Mechanisms of immune regulation and transplantation immunity in corneal transplants
https://doi.org/10.15789/1563-0625-MOI-1768
Abstract
At the present time, corneal transplantation (keratoplasty) is one of the most frequent modes of solid tissue transplants in the world. Unlike other kinds of transplants, corneal grafting is often performed without tissue typing and systemic immunosuppression.
High frequency of transparent corneal engraftment (up to 90% of cases) in the absence of risk factors is due to special immunoprivileged area in the anterior eye segment (functionally, a structural aggregation of the cornea and anterior chamber, AC) accomplished by local and systemic immunoregulatory mechanisms, i.e., phenomenon of immune deviation associated with anterior chamber of the eye (ACAID), components of the internal liquid medium, a watery moisture with immunosuppressive properties, e.g., IL-1ra, TSP-1,TGF-β2, regulatory complement proteins, α-MSH (alpha-melanocyte stimulating hormone), VIP (vasoactive intestinal peptide), indolamine 2,3-dioxygenase (IDO), calcitonin-gene-bound peptide (CGRP), somatostatin, etc.
In addition to ACAID and liquid AC components, a contribution to the maintenance of immune privilege which is extremely important for a successful outcome of keratoplasty, is provided by other mechanisms, in particular, immunologically active membrane-associated molecules of corneal endothelium, i.e., PDL-1 (Programmed death ligand 1), and sVEGFR-1, sVEGFR-2, sVEGFR-3 involved in maintaining avascularity of the corneal tissue. Disturbances of the immune privilege of the cornea promotes activation of immune recognition with switching the effector mechanisms of transplantation immunity, thus leading to subsequent development of the tissue incompatibility reaction and clouding of transplanted cornea. Graft rejection can be localized in any of the corneal cell layers, including epithelium, stroma, and endothelium. Endothelial rejection causes the most severe affection of visual functions, due to the inability of local endothelial recovery, and water accumulation due to the endothelial dysfunction.
Graft rejection is clinically characterized by edema and the presence of inflammatory cells, either circulating in the anterior chamber, or forming precipitates on the graft endothelial cells.
A number of factors are associated with an increased risk of corneal graft rejection, including the degree of inflammation and/or vascularization of the transplant bed i.e., location of the donor cornea, repeated keratoplasty, allosensitization due to other cellular transplants, including bone marrow, blood transfusions, pregnancy, etc., as well as allergic and systemic diseases.
This review article considers and systematizes the data from the literature concerning studies of the factors determining the immune privileged state of cornea, and the ACAID phenomenon, their role in development of allotolerance in corneal transplantation, highlights the main conditions required for triggering the tissue incompatibility reactions, discusses the mechanisms of allogeneic recognition and effector stage of the immune response, destruction of corneal allografts.
About the Authors
V. V. NeroevRussian Federation
Neroev V.V., PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, Director
105062, Moscow, Sadovaya-Chernogryazskaya str., 14/19.
N. V. Balatskaya
Russian Federation
Balatskaya N.V., PhD (Biology), Leading Research Associate, Head, Department of Immunology and Virology
105062, Moscow, Sadovaya-Chernogryazskaya str., 14/19.
E. V. Chentsova
Russian Federation
Chentsova E.V., PhD, MD (Medicine), Professor, Head, Department of Traumatology and Reconstructive Surgery
105062, Moscow, Sadovaya-Chernogryazskaya str., 14/19.
Kh. M. Shamkhalova
Russian Federation
Shamkhalova Kh.M., Postgraduate Student, Department of Immunology and Virology
105062, Moscow, Sadovaya-Chernogryazskaya str., 14/19.
References
1. Kildyushov E.M., Zolotorevsky A.V., Doronina O.A., Agafonova A.A. Development prospects of keratoplasty in Moscow. Oftalmologiya = Ophtalmology, 2013, Vol. 10, no. 2, pp. 5-7. (In Russ.)
2. Albuquerque R.J., Hayashi T., Cho W.G., Kleinman M.E., Dridi S., Takeda A., Baffi J.Z., Yamada K., Kaneko H., Green M.G., Chappell J., Wilting J., Weich H.A., Yamagami S., Amano S., Mizuki N., Alexander J.S. Peterson M.L., Brekken R.A., Hirashima M., Capoor S., Usui T., Ambati B.K., Ambati J. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat. Med., 2009, Vol. 15, pp. 1023-1030.
