Preview

Medical Immunology (Russia)

Advanced search

Local and systemic production of 45 cytokines in complicated proliferative diabetic retinopaty

https://doi.org/10.15789/1563-0625-LAS-1802

Abstract

Diabetic retinopathy (DR) is multifactorial by its origin, involving many cytokines and growth factors. Studies of cytokine levels in biological fluids seem to be relevant for an in-depth understanding of the disease pathogenesis. The purpose of the work was a comparative analysis of 45 cytokines at systemic (blood serum (BS)) and local (vitreous humor (VH)) levels in the patients with complicated proliferative DR, showing various features of the clinical pattern. The content of cytokines was tested in 53 samples of BS and 32 samples of VH in 53 patients with type 1 and type 2 diabetes mellitus with severe proliferative DR. We used the multiplex analysis technique by means of xMAP platform and Luminex xPONENT 3.1 program using 45-plex sets (Procarta Plex «eBioscience», Austria). 25 cytokines were detected at significant amounts in BS test samples, and 27 cytokines were revealed in VH specimens. Sensitivity limits of the test system allowed to find significantly higher levels of 7 cytokines (IL-6, IL-8, IP-10, MCP-1, HGF, LIF and VEGF-A) in VH samples, than in the BS, thus indicating to their local intraocular production. Correlations between the contents of VEGF-A growth factor and amounts of cytokines, including those involved in inflammatory reactions, are shown in VH, thus presuming the interrelation of pathogenetic components, i.e., inflammation and neoangiogenesis. The features of intraocular cytokine content were determined for various manifestations of diabetic ocular changes. Hemophthalmus has been shown to be associated with increased IL-8 and IP-10; iris rubeosis, with increase in LIF; proliferative DR activity was associated with higher MCP-1 levels, and extremely severe changes were related to increase in IL-6 and EGF. Testing of cytokines in biological fluids is informative when studying the mechanisms of inflammation, neoangiogenesis, and protective responses in pathogenesis of diabetic retinopathy.

About the Authors

V. V. Neroev
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

PhD, MD (Medicine), Professor, Corresponding Member.

Moscow


Competing Interests: not


O. V. Zaytseva
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

PhD (Medicine), Deputy Director.

Moscow


Competing Interests: not


N. V. Balatskaya
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Balatskaya Natalia V. - PhD (Biology), Leading Research Associate, Department of Immunology and Virology.

105062, Moscow, Sadovaya-Chernogryazskaya str., 14/19, Phone: 7(916) 976-61-27


Competing Interests: not


A. A. Lazutova
Helmholtz National Medical Research Center of Eye Diseases
Russian Federation

Clinical Resident.

Moscow


Competing Interests: not


References

1. Vorobyev A.A., Bykov A.S., Karaulov A.V. Immunology and allergology. Мoscow: Practical Medicine, 2006. 288 p.

2. Lepekhova S.A., Apartsin K.A., Iskra A.I. Role of hepatocyte growth factor in liver regeneration. Fundamentalnye issledovaniya = Fundamental Research, 2014, Vol. 7, no. 1, рр. 187-192. (In Russ.)

3. Neroev V.V., Zaytseva O.V, Mikhailova L.A. Incidence of diabetic retinopathy in the Russian Federation according to Federal statistics. Rossiyskiy oftalmologicheskiy zhurnal = Russian Ophthalmological Journal, 2018, Vol. 11, no. 2, pp. 5-9. (In Russ.)

4. Abu El-Asrar A.M. Role of inflammation in the pathogenesis of diabetic retinopathy. Middle East Afr. J. Ophthalmol., 2012, Vol. 19, no. 1, рр. 70-74.

5. Abu El-Asrar A.M., Struyf S., Kangave D., Geboes K., van Damme J. Chemokines in proliferative diabetic retinopathy and proliferative Vitreoretinopathy. Eur. Cytokine Netw., 2006, Vol. 17, no. 3, pp. 155-165.

