Mechanisms of innate immunity in pathogenesis of psoriasis: approaches to targeted therapy
https://doi.org/10.15789/1563-0625-MOI-1949
Abstract
Psoriasis is a chronic auto-inflammatory, genetically determined dermatosis, being multifactorial by origin, characterized by hyperproliferation of epidermis, affected keratinocyte differentiation and inflammatory reaction in dermis. The disease is characterized by a tendency to spread over the area of lesion, and involvement of articular tissue in the pathological process, which significantly affects the living standards of patients and causes their disability. There are many provoking factors that contribute to occurrence of psoriasis, or progression of existing psoriatic process in individuals with a genetic predisposition. These factors include adverse climatic conditions, skin trauma, exposure to ultraviolet light, burns, infections, etc.
This review describes the role of innate immunity in pathogenesis of psoriasis, and describes in detail the mechanisms involved into induction of inflammation of PAMPs and DAMPs. In psoriasis, positively charged catelicidin is considered one of the most important DAMPs, which can form a complex with negatively charged cell polyanions-LL-37/auto-RNA and LL-37/auto-DNA. The interaction of PAMP/DAMP ligands with specific PRR receptors leads to signal activation of effector components of immune system, i.e., assembly of inflammasome complex, caspase activation, synthesis of inflammatory cytokines and processing of their immature forms. The review focuses on the role of TLRs under the conditions of physiological norm, which recognize danger signals and provide protection from pathogens and their timely elimination, and in development of pathological process. Activation of TLRs induces the production of pro-inflammatory cytokines, interferons and antimicrobial peptides, chemokines that support the development of psoriatic inflammation.
In addition to TLRs, the mechanisms of involvement of inflammasomes in the development of psoriasis, which provides processing of mature forms of IL-1β and IL-18, are described in detail. Mature forms of these cytokines mediate the development of inflammation in psoriatic focus. In addition, processing of these cytokines by caspases using the positive feedback mechanism provides an additional signal to activate transcriptional activity of their genes and contributes to perpetuated inflammation.
The review presents data confirming participation of inflammasomes in the pathogenesis of psoriasis. Much attention is paid to description of pharmacological inhibitors of inflammasomes, which in the future may be the drugs of choice for treatment of inflammatory diseases. The study of molecular mechanisms of the innate immune system will reveal new approaches to prognosis and development of targeted therapy for psoriasis.
About the Authors
E. D. MerkushovaRussian Federation
Merkushova Ekaterina D. – Assistant Professor, Department of Immunology
117997, Russian Federation, Moscow, Ostrovityanov str., 1
Phone: 7 (915) 256-96-94
E. M. Khasanova
Russian Federation
Senior Laboratory Assistant, Department of Immunology
Moscow
L. V. Gankovskaya
Russian Federation
PhD, MD (Medicine), Professor, Head, Department of Immunology
Moscow
References
1. Beltiukova A.S., Syssoev K.A., Il’ina T.N., Shemerovskaya T.G., Hobeish M.M., Monakhov K.N., Totolian A.A. Expression of mRNAS for chemokines and chemokine receptors in the skin from patients with psoriasis. Meditsinskaya immunologiya = Medical Immunology (Russia), 2008, Vol. 10, no. 4-5, pp. 337-346. (In Russ.) doi: 10.15789/1563-0625-2008-4-5-337-346.
2. Kovalchuk L.V., Gankovskaya L.V., Meshkova R.Ya. Clinical immunology and allergology with the basics of general immunology. Moscow: GEOTAR-Media, 2014. 640 р.
3. Merkushova E.D., Khasanova E.M., Switich О.А., Batkaeva N.V., Gitinova M.M., Gankovskaya L.V. The role of TLR9 and components of the inflammasoma complex in immunopathogenesis of psoriasis. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2019, Vol. 13, no. 22, pp. 406-408. (In Russ.)
4. Molochkov V.A., Badokin V.V., Albanova V.I., Volnukhin V.A. Psoriasis and psoriatic arthritis. Moscow: KMK Scientific Press; Author’s Academy. 2007. 298 p.