3. Amouzegar A., Chauhan S.K., Dana R. Alloimmunity and Tolerance in corneal transplantation. J. Immunol., 2016, Vol. 196, no. 10, pp. 3983-3991.
4. Anshu A., Price M.O., Price F.W., Jr. Risk of corneal transplant rejection significantly reduced with Descemet’s membrane endothelial keratoplasty. Ophthalmology, 2012, Vol. 119, no. 3, pp. 536-540.
5. Arvey A., van der Veeken J., Samstein R.M., Feng Y., Stamatoyannopoulos J.A., Rudensky A.Y. Inflammationinduced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nat. Immunol., 2014, Vol. 15, no. 6, pp. 580-587.
6. Bachmann B.O., Bock F., Wiegand S.J., Maruyama K., Dana M.R., Kruse F.E., Luetjen-Drecoll E., Cursiefen C. Promotion of graft survival by vascular endothelial growth factor a neutralization after high-risk corneal transplantation. Arch. Ophthalmol., 2008, Vol. 126, no. 1, pp. 71-77.
7. Bartels M.C., Doxiadis I.I., Colen T.P., Beekhuis W.H. Long-term outcome in high-risk corneal transplantation and the influence of HLA-A and HLA-B matching. Cornea, 2003, Vol. 22, no. 6, pp. 552-556.
8. Beauregard C., Stevens C., Mayhew E., Niederkorn J.Y. Cutting edge: atopy promotes Th2 responses to alloantigens and increases the incidence and tempo of corneal allograft rejection. J. Immunol., 2005, Vol. 174, no. 11, pp. 6577-6581.
9. Bestard O., Cruzado J.M., Rama I., Torras J., Goma M., Seron D., Moreso F., Gil-Vernet S., Grinyo J.M. Presence of FoxP3+ regulatory T Cells predicts outcome of subclinical rejection of renal allografts. J. Am. Soc. Nephrol., 2008, Vol. 19, no. 10, pp. 2020-2026.
10. Bohringer D., Spierings E, Enczmann J., Bohringer S., Sundmacher R., Goulmy E., Reinhard T. Matching of the minor histocompatibility antigen HLA-A1/H-Y may improve prognosis in corneal transplantation. Transplantation, 2006, Vol. 82, no. 8, pp. 1037-1041.
11. Boisgerault F., Liu Y., Anosova N., Ehrlich E., Dana M.R., Benichou G. Role of CD4+ and CD8+ T cells in allorecognition: lessons from corneal transplantation. J. Immunol., 2001, Vol. 167, no. 4, pp. 1891-1899.
12. Chauhan S.K., Dohlman T.H., Dana R. Corneal lymphatics: Role in ocular inflammation as inducer and responder of adaptive immunity. J. Clin. Cell. Immunol., 2014, Vol. 5, pii: 1000256. doi: 10.4172/2155-9899.1000256.
13. Chauhan S.K., El Annan J., Ecoiffier T., Goyal S., Zhang Q., Saban D.R., Dana R. Autoimmunity in dry eye is due to resistance of Th17 to Treg suppression. J. Immunol., 2009, Vol. 182, no. 3, pp. 1247-1252.
14. Chauhan S.K., Jin Y., Goyal S., Lee H.S., Fuchsluger T.A., Lee H.K., Dana R. A novel prolymphangiogenicfunction for Th17/IL-17. Blood, 2011, Vol. 118, no. 17, pp. 4630-4634.
15. Chauhan S.K., Jurkunas U., Funaki T., Dastjerdi M., Dana R. Quantification of allospecific and nonspecific corneal endothelial cell damage after corneal transplantation. Eye (Lond.), 2015, Vol. 29, no. 1, pp. 136-144.
16. Chauhan S.K., Saban D.R., Dohlman T.H., Dana R. CCL-21 conditioned regulatory T cells induce allotolerance through enhanced homing to lymphoid tissue. J. Immunol., 2014, Vol. 192, no. 2, pp. 817-823.
17. Chauhan S.K., Saban D.R., Lee H.K., Dana R. Levels of Foxp3 in regulatory T cells reflect their functional status in transplantation. J. Immunol., 2009, Vol. 182, no. 1, pp. 148-153.
18. Chen H., Wang W., Xie H., Xu X., Wu J., Jiang Z., Zhang M., Zhou L., Zheng S. A pathogenic role of IL-17 at the early stage of corneal allograft rejection. Transpl. Immunol., 2009, Vol. 21, no. 3, pp. 155-161.