6. Barna B.P., Pettay J., Barnett G.H., Zhou P., Iwasaki K., Estes M.L. Regulation of monocyte chemoattractant protein-1 expression in adult human non-neoplastic astrocytes is sensitive to tumor necrosis factor (TNF) or antibody to the 55-kDa TNF receptor. J. Neuroimmunol., 1994, Vol. 50, no. 1, рр. 101-107.

7. Bourne R.R., Stevens G.A., White R.A., Smith J.L., Flaxman S.R., Price H., Jonas J.B., Keeffe J., Leasher J., Naidoo K., Pesudovs K., Resnikoff S., Taylor H.R.; Vision Loss Expert Group. Causes of vision loss worldwide, 19902010: a systematic analysis. Lancet Glob. Health, 2013, Vol. 1, no. 6, pp. 339-349.

8. Capozzi M.E., McCollum G.W, Cousins D.B., Penn J.S. Linoleic acid is a diabetes-relevant stimulator of retinal inflammation in human retinal muller cells and microvascular endothelial cells. J. Diabetes Metab., 2016, Vol. 7, Iss. 12, 718. doi: 10.4172/2155-6156.1000718.

9. Crawford T.N., Alfaro I., Kerrison J.B., Jablon E.P. Diabetic retinopathy and angiogenesis. Curr. Diabetes Rev., 2009, Vol. 5, no. 1, рр. 8-13.

10. Dai C., Jiang S., Chu C., Xin M., Song X., Zhao B. Baicalin protects human retinal pigment epithelial cell lines against high glucose-induced cell injury by up-regulation of microRNA-145. Exp. Mol. Pathol., 2019, Vol. 106, рр. 123-130.

11. Dai Y., Wu Z., Wang F., Zhang Z., Yu M. Identification of chemokines and growth factors in proliferative diabetic retinopathy vitreous. BioMed Res. Int., 2014, Vol. 2014, 486386. doi: 10.1155/2014/486386.

12. Elner S.G., Elner V.M., Jaffe G.J., Stuart A, Kunkel S.L., Strieter R.M. Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr. Eye Res., 1995, Vol. 14, no. 11, pp. 1045-1053.

13. Farris R.A., Price E.T. Reverse translational study of fenofibrate’s observed effects in diabetes-associated retinopathy. Clin. Transl. Sci., 2017, Vol. 10, no. 2, рр. 110-116.

14. Ferrara N., Gerber H.P., LeCouter J.N. The biology of VEGF and its receptors. Nat. Med., 2003, Vol. 9, no. 6, рр. 669-676.

15. Funatsu H., Noma H., Mimura T., Eguchi S. Vitreous inflammatory factor sand macular oedema. Br. J. Ophthalmol., 2012, Vol. 96, no. 2, рр. 302-304.

16. Hang H., Yuan S., Yang Q., Yuan D., Liu Q. Multiplex bead array assay of plasma cytokines in type 2 diabetes mellitus with diabetic retinopathy. Mol. Vis., 2014, Vol. 20, pp. 1137-1145.

17. Hernandez C., Segura R.M., Fonollosa A., Carrasco E., Francisco G., Simo R. Interleukin-8, monocyte chemoattractant protein-1 and IL-10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet. Med., 2005, Vol. 22, no. 6, рр. 719-722.

18. Hong K.H., Ryu J., Han K.H. Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood, 2005, Vol. 105, no. 4, рр. 1405-1407.

19. Hull J., Ackerman H., Isles K., Usen S., Pinder M., Thomson A., Kwiatkowski D. Unusual haplotypic structure of IL8, a susceptibility locus for a common respiratory virus. Am. J. Hum. Genet., 2001, Vol. 69, no. 2, рр. 413-419.

20. Keane M.P., Belperio J.A., Arenberg D.A., Burdick M.D., Xu Z.J., Xue Y.Y. IFN-gamma-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis. J. Immunol., 1999, Vol. 163, no. 10, рр. 5686-5692.

