Microvesicles produced by natural killer cells of the NK-92 cell line affect the phenotype and functions of endothelial cells of the EA.Hy926 cell line
https://doi.org/10.15789/1563-0625-MPB-1877
Abstract
Microvesicles (MVs) are small (100-1000 nm) subcellular structures produced by both motionless and activated cells that can transfer molecules to target cells, and regulate physiological and pathological processes. MVs of leukocyte origin, in particular those produced by natural killer cells (NK cells), remain the least studied population of MVs. NK cells can change the functional activity of endothelial cells (ECs) and are involved in regulating angiogenesis. The ability of NK cell-derived MVs to influence the functionality of ECs is understudied currently. We aimed to study the effect of MVs produced by NK cells of the NK-92 cell line on the phenotype, caspase activity, proliferation and migration of ECs of the EA.Hy926 cell line. We cultured ECs in the presence of MVs derived from the NK-92 cell line, and then used flow cytometry to assess changes in EC phenotype, intracellular protein transfer from MVs to ECs, and the relative death of ECs. We used western blot analysis to evaluate the expression of granzyme B in NK cells and in the MVs that they produced, as well as the expression of granzyme B, caspases, extracellular-regulated kinase (ERK) and protein kinase B (AKT) in ECs. We also assessed the proliferation and migration of ECs in the presence of MVs derived from cells of the NK-92 cell line. The results revealed significant differences in the proteomic profiles of cells of the NK-92 cell line and their MV product. Contact between ECs and MVs derived from cells of the NK-92 cell line is accompanied by the following events: a) expression of granzyme B in ECs, b) activation of caspase-9 and caspase-3, with partial EC death, c) appearance of the panleukocyte marker CD45 on ECs, d) decrease in CD105 expression, and increase in CD34 and CD54 expression, and e) inhibition of EC migration. Transfer of ERK (but not AKT) from MVs derived from cells of the NK-92 cell line to ECs, at a concentration 10 times lower than that which causes EC death, leads to an increase in EC proliferation.
Keywords
About the Authors
K. L. MarkovaRussian Federation
Markova Kseniya Lvovna - Junior Research Associate, Cell Interactions Laboratory.
St. Petersburg
Competing Interests: not
V. A. Mikhailova
Russian Federation
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology
Competing Interests: not
A. V. Korenevsky
Russian Federation
Korenevsky Andrew Valentinovich - Leading Research Associate, Cell Interactions Laboratory.
St. Petersburg
Competing Interests: not
Yu. P. Milyutina
Russian Federation
Milyutina Yulia Pavlovna - Senior Research Associate, Cell Interactions Laboratory.
St. PetersburgCompeting Interests: not
V. V. Rodygina
Russian Federation
Rodygina Veronika Vyacheslavovna - Student, Cell Interactions Laboratory.
St. Petersburg
Competing Interests: not
E. P. Aleksandrova
Russian Federation
Aleksandrova Ekaterina Pavlovna - Student, Cell Interactions Laboratory.
St. Petersburg
Competing Interests: not
A. S. Markov
Russian Federation
Markov Andrew Sergeevich - Cell Interactions Laboratory.
St. PetersburgCompeting Interests: not
O. A. Balabas
Russian Federation
Balabas Olga Alekseevna - Compositional Analysis Methods Resource Center.
St. Petersburg
Competing Interests: not
S. A. Selkov
Russian Federation
Selkov Sergey Alekseevich - PhD, MD (Medicine), Professor, Honored Scientist of the Russian Federation, Head, Department of Immunology and Cell Interactions, D. Ott ROGR; Professor, Department of Immunology, First St.PSI. Pavlov MU.