19. Chen L., Hamrah P., Cursiefen C., Zhang Q., Pytowski B., Streilein J.W., Dana M.R. Vascular endothelial growth factor receptor-3 mediates induction of corneal alloimmunity. Nat. Med., 2004, Vol. 10, no. 8, pp. 813-815.
20. Chong E.M., Dana M.R. Graft failure IV. Immunologic mechanisms of corneal transplant rejection. Int. Ophthalmol., 2008, Vol. 28, no. 3, pp. 209-222.
21. Coster D.J., Williams K.A. The impact of corneal allograft rejection on the long-term outcome of corneal transplantation. Am. J. Ophthalmol., 2005, Vol. 140, no. 6, pp. 1112-1122.
22. Cunnusamy K., Chen P.W, Niederkorn J.Y. IL-17 promotes immune privilege of corneal allografts. J. Immunol., 2010, Vol. 185, no. 8, pp. 4651-4658.
23. Cunnusamy K., Chen P.W., Niederkorn J.Y. IL-17A-dependent CD4+CD25+ regulatory T cells promote immune privilege of corneal allografts. J. Immunol., 2011, Vol. 186, no. 12, pp. 6737-6745.
24. Cunnusamy K., Paunicka K., Reyes N., Yang W., Chen P.W., Niederkorn J.Y. Two different regulatory T cell populations that promote corneal allograft survival. Invest. Ophthalmol. Vis. Sci., 2010, Vol. 51, no. 12, pp. 6566-6574.
25. Cursiefen C., Maruyama K., Bock F., Saban D., Sadrai Z., Lawler J., Dana R., Masli S. Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. J. Exp. Med., 2011, Vol. 208, no. 5, pp. 1083-1092.
26. Dana M.R., Qian Y., Hamrah P. Twenty-five-year panorama of corneal immunology: emerging concepts in the immunopathogenesis of microbial keratitis, peripheral ulcerative keratitis, and corneal transplant rejection. Cornea, 2000, Vol. 19, no. 5, pp. 625-643.
27. Dohlman T.H., Chauhan S.K., Kodati S., Hua J., Chen Y., Omoto M., Sadrai Z., Dana R. The CCR6/CCL20 axis mediates Th17 cell migration to the ocular surface in dry eye disease. Invest. Ophthalmol. Vis. Sci., 2013, Vol. 54, no. 6, pp. 4081-4091.
28. Dohlman T.H., Omoto M., Hua J., Stevenson W., Lee S.M., Chauhan S.K., Dana R. VEGF-trap aflibercept significantly improves long-term graft survival in high-risk corneal transplantation. Transplantation, 2015, Vol. 99, no. 4, pp. 678-686.
29. Emami-Naeini P., Dohlman T.H., Omoto M., Hattori T., Chen Y., Lee H.S., Chauhan S.K., Dana R. Soluble vascular endothelial growth factor receptor-3 suppresses allosensitization and promotes corneal allograft survival. Graefes Arch. Clin. Exp. Ophthalmol., 2014, Vol. 252, no. 11, pp. 1755-1762.
30. Foulsham W., Marmalidou A., Amouzegar A., Coco G., Chen Y., Dana R. The function of regulatory T cells at the ocular surface: Review. Ocul. Surf., 2017, Vol. 15, no. 4, pp. 652-659.
31. Gabison E., Chang J.H., Hernandez-Quintela E., Javier J., Lu P.C., Ye H., Kure T., Kato T., Azar D.T. Antiangiogenic role of angiostatin during corneal wound healing. Exp. Eye Res., 2004, Vol. 78, no. 3, pp. 579-589.
32. Grimaldo S., Yuen D., Ecoiffier T., Chen L. Very late antigen-1 mediates corneal lymphangiogenesis. Invest. Ophthalmol. Vis. Sci., 2011, Vol. 52, no. 7, pp. 4808-4812.
33. Guo X., Jie Y., Ren D., Zeng H., Zhang Y., He Y., Pan Z. In vitro-expanded CD4(+)CD25(high)Foxp3(+) regulatory T cells controls corneal allograft rejection. Hum. Immunol., 2012, Vol. 73, no. 11, pp. 1061-1067.
