Relationship between the functional activity of in vitro generated monocyte-derived dendritic cells and the presence of CD16 + cells among peripheral blood monocytes
https://doi.org/10.15789/1563-0625-RBT-1924
Abstract
Peripheral blood monocytes are heterogeneous CD14+ cell population, some of which also express CD16 molecule. Differences in phenotype between monocyte subpopulations can affect their functional activity, as well as the ability to further differentiate into dendritic cells (DCs). DCs are professional antigen-presenting cells which induce the immune response or, conversely, maintain the immunological tolerance. The aim of the present study was to analyze the relationship between monocyte subpopulations and the functional activity of monocyte-derived DCs, as well as DC sensitivity to the tolerogenic effect of dexamethasone. DCs were generated by cultivating enriched fractions of CD14+ monocytes with or without CD16+ cell depletion (CD16-Mo-DCs or CD16+Mo-DCs, respectively) in the presence of IFNα and GM-CSF. Monocyte subpopulations were obtained by immunomagnetic negative selection. CD16+Mo-DCs were characterized by lower ability to take up FITC-dextran and higher allostimulatory activity compared to CD16-Mo-DCs. In addition, CD16+Mo-DCs showed higher apoptosis-inducing activity against autologous CD4+T lymphocytes and allogeneic CD8+T lymphocytes, but were similar to CD16-Mo-DCs in their ability to induce apoptosis in allogeneic CD4+T lymphocytes. TNFa production level, similar for both types of DCs, was negatively correlated with CD16-Mo-DC allostimulatory activity and directly correlated with apoptosis-inducing activity of CD16+Mo-DCs towards allogeneic CD4+T cells. CD16-Mo-DCs and CD16+Mo-DCs were similar by their IL-10 production, which was inversely related to allostimulatory activity of both types of DCs. Dexamethasone increased endocytic activity, decreased the ability to stimulate autologous and allogeneic T cells, inhibited TNFα production of CD16-Mo-DCs and CD16+Mo-DCs. However, CD16+Mo-DCs demonstrated a more pronounced increase in endocytic activity and more dramatic decrease in their ability to stimulate the proliferation of CD4+T cells in auto-MLR. Also, addition of dexamethasone into CD16+Mo-DCs cultures led to the increase in DC pro-apoptogenic activity against autologous CD8+T lymphocytes. Thus, the presence of CD16+ cells among monocyte population affects the properties of IFNα-induced monocyte-derived DCs and DC sensitivity to the immunomodulatory effects of dexamethasone.
About the Authors
T. V. TyrinovaRussian Federation
Tyrinova Tamara V. - PhD (Biology), Research Associate, Laboratory of Cellular Immunotherapy, RIFCI; Senior Research Associate, Laboratory of Cell Technologies of Immunotherapy, Institute of Medicine and Psychology, NNRSU.
630099, Novosibirsk, Yadrintsevskaya str., 14, Phone: 7(383) 228-21-01, Fax: 7(383) 222-70-28.Novosibirsk
Competing Interests: not
O. Yu. Leplina
Russian Federation
PhD, MD (Medicine), Leading Research Associate, Laboratory of Cellular Immunotherapy.
Novosibirsk
Competing Interests: not
M. A. Tikhonova
Russian Federation
PhD (Biology), Senior Research Associate, Laboratory of Cellular Immunotherapy.
Novosibirsk
Competing Interests: not
L. V. Sakhno
Russian Federation
PhD (Biology), Senior Research Associate, Laboratory of Cellular Immunotherapy.
Novosibirsk
Competing Interests: not
A. A. Maximova
Russian Federation
Postgraduate Student, Laboratory of Cellular Immunotherapy.
Novosibirsk
Competing Interests: not
А. A. Ostanin
Russian Federation
PhD, MD (Medicine), Professor, Main Research Associate, Laboratory of Cellular Immunotherapy.
Novosibirsk
Competing Interests: not
E. R. Chernykh
Russian Federation
PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, Head, Laboratory of Cellular Immunotherapy.
Novosibirsk
Competing Interests: not
References
1. Tyrinova T.V., Leplina O.Yu., Tikhonova M.A., Sakhno L.V., Ostanin A.A., Chernykh E.R. Characteristics of signaling pathways mediating a cytotoxic effect of dendritic cells upon activated Т lymphocytes and NK cells. Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, Vol. 14, no. 1-2, pp. 43-50. (In Russ.) doi: 10.15789/1563-0625-2012-1-2-43-50.