5. Smirnova S.V., Smolnikova M.V. Immune pathogenesis of psoriasis and psoriatic arthritis. Meditsinskaya immunologiya = Medical Immunology (Russia), 2014, Vol. 16, no. 2, pp. 127-138. (In Russ.) doi: 10.15789/1563-0625-2014-2-127-138.
6. Ярилин А.А. Иммунология: учебник. М.: ГОЭТАР-Медиа, 2010. 752 с. [Yarilin A.A. Immunology: textbook]. Moscow: GEOTAR-Media, 2010. 752 p.
7. Anwar M.A., Basith S., Choi S. Negative regulatory approaches to the attenuation of Toll-like receptor signaling. Exp. Mol. Med., 2013, Vol. 45, no. 2, pp. 1-14.
8. Barrat F.J., Meeker T., Gregorio J., Chan J.H., Uematsu S., Akira S., Chang B., Duramad O., Coffman R.L. Nucleic acids of mammalian origin can act as endogenous ligands for toll-like receptors and may promote systemic lupus erythematosus. J. Exp. Med., 2005, Vol. 202, no. 8, pp. 1131-1139.
9. Bauernfeind F. Of inflammasomes and pathogens--sensing of microbes by the inflammasome. EMBO Mol. Med., 2013, Vol. 5, no. 6, pp. 14-26.
10. Bianchi M. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol., 2007, Vol. 81, no. 1, pp. 1-5.
11. Boxer M.B., Shen M., Auld D.S., Wells J.A., Thomas C.J. A small molecule inhibitor of Caspase 1. Probe reports from the NIH Molecular Libraries Program. Bethesda, MD: National Center for Biotechnology Information 2010. Available at: https://www.ncbi.nlm.nih.gov/books/NBK56241/.
12. Cohen S., Fleischmann R. Kinase inhibitors: a new approach to rheumatoid arthritis treatment. Curr. Opin. Rheumatol., 2010, Vol. 22, no. 2, pp. 330-335.
13. Curry J.L., Qin J.Z., Bonish B., Carrick R., Bacon P., Panella J., Robinson J., Nickoloff B.J. Innate immunerelated receptors in normal and psoriatic skin. Arch. Pathol. Lab. Med., 2003, Vol. 127, pp. 178-186.
14. Daniels M.J., Rivers-Auty J., Schilling T., Spencer N.G., Watremez W., Fasolino V., Booth S.J., White C.S., Baldwin A.G., Freeman S., Wong R., Latta C., Yu S., Jackson J., Fischer N., Koziel V., Pillot T., Bagnall J., Allan S.M., Paszek P., Galea J., Harte M.K., Eder C., Lawrence C.B., Brough D. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nat. Commun., 2016, Vol. 7, 12504. doi: 10.1038/ncomms12504.
15. Darakhshan S., Pour A.B. Tranilast: a review of its therapeutic applications. Pharmacol. Res., 2015, Vol. 91, pp. 15-28.
16. di Virgilio F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol. Rev., 2013, Vol. 65, no. 3, pp. 872-905.
17. Dombrowski Y., Peric M., Koglin S., Kammerbauer C., Göss C., Anz D. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci. Transl. Med., 2011, Vol. 3, no. 82, pp. 82ra38.
18. Fischer U., Schulze-Osthoff K. Apoptosis-based therapies and drug targets. Cell Death Differ., 2005, Vol. 12, pp. 942-961.
19. Fritz J.H., Girardin S.E., Fitting C., Werts C., Mengin-Lecreulx D., Caroff M. et al. Synergistic stimulation of human monocytes and dendritic cells by Toll-like receptor 4 and NOD1- and NOD2-activating agonists. Eur. J. Immunol., 2005, Vol. 35, no. 8, pp. 2459-2470.
20. Garshick M.S., Barrett T.J., Wechter T. Inflammasome signaling and impaired vascular health in psoriasis. Arterioscler. Thromb. Vasc. Biol., 2019, Vol. 39, no. 4, pp. 787-798.