34. Hajrasouliha A.R., Funaki T., Sadrai Z., Hattori T., Chauhan S.K., Dana R. Vascular endothelial growth factor-C promotes alloimmunity by amplifying antigen-presenting cell maturation and lymphangiogenesis. Invest. Ophthalmol. Vis. Sci., 2012, Vol. 53, no. 3, pp. 1244-1250.
35. Hamrah P., Liu Y., Zhang Q., Dana M.R. Alterations in corneal stromal dendritic cell phenotype and distribution in inflammation. Arch. Ophthalmol., 2003, Vol. 121, no. 8, pp. 1132-1140.
36. Hamrah P., Zhang Q., Liu Y., Dana M.R. Novel characterization of MHC class II-negative population of resident corneal Langerhans cell-type dendritic cells. Invest. Ophthalmol. Vis. Sci., 2002, Vol. 43, no. 3, pp. 639-646.
37. Hargrave S.L., Hay C., Mellon J., Mayhew E., Niederkorn J Y. Fate of MHC-matched corneal allografts in Th1-deficient hosts. Invest. Ophthalmol. Vis. Sci., 2004, Vol. 45, no. 4, pp. 1188-1193.
38. Hattori T., Saban D.R., Emami-Naeini P., Chauhan S.K., Funaki T., Ueno H., Dana R. Donor-derived, tolerogenic dendritic cells suppress immune rejection in the indirect allosensitization-dominant setting of corneal transplantation. J. Leukoc. Biol., 2012, Vol. 91, no. 4, pp. 621-627.
39. Hegde S., Beauregard C., Mayhew E., Niederkorn J.Y. CD4(+) T-cell-mediated mechanisms of corneal allograft rejection: role of Fas-induced apoptosis. Transplantation, 2005, Vol. 79, no. 1, pp. 23-31.
40. Hori J., Taniguchi H., Wang M., Oshima M., Azuma M. GITR ligand-mediated local expansion of regulatory T cells and immune privilege of corneal allografts. Invest. Ophthalmol. Vis. Sci., 2010, Vol. 51, no. 12, pp. 6556-6565.
41. Hori J., Wang M., Miyashita M., Tanemoto K., Takahashi H., Takemori T., Okumura K., Yagita H., Azuma M. B7-H1-induced apoptosis as a mechanism of immune privilege of corneal allografts. J. Immunol., 2006, Vol. 177, no. 9, pp. 5928-5935.
42. Huq S., Liu Y., Benichou G., Dana M.R. Relevance of the direct pathway of sensitization in corneal transplantation is dictated by the graft bed microenvironment. J. Immunol., 2004, Vol. 173, no. 7, pp. 4464-4469.
43. Ikeda T., Hirata S., Fukushima S., Matsunaga Y., Ito T., Uchino M., Nishimura Y., Senju S. Dual effects of TRAIL in suppression of autoimmunity: the inhibition of Th1 cells and the promotion of regulatory T cells. J. Immunol., 2010, Vol. 185, no. 9, pp. 5259-5267.
44. Jin Y., Chauhan S.K., El Annan J., Sage P.T., Sharpe A.H., Dana R. A novel function for programmed death ligand-1 regulation of angiogenesis. Am. J. Pathol., 2011, Vol. 178, no. 4, pp. 1922-1929.
45. Johnson L.A., Jackson D.G. Inflammation-induced secretion of CCL21 in lymphatic endothelium is a key regulator of integrin-mediated dendritic cell transmigration. Int. Immunol., 2010, Vol. 22, no. 10, pp. 839-849.
46. Kaplan H.J., Streilein J.W. Immune response to immunization via the anterior chamber of the eye. II. An analysis of F1 lymphocyte-induced immune deviation. J. Immunol., 1978, Vol. 120, no. 3, pp. 689-693.
47. Kappel L.W., Goldberg G.L., King C.G., Suh D.Y., Smith O.M., Ligh C., Holland A.M., Grubin J., Mark N.M., Liu C., Iwakura Y., Heller G., van den Brink M.R. IL-17 contributes to CD4-mediated graft-versus-host disease. Blood, 2009, Vol. 113, no. 4, pp. 945-952.
48. Kim Y.M., Hwang S., Pyun B.J., Kim T.Y., Lee S.T., Gho Y.S., Kwon Y.G. Endostatin blocks vascular endothelial growth factor-mediated signaling via direct interaction with KDR/Flk-1. J. Biol. Chem., 2002, Vol. 277, no. 31, pp. 27872-27879.