St. PetersburgCompeting Interests: not
D. I. Sokolov
Russian Federation
Competing Interests: нет конфликта интересов
References
1. References
2. Andreu Z.,Yanez-Mo M. Tetraspanins in extracellular vesicle formation and function. Front Immunol, 2014, Vol.5, no, pp. 442. [10.3389/fimmu.2014.00442] https://www.ncbi.nlm.nih.gov/pubmed/25278937
3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165315/pdf/fimmu-05-00442.pdf
4. Ardoin S.P., Shanahan J.C.,Pisetsky D.S. The role of microparticles in inflammation and thrombosis. Scand J Immunol, 2007, Vol.66, no 2-3, pp. 159-65. [10.1111/j.1365-3083.2007.01984.x] http://www.ncbi.nlm.nih.gov/pubmed/17635793
5. http://onlinelibrary.wiley.com/store/10.1111/j.1365-3083.2007.01984.x/asset/j.1365-3083.2007.01984.x.pdf?v=1&t=iarq1mgp&s=716e719dd0d266a785cc4d1cdc6fd7aeb500d8b8
6. Ashkenazi A.,Salvesen G. Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol, 2014, Vol.30, no, pp. 337-56. [10.1146/annurev-cellbio-100913-013226] https://www.ncbi.nlm.nih.gov/pubmed/25150011
7. https://www.annualreviews.org/doi/full/10.1146/annurev-cellbio-100913-013226?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed
8. Ashton S.V., Whitley G.S., Dash P.R., Wareing M., Crocker I.P., Baker P.N.,Cartwright J.E. Uterine spiral artery remodeling involves endothelial apoptosis induced by extravillous trophoblasts through Fas/FasL interactions. Arterioscler Thromb Vasc Biol, 2005, Vol.25, no 1, pp. 102-8. [10.1161/01.ATV.0000148547.70187.89] http://www.ncbi.nlm.nih.gov/pubmed/15499040
9. http://atvb.ahajournals.org/content/25/1/102.full.pdf
10. Aubrey B.J., Kelly G.L., Janic A., Herold M.J.,Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ, 2018, Vol.25, no 1, pp. 104-113. [10.1038/cdd.2017.169] https://www.ncbi.nlm.nih.gov/pubmed/29149101
11. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5729529/pdf/cdd2017169a.pdf
12. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, Vol.72, no, pp. 248-54. https://www.ncbi.nlm.nih.gov/pubmed/942051
13. Budaj M., Poljak Z., Duris I., Kasko M., Imrich R., Kopani M., Maruscakova L.,Hulin I. Microparticles: a component of various diseases. Pol Arch Med Wewn, 2012, Vol.122 Suppl 1, no, pp. 24-9. http://www.ncbi.nlm.nih.gov/pubmed/23222474
14. Burger D., Schock S., Thompson C.S., Montezano A.C., Hakim A.M.,Touyz R.M. Microparticles: biomarkers and beyond. Clin Sci (Lond), 2013, Vol.124, no 7, pp. 423-41. [10.1042/CS20120309] http://www.ncbi.nlm.nih.gov/pubmed/23249271
15. http://www.clinsci.org/cs/124/0423/1240423.pdf
16. Cantarella G., Di Benedetto G., Ribatti D., Saccani-Jotti G.,Bernardini R. Involvement of caspase 8 and c-FLIPL in the proangiogenic effects of the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). FEBS J, 2014, Vol.281, no 5, pp. 1505-13. [10.1111/febs.12720] https://www.ncbi.nlm.nih.gov/pubmed/24438025
17. Chazara O., Xiong S.,Moffett A. Maternal KIR and fetal HLA-C: a fine balance. J Leukoc Biol, 2011, Vol.90, no 4, pp. 703-16. [10.1189/jlb.0511227] http://www.ncbi.nlm.nih.gov/pubmed/21873457
18. Colombo M., Raposo G.,Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol, 2014, Vol.30, no, pp. 255-89. [10.1146/annurev-cellbio-101512-122326] https://www.ncbi.nlm.nih.gov/pubmed/25288114