21. Hari A., Flach T.L., Shi Y., Mydlarski P.R. Toll-like receptors: role in dermatological disease. Mediators Inflamm., 2011 Vol. 2010, 437246. doi: 10.1155/2010/437246.
22. He Y., Varadarajan S., Muñoz-Planillo R., Burberry A., Nakamura Y., Núñez G. 3, 4-methylenedioxy-βnitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J. Biol. Chem., 2014, Vol. 289, pp. 1142-1150.
23. Heinrich M., Robles M., West J.E., Ortiz de Montellano B.R., Rodriguez E. Ethnopharmacology of Mexican asteraceae (compositae). Ann. Rev. Pharmacol. Toxicol., 1998, Vol. 38, pp. 539-565.
24. Huang Y., Jiang H., Chen Y., Wang X., Yang Y., Tao J., Deng X., Liang G., Zhang H., Jiang W., Zhou R. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol. Med., 2018, Vol.10, e8689. doi: 10.15252/emmm.201708689.
25. Ioannidis I., Ye F., McNally B., Willette M., Flaño E. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J. Virol., 2013, Vol. 87, no. 6, pp. 3261-3270.
26. Janeway C.A. Jr., Medzhitov R. Innate immune recognition. Annu. Rev. Immunol., 2002, Vol. 20, pp. 197-216. doi: 10.1146/annurev.immunol.20.083001.084359.
27. Juliana C., Fernandes-Alnemri T., Wu J., Datta P., Solorzano L., Yu J.-W., Meng R., Quong A.A., Latz E., Scott C.P., Alnemri E.S. Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J. Biol. Chem., 2010, Vol. 285, pp. 9792-9802.
28. Kamata M., Tada Y. Safety of biologics in psoriasis. J. Dermatol., 2018, Vol. 45, no. 3, pp.279-286.
29. Kuwar R., Rolfe A., Di L., Xu H., He L., Jiang Y. A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J. Neuroinflamm., 2019, Vol. 16, 81. doi:10.1186/s12974-019-1471-y.
30. Lai C.Y., Su Y.W., Lin K.I., Hsu L.C., Chuang T.H. Natural modulators of endosomal toll-like receptormediated psoriatic skin inflammation. J. Immunol. Res., 2017, Vol. 2017, 7807313. doi: 10.1155/2017/7807313.
31. Lamkanfi M., Mueller J.L., Vitari A.C., Misaghi S., Fedorova A., Deshayes K., Lee W.P., Hoffman H.M., Dixit V.M. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol., 2009, Vol. 187, pp. 61-70.
32. Lee C.C., Avalos A.M., Ploegh H.L. Accessory molecules for Toll-like receptors and their function. Nat. Rev. Immunol., 2012, Vol. 12, no. 3, pp. 168-179.
33. Liu X., Zhang Z., Ruan J., Pan Y., Magupalli V.G., Wu H., Lieberman J. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature, 2016, Vol. 535, pp. 153-158.
34. Lowes M.A., Suárez-Fariñas M., Krueger J.G. Immunology of зsoriasis. Annu. Rev. Immunol., 2014, Vol. 32, pp. 227-255.
35. Mabuchi T., Chang T.W., Quinter S., Hwang S.T. Chemokine receptors in the pathogenesis and therapy of psoriasis. J. Dermatol. Sci., 2012, Vol. 65, Iss. 1, pp. 4-11.
36. Marchetti C., Swartzwelter B., Gamboni F., Neff C.P., Richter K., Azam T., Carta S., Tengesdal I., Nemkov T., d’Alessandro A., Henry C., Jones G.S., Goodrich S.A., St. Laurent J.P., Jones T.M., Scribner C.L., Barrow R.B., Altman R.D., Skouras D.B., Gattorno M., Grau V., Janciauskiene S., Rubartelli A., Joosten L.A.B., Dinarello C.A. OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc. Natl. Acad. Sci. USA, 2018, Vol. 115, pp. 1530-1539.