21. Koskela U.E., Kuusisto S.M., Nissinen A.E., Savolainen M.J., Liinamaa M.J. High vitreous concentration of IL-6 and IL-8, but not of adhesion molecules in relation to plasma concentrations in proliferative diabetic retinopathy. Ophthalmic Res., 2013, Vol. 49, no. 2, pp. 108-114.

22. Kubota Y., Hirashima M., Kishi K., Stewart C.L., Suda T. Leukemia inhibitory factor regulates microvessel density by modulating oxygen-dependent VEGF expression in mice. J. Clin. Invest., 2008, Vol. 118, no. 7, рр. 2393-2403.

23. Lee E.Y., Lee Z.H., Song Y.W CXCL10 and autoimmune diseases. Autoimmun. Rev., 2009, Vol. 8, no. 5, рр. 379-383.

24. Li S., Fu X.A., Zhou X.F., Chen Y.Y., Chen WQ. Angiogenesis-related cytokines in serum of proliferative diabetic retinopathy patients before and after vitrectomy. Int. J. Ophthalmol., 2012, Vol. 5, no. 6, рр. 726-730.

25. Li Y., Zhou Y. Interleukin-17: The role for pathological angiogenesis in ocular neovascular diseases. Tohoku J. Exp. Med., 2019, Vol. 247, no. 2, pp. 87-98.

26. Malik T.G., Ahmed S.S., Gul R., Ayesha E. Comparative analysis of serum proangiogenic biomarkers between those with and without diabetic retinopathy. J. Coll. Physicians Surg. Pak., 2018, Vol. 28, no. 9, рр. 686-689.

27. Murugeswari P, Shukla D., Rajendran A., Kim R., Namperumalsamy P, Muthukkaruppan V Proinflammatory cytokines and angiogenic and anti-angiogenic factors in vitreous of patients with proliferative diabetic retinopathy and eales’ disease. Retina, 2008, Vol. 28, no. 6, рр. 817-824.

28. Nalini M., Raghavulu B.V., Annapurna A., Avinash P, Chandi V, Swathi N., Wasim. Correlation of various serum biomarkers with the severity of diabetic retinopathy. Diabetes Metab. Syndr., 2017, Vol. 11, Suppl. 1, pp. S451-S454.

29. Patel J.I., Saleh G.M., Hykin P.G., Gregor Z.J., Cree I.A. Concentration of haemodynamic and inflammatory related cytokines in diabetic retinopathy. Eye, 2008, Vol. 22, no. 2, рр. 223-228.

30. Schoenberger S.D., Kim S.J., Sheng J., Rezaei K.A., Lalezary M., Cherney E. Increased prostaglandin E2 (PGE2) levels in proliferative diabetic retinopathy, and correlation with VEGF and inflammatory cytokines. Invest. Ophthalmol. Vis. Sci., 2012. Vol. 53, no. 9, рр. 5906-5911.

31. Simo R., Hernandez C. Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol. Metab., 2014, Vol. 25, no. 1, pp. 23-33.

32. Simo-Servat O., Hernandez C., Simo R. Usefulness of the vitreous fluid analysis in the translational research of diabetic retinopathy. Mediators Inflamm., 2012, Vol. 2012, 872978. doi: doi: 10.1155/2012/872978.

33. Suzuki Y., Nakazawa M., Suzuki K., Yamazaki H., Miyagawa Y. Expression profiles of cytokines and chemokines in vitreous fluid in diabetic retinopathy and central retinal vein occlusion. Jpn J. Ophthalmol., 2011, Vol. 55, no. 3, pp. 256-263.

34. Tager A.M., Kradin R.L., LaCamera P, Bercury S.D., Campanella G.S., Leary C.P, Polosukhin V., Zhao L.H., Sakamoto H., Blackwell T.S., Luster A.D. Inhibition of pulmonary fibrosis by the chemokine IP-10/CXCL10. Am. J. Respir. Cell Mol. Biol., 2004, Vol. 31, no. 4, рр. 395-404.