19. Cooper M.A., Fehniger T.A.,Caligiuri M.A. The biology of human natural killer-cell subsets. Trends Immunol, 2001, Vol.22, no 11, pp. 633-40. http://www.ncbi.nlm.nih.gov/pubmed/11698225
20. Dasgupta S.K., Abdel-Monem H., Niravath P., Le A., Bellera R.V., Langlois K., Nagata S., Rumbaut R.E.,Thiagarajan P. Lactadherin and clearance of platelet-derived microvesicles. Blood, 2009, Vol.113, no 6, pp. 1332-9. [10.1182/blood-2008-07-167148] http://www.ncbi.nlm.nih.gov/pubmed/19023116
21. Delia D., Lampugnani M.G., Resnati M., Dejana E., Aiello A., Fontanella E., Soligo D., Pierotti M.A.,Greaves M.F. CD34 expression is regulated reciprocally with adhesion molecules in vascular endothelial cells in vitro. Blood, 1993, Vol.81, no 4, pp. 1001-8. https://www.ncbi.nlm.nih.gov/pubmed/7679004
22. http://www.bloodjournal.org/content/bloodjournal/81/4/1001.full.pdf
23. Distler J.H., Huber L.C., Gay S., Distler O.,Pisetsky D.S. Microparticles as mediators of cellular cross-talk in inflammatory disease. Autoimmunity, 2006, Vol.39, no 8, pp. 683-90. [10.1080/08916930601061538] http://www.ncbi.nlm.nih.gov/pubmed/17178565
24. Dondero A., Casu B., Bellora F., Vacca A., De Luisi A., Frassanito M.A., Cantoni C., Gaggero S., Olive D., Moretta A., Bottino C.,Castriconi R. NK cells and multiple myeloma-associated endothelial cells: molecular interactions and influence of IL-27. Oncotarget, 2017, Vol.8, no 21, pp. 35088-35102. [10.18632/oncotarget.17070] https://www.ncbi.nlm.nih.gov/pubmed/28456791
25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5471037/pdf/oncotarget-08-35088.pdf
26. Dragovic R.A., Collett G.P., Hole P., Ferguson D.J., Redman C.W., Sargent I.L.,Tannetta D.S. Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence Nanoparticle Tracking Analysis. Methods, 2015, Vol.87, no, pp. 64-74. [10.1016/j.ymeth.2015.03.028] https://www.ncbi.nlm.nih.gov/pubmed/25843788
27. http://ac.els-cdn.com/S1046202315001450/1-s2.0-S1046202315001450-main.pdf?_tid=85736f92-355a-11e7-b8d4-00000aab0f27&acdnat=1494405036_dc275239f19dbc50adc7bba3ee59c78d
28. Edgell C.J., McDonald C.C.,Graham J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci U S A, 1983, Vol.80, no 12, pp. 3734-7. http://www.ncbi.nlm.nih.gov/pubmed/6407019
29. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC394125/pdf/pnas00638-0201.pdf
30. El Costa H., Tabiasco J., Berrebi A., Parant O., Aguerre-Girr M., Piccinni M.P.,Le Bouteiller P. Effector functions of human decidual NK cells in healthy early pregnancy are dependent on the specific engagement of natural cytotoxicity receptors. J Reprod Immunol, 2009, Vol.82, no 2, pp. 142-7. [10.1016/j.jri.2009.06.123] http://www.ncbi.nlm.nih.gov/pubmed/19615756
31. Evans-Osses I., Reichembach L.H.,Ramirez M.I. Exosomes or microvesicles? Two kinds of extracellular vesicles with different routes to modify protozoan-host cell interaction. Parasitol Res, 2015, Vol.114, no 10, pp. 3567-75. [10.1007/s00436-015-4659-9] https://www.ncbi.nlm.nih.gov/pubmed/26272631
