor (TLR) 4 and TLR2. Shock, 2006, Vol. 26, no. 2, pp. 174-179.

92. Zamboni M., Rossi A.P., Fantin F., Zamboni G., Chirumbolo S., Zoico E., Mazzali G. Adipose tissue, diet and aging. Mech. Ageing Dev., 2014, Vol. 136-137, pp. 129-137.

93. Zhou R., Tardivel A., Thorens B., Choi I., Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol., 2010, Vol. 11, no. 2, pp. 136-140.


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (14KB)    
Indexing metadata ▾
2. Неозаглавлен
Subject
Type Other
Download (142KB)    
Indexing metadata ▾
3. Неозаглавлен
Subject
Type Other
Download (16KB)    
Indexing metadata ▾
4. Неозаглавлен
Subject
Type Other
Download (20KB)    
Indexing metadata ▾
5. Неозаглавлен
Subject
Type Other
Download (14KB)    
Indexing metadata ▾
6. Неозаглавлен
Subject
Type Other
Download (219KB)    
Indexing metadata ▾
7. Неозаглавлен
Subject
Type Other
Download (144KB)    
Indexing metadata ▾
8. Неозаглавлен
Subject
Type Other
Download (147KB)    
Indexing metadata ▾
9. Неозаглавлен
Subject
Type Other
Download (17KB)    
Indexing metadata ▾
10. Неозаглавлен
Subject
Type Other
Download (56KB)    
Indexing metadata ▾

Review

For citations:


Artemyeva O.V., Gankovskaya L.V. Inflammaging as the basis of age-associated diseases. Medical Immunology (Russia). 2020;22(3):419-432. (In Russ.) https://doi.org/10.15789/1563-0625-IAT-1938

Views: 3676


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)