2. Chernykh E.R., Tyrinova T.V., Leplina O.Yu., Tikhonova M.A., Kurochkina Yu.D., Oleynik E.A., Sakhno L.V., Ostanin A.A. Phenotype and functions of human dendritic cells derived from CD14+ monocyte subsets opposed to CD16 expression. Byulleten sibirskoy meditsiny = Bulletin of Siberian Medicine, 2019, Vol. 18, no. 1, pp. 266-276. (In Russ.)
3. Algeciras A., Dockrell D.H., Lynch D.H., Paya C.V. CD4 regulates susceptibility to Fas ligand- and tumor necrosis factor-mediated apoptosis. J. Exp. Med., 1998, Vol. 187, no. 5, pp. 711-720.
4. Ancuta P., Liu K.-Y., Misra V., Wacleche V, Gosselin A., Zhou X., Gabuzda D. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16- monocyte subsets. BMC Genomics, 2009, Vol. 10, 403. doi: 10.1186/1471-2164-10-403.
5. Bakdash G., Sittig S.P., van Dijk T., Figdor C.G., de Vries I.J. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front. Immunol., 2013, Vol. 4, 53. doi: 10.3389/fimmu.2013.00053.
6. Boyette L.B., Macedo C., Hadi K., Elinoff B.D., Walters J.T., Ramaswami B., Chalasani G., Taboas J.M., Lakkis F.G., Metes D.M. Phenotype, function, and differentiation potential of human monocyte subsets. PLoS ONE, 2017, Vol. 12, no. 4, e0176460. doi:10.1371/journal.pone.0176460.
7. Cain D., Cidlowski J. Immune regulation by glucocorticoids. Nat. Rev. Immunol., 2017, Vol. 17, no. 4, pp. 233-247.
8. Canning M.O., Grotenhuis K., de Wit H.J., Drexhage H.A. Opposing effects of dehydroepiandrosterone and dexamethasone on the generation of monocyte-derived dendritic cells. Eur. J. Endocrinol., 2000, Vol. 143, no. 5, pp. 687-695.
9. Carbonneil C., Saidi H., Donkova-Petrini V., Weiss L. Dendritic cells generated in the presence of interferon-a stimulate allogeneic CD4+ T-cell proliferation: modulation by autocrine IL-10, enhanced T-cell apoptosis and T regulatory type 1 cells. Int. Immunol., 2004, Vol. 16, no. 7, pp. 1037-1052.
10. Coillard A., Segura E. In vivo differentiation of human monocytes. Front. Immunol., 2019, Vol. 10, 1907. doi:10.3389/fimmu.2019.01907.
11. Elzey B.D., Griffith T.S., Herndon J.M., Barreiro R., Tschopp J., Ferguson T.A. Regulation of Fas ligand-induced apoptosis by TNF. J. Immunol., 2001, Vol. 167, no. 6, pp. 3049-3056.
12. Feng A.-L., Zhu J.-K., Sun J.-T., Yang M.X., Neckenig M.R., Wang X.W, Shao Q.Q., Song B.F., Yang Q.F., Kong B.H., Qu X. CD16+ monocytes in breast cancer patients: expanded by monocyte chemoattractant protein-1 and may be useful for early diagnosis. Clin. Exp. Immunol., 2011, Vol. 164, no. 1, pp. 57-65.
13. Gessani S., Conti L., del Corno M., Belardelli F. Type I interferons as regulators of human antigen presenting cell functions. Toxins (Basel), 2014, Vol. 6, no. 6, pp. 1696-1723.
14. Hasegawa H., Matsumoto T. Mechanisms of tolerance induction by dendritic cells in vivo. Front. Immunol., 2018, Vol. 9, 350. doi:10.3389/fimmu.2018.00350.
15. Lutz M.B., Schuler G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol., 2002, Vol. 23, no. 9, pp. 445-449.
16. Mehta A.K., Gracias D.T., Croft M. TNF activity and T cells. Cytokine, 2018, Vol. 101, pp. 14-18.
17. Mildner A.A., Yona S., Jing S. Close encounter of the third kind: monocyte-derived cells. Adv. Immunol., 2013, Vol. 120, pp. 69-103.
18. Naranjo-Gomez M., Raich-Regue D., Onate C., Grau-Lopez L., Ramo-Tello C., Pujol-Borrell R., Martinez-Caceres E., Borras F.E. Comparative study of clinical grade human tolerogenic dendritic cells. J. Transl. Med., 2011, Vol. 9, no. 1, 89. doi: 10.1186/1479-5876-9-89.
19. Patel A.A., Zhang Y., Fullerton J.N., Boelen L., Rongvaux A., Maini A.A., Bigley V, Flavell R.A., Gilroy D.W., Asquith B., Macallan D., Yona S. The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. J. Exp. Med., 2017, Vol. 214, no. 7, pp. 1913-1923.