35. Tsai T., Kuehn S., Tsiampalis N., Vu M.K., Kakkassery V, Stute G., Burkhard Dick H., Joachim S.C. Antiinflammatory cytokine and angiogenic factors levels in vitreous samples of diabetic retinopathy patients. PLoS ONE, 2018, Vol. 13, no. 3, e0194603. doi: 10.1371/journal.pone.0194603.

36. Wang W, Lo A.C. Diabetic retinopathy: pathophysiology and treatments. Int. J. Mol. Sci., 2018, Vol. 19, no. 6, E1816. doi: 10.3390/ijms19061816.

37. Yang X.F., Huang Y.X., Lan M., Zhang T.R., Zhou J. Protective effects of leukemia inhibitory factor on retinal vasculature and cells in streptozotocin-induced diabetic mice. Chin. Med. J. (Engl)., 2018, Vol. 131, no. 1, рр. 75-81.

38. Yoshimura T., Sonoda K.H., Sugahara M., Mochizuki Y., Enaida H., Oshima Y., Ueno A., Hata Y., Yoshida H., Ishibashi T. Comprehensive analysis of inflammatory immune mediators in vitreoretinal diseases. PLoS ONE, 2009, Vol. 4, no. 12, e8158. doi: 10.1371/journal.pone.0008158.

39. Yu Y., Zhang J., Zhu R., Zhao R., Chen J., Jin J., Tian Y., Su S.B. The profile of angiogenic factors in vitreous humor of the patients with proliferative diabetic retinopathy. Curr. Mol. Med., 2017, Vol. 17, no. 4, pp. 280-286.

40. Yu Z., Gong C., Lu B., Yang L., Sheng Y., Ji L., Wang Z. Dendrobium chrysotoxum Lindl. alleviates diabetic retinopathy by preventing retinal inflammation and tight junction protein decrease. J. Diabetes Res., 2015, Vol. 2015, 518317. doi: 10.1155/2015/518317.

41. Zeng F., Harris R.C. Epidermal growth factor, from gene organization to bedside. Semin. Cell Dev. Biol., 2014, Vol. 28, рр. 2-11.


Supplementary files

1. Локальная и системная продукция 45 цитокинов при осложненной пролиферативной диабетической ретинопатии Local and systemic production of 45 cytokines in complicated proliferative diabetic retinopathy
Subject сахарный диабет; диабетическая ретинопатия; тракционная отслойка сетчатки, гемофтальм, рубеоз радужки, патогенез; цитокины; стекловидное тело; сыворотка крови Diabetes mellitus, diabetic retinopathy, traction retinal detachment, hemophthalmus, iris
Type Other
Download (17KB)    
Indexing metadata ▾
2. Локальная и системная продукция 45 цитокинов при осложненной пролиферативной диабетической ретинопатии Local and systemic production of 45 cytokines in complicated proliferative diabetic retinopathy
Subject сахарный диабет; диабетическая ретинопатия; тракционная отслойка сетчатки, гемофтальм, рубеоз радужки, патогенез; цитокины; стекловидное тело; сыворотка крови Diabetes mellitus, diabetic retinopathy, traction retinal detachment, hemophthalmus, iris
Type Исследовательские инструменты
Download (16KB)    
Indexing metadata ▾
3. Резюме
Subject
Type Исследовательские инструменты
Download (16KB)    
Indexing metadata ▾
4. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (16KB)    
Indexing metadata ▾
5. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (21KB)    
Indexing metadata ▾
6. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (14KB)    
Indexing metadata ▾
7. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (16KB)    
Indexing metadata ▾
8. Неозаглавлен
Subject
Type Исследовательские инструменты
View (1MB)    
Indexing metadata ▾

Review

For citations:


Neroev V.V., Zaytseva O.V., Balatskaya N.V., Lazutova A.A. Local and systemic production of 45 cytokines in complicated proliferative diabetic retinopaty. Medical Immunology (Russia). 2020;22(2):301-310. (In Russ.) https://doi.org/10.15789/1563-0625-LAS-1802

Views: 810


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)