49. Komatsu N., Okamoto K., Sawa S., Nakashima T., Oh-hora M., Kodama T., Tanaka S., Bluestone J.A., Takayanagi H. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med., 2014, Vol. 20, no. 1, pp. 62-68.
50. Lee H.O., Herndon J.M., Barreiro R., Griffith T.S., Ferguson T.A. TRAIL: a mechanism of tumor surveillance in an immune privileged site. J. Immunol., 2002, Vol. 169, no. 9, pp. 4739-4744.
51. Matsui T., Nishino Y., Maeda S., Yamagishi S. PEDF-derived peptide inhibits corneal angiogenesis by suppressing VEGF expression. Microvasc. Res., 2012, Vol. 84, no. 1, pp. 105-108.
52. Medawar P.B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol., 1948, Vol. 29, no. 1, pp. 58-69.
53. Min W.P., Gorczynski R., Huang X.Y., Kushida M., Kim P., Obataki M., Lei J., Suri R.M., Cattral M.S. Dendritic cells genetically engineered to express Fas ligand induce donor-specific hyporesponsiveness and prolong allograft survival. J. Immunol., 2000, Vol. 164, no. 1, pp. 161-167.
54. Namba K., Kitaichi N., Nishida T., Taylor A.W. Induction of regulatory T cells by the immunomodulating cytokines alpha-melanocyte-stimulating hormone and transforming growth factor-beta2. J. Leukoc. Biol., 2002, Vol. 72, no. 5, pp. 946-952.
55. Niederkorn J.Y. Anterior chamber-associated immune deviation and its impact on corneal allograft survival. Curr. Opin. Organ Transplant., 2006, Vol. 11, no. 4, pp. 360-365.
56. Niederkorn J.Y. The immune privilege of corneal grafts. J. Leukoc. Biol., 2003, Vol. 74, no. 2, pp. 167-171.
57. Niederkorn J.Y., Chen P.W., Mellon J., Stevens C., Mayhew E. Allergic airway hyperreactivity increases the risk for corneal allograft rejection. Am. J. Transplant., 2009, Vol. 9, no. 5, pp. 1017-1026.
58. Niederkorn J.Y., Stevens C., Mellon J., Mayhew E. CD4+ T-cell-independent rejection of corneal allografts. Transplantation, 2006, Vol. 81, no. 8, pp. 1171-1178.
59. Niederkorn J.Y., Stevens C., Mellon J., Mayhew E. Differential roles of CD8+ and CD8- T lymphocytes in corneal allograft rejection in ‘high-risk’ hosts. Am. J. Transplant., 2006, Vol. 6, no. 4, pp. 705-713.
60. Niederkorn J.Y. High risk corneal allografts and why they lose their immune privilege. Curr. Opin. Allergy Clin. Immunol., 2010, Vol. 10, no. 5, pp. 493-497.
61. Reinhard T., Böhringer D., Enczmann J., Kögler G., Mayweg S., Wernet P., Sundmacher R. HLA class I and II matching improves prognosis in penetrating normal-risk keratoplasty. Dev. Ophthalmol., 2003, Vol. 36, pp. 42-49.
62. Ryu Y.H., Kim J.C. Expression of indoleamine 2,3-dioxygenase in human corneal cells as a local immunosuppressive factor. Invest. Ophthalmol. Vis. Sci., 2007, Vol. 48, no. 9, pp. 4148-4152.
63. Saban D.R., Bock F., Chauhan S.K., Masli S., Dana R. Thrombospondin-1 derived from APCs regulates their capacity for allosensitization. J. Immunol., 2010, Vol. 185, no. 8, pp. 4691-4697.
64. Sano Y., Streilein J.W., Ksander B.R. Detection of minor alloantigen-specific cytotoxic T cells after rejection of murine orthotopic corneal allografts: evidence that graft antigens are recognized exclusively via the “indirect pathway”. Transplantation, 1999, Vol. 68, no. 7, pp. 963-970.
65. Schöllhorn L., Bock F., Cursiefen C. Thrombospondin-1 as a regulator of corneal inflammation and lymphangiogenesis: Effects on dry eye disease and corneal graft immunology. J. Ocul. Pharmacol. Ther., 2015, Vol. 31, no. 7, pp. 376-385.
66. She S.C., Steahly L.P., Moticka E.J. Intracameral injection of allogeneic lymphocytes enhances corneal graft survival. Invest. Ophthalmol. Vis. Sci., 1990, Vol. 31, no. 10, pp. 1950-1956.