37. Medzhitov R. TLR-mediated innate immune recognition. Semin. Immunol., 2007, Vol. 19, no. 1, pp. 1-2.
38. Miller L.S. Toll-like receptors in skin. Adv. Dermatol., 2008, Vol. 24, pp. 71-87.
39. Mullen L.M., Chamberlain G., Sacre S. Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease. Arthritis Res. Ther., 2015, Vol. 17, no. 1, 122. doi: 10.1186/s13075-015-0645-y.
40. Nair R.P., Henseler T., Jenisch S., Stuart P., Bichakjian C.K., Lenk W., Westphal E., Guo S.W., Christophers E., Voorhees J.J., Elder J.T. Evidence for two psoriasis susceptibility loci (HLA and 17q) and two novel candidate regions (16q and 20p) by genome-wide scan. Hum. Mol. Genet., 1997, Vol. 6, no. 8, pp. 1349-1356.
41. Oviedo-Boyso J., Bravo-Patiño A., Baizabal-Aguirre V.M. Collaborative action of toll-like and nod-like receptors as modulators of the inflammatory response to pathogenic bacteria. Mediators Inflamm., 2014, Vol. 2014, 432785. doi: 10.1155/2014/432785.
42. Perregaux D.G., McNiff P., Laliberte R., Hawryluk N., Peurano H., Stam E., Eggler J., Griffiths R., Dombroski M.A., Gabel C.A. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther., 2001, Vol. 299, pp. 187-197.
43. Platten M., Ho P.P., Youssef S., Fontoura P., Garren H., Hur E.M., Gupta R., Lee L.Y., Kidd B.A., Robinson W.H., Sobel R.A., Selley M.L., Steinman L. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science, 2005, Vol. 310, pp. 850-855.
44. Reinholz M., Ruzicka T., Schauber J. Cathelicidin LL-37: an antimicrobial peptide with a role in inflammatory skin disease. Ann. Dermatol., 2012, Vol. 24, no. 2, pp. 126-135.
45. Riddle M.C. Editorial: sulfonylureas differ in effects on ischemic preconditioning–is it time to retire glyburide? J. Clin. Endocrinol. Metab., 2003, Vol. 88, pp. 528-530.
46. Rudolphi K., Gerwin N., Verzijl N., Kraan P.V.D., Berg W.V.D. Pralnacasan, an inhibitor of interleukin-1β converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthritis Cartilage, 2003, Vol. 11, pp. 738-746.
47. Saïd-Sadier N., Ojcius D.M. Alarmins, inflammasomes and immunity. Biomed. J., 2012, Vol. 35, no. 6, pp. 437-449.
48. Salskov-Iversen M.L., Johansen C., Kragballe K., Iversen L. Caspase-5 expression is upregulated in lesional psoriatic skin. J. Invest. Dermatol., 2011, Vol. 131, pp. 670-676.
49. Siegmund B., Zeitz M. Pralnacasan (vertex pharmaceuticals). IDrugs, 2003, Vol. 6, pp. 154-158.
50. Su F., Xia Y., Huang M., Zhang L., Chen L. Expression of NLPR3 in Psoriasis is associated with enhancement of interleukin-1β and caspase-1. Med. Sci. Monit., 2018, Vol. 24, pp. 7909-7913.
51. Takagi M., Takakubo Y., Pajarinen J., Naganuma Y., Oki H., Maruyama M., Goodman S.B. Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. J. Orthop. Translat., 2017, Vol. 10, pp. 68-85.
52. Takeuchi O., Akira S. Pattern recognition receptors and inflammation. Cell, 2010, Vol. 140, Iss. 6, pp. 805-820.
53. Telfer N.R., Chalmers R.J., Whale K., Colman G. The role of streptococcal infection in the initiation of guttate psoriasis. Arch. Dermatol., 1992, Vol. 128, no. 1, pp. 39-42.
54. Toldo S., Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol., 2018, Vol. 15, pp. 203-214.
55. Tonel G., Conrad C. Interplay between keratinocytes and immune cells-recent insights into psoriasis pathogenesis. Int. J. Biochem. Cell Biol., 2009, Vol. 41, no. 5, pp. 963-968.
56. Visscher P., Wray N., Zhang Q., Sklar P., McCarthy M., Brown M., Yang J.10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet., 2017, Vol. 101, pp. 5-22.