20. Rea D., van Kooten C., van Meijgaarden K.E., Melief C.J.M., Offringa R. Glucocorticoids transform CD40-triggering of dendritic cells into an alternative activation pathway resulting in antigen presenting cells that secrete IL-10. Blood, 2000, Vol. 95, no. 10, pp. 3162-3167.
21. Rbnnblom L., Eloranta M.L. The interferon signature in autoimmune diseases. Curr. Opin. Rheumatol., 2013, Vol. 25, no. 2, pp. 248-253.
22. Segura E., Amigorena S. Inflammatory dendritic cells in mice and humans. Trends Immunol., 2013, Vol. 3, no. 9, pp. 440-445.
23. Stec M., Mytar B., Weglarczyk K., Ruggiero I., Zembala M. Characterization of monocyte subpopulations (CD14+CD16- and CD14++CD16+) generated from cord blood haematopoietic progenitor cD34+. Blood, 2008, Vol. 112, no. 11, 3551. doi:10.1182/blood.V112.11.3551.3551.
24. Unger W.W.J., Laban S., Kleijwegt F.S., van der Slik A.R., Roep B.O. Induction of Treg by monocyte-derived DC modulated by vitamin D 3 or dexamethasone: Differential role for PD-L1. Eur. J. Immunol., 2009, Vol. 39, no. 11, pp. 3147-3159.
25. Wacleche W.S., Cattin A., Goulet J.-Ph., Gauchat D., Gosselin A., Cleret-Buhot A., Zhang Y., Tremblay C.L., Routy J.P., Ancuta P. CD16+ monocytes give rise to CD103+RALDH2+TCF4+ dendritic cells with unique transcriptional and immunological features. Blood Adv., 2018, Vol. 2, no. 21, pp. 2862-2878.
26. Wong K.L., Tai J.J.-Y., Wong W.-C., Han H., Sem X., Yeap W.H., Kourilsky P, Wong S.C. Gene expression profiling reveals the defining features of the classical, intermediate, and nonclassical human monocyte subsets. Blood, 2011, Vol. 118, pp. e16-e31.
Supplementary files
![]() |
1. Литература | |
Subject | ||
Type | Other | |
Download
(22KB)
|
Indexing metadata ▾ |
![]() |
2. Метаданные | |
Subject | ||
Type | Данные | |
Download
(28KB)
|
Indexing metadata ▾ |
![]() |
3. Подписи авторов | |
Subject | ||
Type | Данные | |
Download
(667KB)
|
Indexing metadata ▾ |
![]() |
4. Рисунок 1. Функциональная активность ИФН-ДК, генерированных из CD16− и CD16+ моноцитов | |
Subject | ||
Type | Результаты исследования | |
Download
(805KB)
|
Indexing metadata ▾ |
![]() |
5. Рисунок 2. Поглотительная активность ИФН-ДК, генерированных из CD16− и CD16+ моноцитов | |
Subject | ||
Type | Результаты исследования | |
Download
(251KB)
|
Indexing metadata ▾ |
![]() |
6. Рисунок 3. Влияние дексаметазона на функциональную активность ИФН-ДК, генерированных из CD16− и CD16+ моноцитов | |
Subject | ||
Type | Результаты исследования | |
Download
(704KB)
|
Indexing metadata ▾ |
![]() |
7. Рисунок 4. Влияние дексаметазона на продукцию цитокинов в культурах ИФН-ДК, генерированных из CD16− и CD16+ моноцитов | |
Subject | ||
Type | Результаты исследования | |
Download
(206KB)
|
Indexing metadata ▾ |
![]() |
8. Названия рисунков | |
Subject | ||
Type | Результаты исследования | |
Download
(20KB)
|
Indexing metadata ▾ |
![]() |
9. Резюме на рус/англ | |
Subject | ||
Type | Материалы исследования | |
Download
(17KB)
|
Indexing metadata ▾ |
![]() |
10. Титульный лист | |
Subject | ||
Type | Данные | |
Download
(39KB)
|
Indexing metadata ▾ |
Review
For citations:
Tyrinova T.V., Leplina O.Yu., Tikhonova M.A., Sakhno L.V., Maximova A.A., Ostanin А.A., Chernykh E.R. Relationship between the functional activity of in vitro generated monocyte-derived dendritic cells and the presence of CD16 + cells among peripheral blood monocytes. Medical Immunology (Russia). 2020;22(2):269-280. (In Russ.) https://doi.org/10.15789/1563-0625-RBT-1924