67. Shen L., Jin Y., Freeman G.J., Sharpe A.H., Dana M.R. The function of donor versus recipient programmed death-ligand 1 in corneal allograft survival. J. Immunol., 2007, Vol. 179, no. 6, pp. 3672-3679.
68. Skelsey M.E., Mellon J., Niederkorn J.Y. Gamma delta T cells are needed for ocular immune privilege and corneal graft survival. J. Immunol., 2001, Vol. 166, no. 7, pp. 4327-4333.
69. Sonoda K.H., Taniguchi M., Stein-Streilein J. Long-term survival of corneal allografts is dependent on intact CD1d-reactive NKT cells. J. Immunol., 2002, Vol. 168, no. 4, pp. 2028-2034.
70. Sonoda Y., Streilein J.W. Impaired cell-mediated immunity in mice bearing healthy orthotopic corneal allografts. J. Immunol., 1993, Vol. 150, no. 5, pp. 1727-1734.
71. Streilein J.W. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat. Rev. Immunol., 2003, Vol. 3, no. 11, pp. 879-889.
72. Streilein J.W., Arancibia-Caracamo C., Osawa H. The role of minor histocompatibility alloantigens in penetrating keratoplasty. Dev. Ophthalmol., 2003, Vol. 36, pp. 74-88.
73. Streilein J.W., Niederkorn J.Y. Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J. Exp. Med., 1981, Vol. 153, no. 5, pp. 1058-1067.
74. Stuart P.M., Yin X., Plambeck S., Pan F., Ferguson T.A. The role of Fas ligand as an effector molecule in corneal graft rejection. Eur. J. Immunol., 2005, Vol. 35, no. 9, pp. 2591-2597.
75. Sugita S., Usui Y., Horie S., Futagami Y., Yamada Y., Ma J., Kezuka T., Hamada H., Usui T., Mochizuki M., Yamagami S. Human corneal endothelial cells expressing programmed death-ligand 1 (PD-L1) suppress PD-1+ T helper 1 cells by a contact-dependent mechanism. Invest. Ophthalmol. Vis. Sci., 2009, Vol. 50, no. 1, pp. 263-272.
76. Tahvildari M., Omoto M., Chen Y., Emami-Naeini P., Inomata T., Dohlman T.H., Kaye A.E., Chauhan S.K., Dana R. In vivo expansion of regulatory T cells by low-dose interleukin-2 treatment increases allograft survival in corneal transplantation. Transplantation, 2016, Vol. 100, no. 3, pp. 525-532.
77. Tan Y., Cruz-Guilloty F., Medina-Mendez C.A., Cutrufello N.J., Martinez R.E., Urbieta M., Wilson D., Li Y., Perez V.L. Immunological disruption of antiangiogenic signals by recruited allospecific T cells leads to corneal allograft rejection. J. Immunol., 2012, Vol. 188, no. 12, pp. 5962-5969.
78. Taylor A.W. Ocular immune privilege. Eye (Lond.), 2009, Vol. 23, no. 10, pp. 1885-1889.
79. The collaborative corneal transplantation studies (CCTS). Effectiveness of histocompatibility matching in high-risk corneal transplantation. The Collaborative Corneal Transplantation Studies Research Group. Arch. Ophthalmol., 1992, Vol. 110, no. 10, pp. 1392-1403.
80. Turnquist H.R., Raimondi G., Zahorchak A.F., Fischer R.T., Wang Z., Thomson A.W. Rapamycinconditioned dendritic cells are poor stimulators of allogeneic CD4+ T cells, but enrich for antigen-specific Foxp3+ T regulatory cells and promote organ transplant tolerance. J. Immunol., 2007, Vol. 178, no. 11, pp. 7018-7031.
81. Xie L., Shi W., Guo P. Roles of tumor necrosis factor-related apoptosis-inducing ligand in corneal transplantation. Transplantation, 2003, Vol. 76, no. 11, pp. 1556-1559.
82. Yamada J., Hamuro J., Fukushima A., Ohteki T., Terai K., Iwakura Y., Yagita H., Kinoshita S. MHC-matched corneal allograft rejection in an IFN-gamma/IL-17-independent manner in C57BL/6 mice. Invest. Ophthalmol. Vis. Sci., 2009, Vol. 50, no. 5, pp. 2139-2146.