57. Wannamaker W., Davies R., Namchuk M., Pollard J., Ford P., Ku G., Decker C., Charifson P., Weber P., Germann U.A., Kuida K., Randle J.C. (S)-1-((S)-2-{[1-(4-Amino-3-chloro-phenyl)-methanoyl]-amino}-3,3-dimethylbutanoyl)-pyrrolidine-2-carboxylic acid ((2R,3S)-2-ethoxy-5-oxo-tetrahydro-furan-3-yl)-amide (VX-765), an Orally Available Selective Interleukin (IL)-Converting Enzyme/Caspase-1 Inhi. J. Pharmacol. Exp. Ther., 2007, Vol. 321, pp. 509-516.
58. Williams A., Flavell R.A., Eisenbarth S.C. The role of NOD-like Receptors in shaping adaptive immunity. Curr. Opin. Immunol., 2010, Vol. 22, no. 1, pp. 34-40.
59. Xiao J., Wang C., Yao J.C., Alippe Y., Xu C., Kress D., Civitelli R., Abu-Amer Y., Kanneganti T.D., Link D.C., Mbalaviele G. Gasdermin D mediates the pathogenesis of neonatal-onset multisystem inflammatory disease in mice. Plos Biol., 2018, Vol. 16, no. 11, e3000047. doi: 10.1371/journal.pbio.3000047.
60. Yamaoka K., Tanaka Y. Jak inhibitor; possibility and mechanism as a new disease modifying anti-rheumatic drug. Jpn J. Clin. Immunology, 2009, Vol. 32, no. 2, pp. 85-91.
61. Youm Y.-H., Nguyen K.Y., Grant R.W., Goldberg E.L., Bodogai M., Kim D., d’Agostino D., Planavsky N., Lupfer C., Kanneganti T.D., Kang S., Horvath T.L., Fahmy T.M., Crawford P.A., Biragyn A., Alnemri E., Dixit V.D. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat. Med., 2015, Vol. 21, pp. 263-269.
Supplementary files
![]() |
1. Mechanisms of innate immunity in pathogenesis of psoriasis; approaches to targeted therapy | |
Subject | ||
Type | Чистый текст | |
Download
(15KB)
|
Indexing metadata ▾ |
![]() |
2. Mechanisms of innate immunity in pathogenesis of psoriasis; approaches to targeted therapy | |
Subject | ||
Type | Чистый текст | |
Download
(24KB)
|
Indexing metadata ▾ |
![]() |
3. Mechanisms of innate immunity in pathogenesis of psoriasis; approaches to targeted therapy | |
Subject | ||
Type | Other | |
Download
(15KB)
|
Indexing metadata ▾ |
|
4. Механизмы врождённого иммунитета в патогенезе псориаза; подходы к таргетной терапии | |
Subject | ||
Type | Other | |
View
(76KB)
|
Indexing metadata ▾ |
![]() |
5. Mechanisms of innate immunity in pathogenesis of psoriasis; approaches to targeted therapy | |
Subject | ||
Type | Чистый текст | |
Download
(47KB)
|
Indexing metadata ▾ |
|
6. Mechanisms of innate immunity in pathogenesis of psoriasis; approaches to targeted therapy | |
Subject | ||
Type | Other | |
View
(2MB)
|
Indexing metadata ▾ |
![]() |
7. Mechanisms of innate immunity in pathogenesis of psoriasis; approaches to targeted therapy | |
Subject | ||
Type | Чистый текст | |
Download
(19KB)
|
Indexing metadata ▾ |
![]() |
8. Механизмы врождённого иммунитета в патогенезе псориаза; подходы к таргетной терапии | |
Subject | ||
Type | Чистый текст | |
Download
(51KB)
|
Indexing metadata ▾ |
Review
For citations:
Merkushova E.D., Khasanova E.M., Gankovskaya L.V. Mechanisms of innate immunity in pathogenesis of psoriasis: approaches to targeted therapy. Medical Immunology (Russia). 2020;22(3):449-458. (In Russ.) https://doi.org/10.15789/1563-0625-MOI-1949