83. Yamada J., Yoshida M., Taylor A.W., Streilein J.W. Mice with Th2-biased immune systems accept orthotopic corneal allografts placed in “high risk” eyes. J. Immunol., 1999, Vol. 162, no. 9, pp. 5247-5255.
84. Yamada J., Zhu S.N., Streilein J.W., Dana M.R. Interleukin-1 receptor antagonist therapy and induction of anterior chamber-associated immune deviation-type tolerance after corneal transplantation. Invest. Ophthalmol. Vis. Sci., 2000, Vol. 41, no. 13, pp. 4203-4208.
85. Yamada Y., Sugita S., Horie S., Yamagami S., Mochizuki M. Mechanisms of immune suppression for CD8+ Tcells by human corneal endothelial cells via membrane-bound TGF beta. Invest. Ophthalmol. Vis. Sci., 2010, Vol. 51, no. 5, pp. 2548-2557.
86. Yamagami S., Dana M.R., Tsuru T. Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk corneal transplantation. Cornea, 2002, Vol. 21, no. 4, pp. 405-409.
87. Yamagami S., Hamrah P., Zhang Q., Liu Y., Huq S., Dana M.R. Early ocular chemokine gene expression and leukocyte infiltration after high-risk corneal transplantation. Mol. Vis., 2005, Vol. 11, pp. 632-640.
88. Yan F., Cai L., Hui Y., Chen S., Meng H., Huang Z. Tolerogenic dendritic cells suppress murine corneal allograft rejection by modulating CD28/CTLA-4 expression on regulatory T cells. Cell Biol. Int., 2014, Vol. 38, no. 7, pp. 835-848.
89. Yang W., Li H., Chen P.W., Alizadeh H., He Y., Hogan R.N., Niederkorn J.Y. PD-L1 expression on human ocular cells and its possible role in regulating immune-mediated ocular inflammation. Invest. Ophthalmol. Vis. Sci., 2009, Vol. 50, no. 1, pp. 273-280.
90. Zhang X., Li M., Lian D., Zheng X., Zhang Z.X., Ichim T.E., Xia X., Huang X., Vladau C., Suzuki M., Garcia B., Jevnikar A.M., Min W.P. Generation of therapeutic dendritic cells and regulatory T cells for preventing allogeneic cardiac graft rejection. Clin. Immunol., 2008, Vol. 127, no. 3, pp. 313-321.
91. Zhou X., Bailey-Bucktrout S.L., Jeker L.T., Penaranda C., Martinez-Llordella M., Ashby M., Nakayama M., Rosenthal W., Bluestone J.A. Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat. Immunol., 2009, Vol. 10, no. 9, pp. 1000-1007.
Supplementary files
![]() |
1. Подписи авторов | |
Subject | ||
Type | Данные | |
Download
(460KB)
|
Indexing metadata ▾ |
![]() |
2. Подписи авторов | |
Subject | ||
Type | Данные | |
Download
(455KB)
|
Indexing metadata ▾ |
![]() |
3. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13KB)
|
Indexing metadata ▾ |
![]() |
4. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13KB)
|
Indexing metadata ▾ |
|
5. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
View
(104KB)
|
Indexing metadata ▾ |
|
6. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
View
(25KB)
|
Indexing metadata ▾ |
![]() |
7. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(15KB)
|
Indexing metadata ▾ |
![]() |
8. список литературы(таблица) | |
Subject | ||
Type | Other | |
Download
(34KB)
|
Indexing metadata ▾ |
![]() |
9. резюме | |
Subject | ||
Type | Other | |
Download
(18KB)
|
Indexing metadata ▾ |
![]() |
10. подписи к рисункам | |
Subject | ||
Type | Other | |
Download
(11KB)
|
Indexing metadata ▾ |
![]() |
11. метаданные | |
Subject | ||
Type | Other | |
Download
(14KB)
|
Indexing metadata ▾ |
![]() |
12. титульный лист | |
Subject | ||
Type | Other | |
Download
(13KB)
|
Indexing metadata ▾ |
Review
For citations:
Neroev V.V., Balatskaya N.V., Chentsova E.V., Shamkhalova Kh.M. Mechanisms of immune regulation and transplantation immunity in corneal transplants. Medical Immunology (Russia). 2020;22(1):61-76. (In Russ.) https://doi.org/10.15789/1563-0625-MOI-1768