32. Fraser R., Whitley G.S., Thilaganathan B.,Cartwright J.E. Decidual natural killer cells regulate vessel stability: implications for impaired spiral artery remodelling. J Reprod Immunol, 2015, Vol.110, no, pp. 54-60. [10.1016/j.jri.2015.04.003] https://www.ncbi.nlm.nih.gov/pubmed/26004035
33. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502446/pdf/main.pdf
34. Gojova A.,Barakat A.I. Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels. J Appl Physiol (1985), 2005, Vol.98, no 6, pp. 2355-62. [10.1152/japplphysiol.01136.2004] http://www.ncbi.nlm.nih.gov/pubmed/15705727
35. http://jap.physiology.org/content/jap/98/6/2355.full.pdf
36. Gong J.H., Maki G.,Klingemann H.G. Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells. Leukemia, 1994, Vol.8, no 4, pp. 652-8. http://www.ncbi.nlm.nih.gov/pubmed/8152260
37. Halim A.T., Ariffin N.A.,Azlan M. Review: the Multiple Roles of Monocytic Microparticles. Inflammation, 2016, Vol.39, no 4, pp. 1277-84. [10.1007/s10753-016-0381-8] http://www.ncbi.nlm.nih.gov/pubmed/27216803
38. Hanna J., Goldman-Wohl D., Hamani Y., Avraham I., Greenfield C., Natanson-Yaron S., Prus D., Cohen-Daniel L., Arnon T.I., Manaster I., Gazit R., Yutkin V., Benharroch D., Porgador A., Keshet E., Yagel S.,Mandelboim O. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med, 2006, Vol.12, no 9, pp. 1065-74. [10.1038/nm1452] http://www.ncbi.nlm.nih.gov/pubmed/16892062
39. Hanna J., Wald O., Goldman-Wohl D., Prus D., Markel G., Gazit R., Katz G., Haimov-Kochman R., Fujii N., Yagel S., Peled A.,Mandelboim O. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16- human natural killer cells. Blood, 2003, Vol.102, no 5, pp. 1569-77. [10.1182/blood-2003-02-0517] http://www.ncbi.nlm.nih.gov/pubmed/12730110
40. http://www.bloodjournal.org/content/bloodjournal/102/5/1569.full.pdf
41. Hemler M.E. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol, 2003, Vol.19, no, pp. 397-422. [10.1146/annurev.cellbio.19.111301.153609] https://www.ncbi.nlm.nih.gov/pubmed/14570575
42. https://www.annualreviews.org/doi/full/10.1146/annurev.cellbio.19.111301.153609?url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org&rfr_dat=cr_pub%3Dpubmed
43. Imam J.S., Buddavarapu K., Lee-Chang J.S., Ganapathy S., Camosy C., Chen Y.,Rao M.K. MicroRNA-185 suppresses tumor growth and progression by targeting the Six1 oncogene in human cancers. Oncogene, 2010, Vol.29, no 35, pp. 4971-9. [10.1038/onc.2010.233] https://www.ncbi.nlm.nih.gov/pubmed/20603620
44. Kalkunte S.S., Mselle T.F., Norris W.E., Wira C.R., Sentman C.L.,Sharma S. Vascular endothelial growth factor C facilitates immune tolerance and endovascular activity of human uterine NK cells at the maternal-fetal interface. J Immunol, 2009, Vol.182, no 7, pp. 4085-92. [10.4049/jimmunol.0803769] http://www.ncbi.nlm.nih.gov/pubmed/19299706
45. Kalra H., Drummen G.P.,Mathivanan S. Focus on Extracellular Vesicles: Introducing the Next Small Big Thing. Int J Mol Sci, 2016, Vol.17, no 2, pp. 170. [10.3390/ijms17020170] https://www.ncbi.nlm.nih.gov/pubmed/26861301
46. https://res.mdpi.com/ijms/ijms-17-00170/article_deploy/ijms-17-00170-v2.pdf?filename=&attachment=1
47. Kawakami A., Hida A., Yamasaki S., Miyashita T., Nakashima K., Tanaka F., Ida H., Furuyama M., Migita K., Origuchi T.,Eguchi K. Modulation of the expression of membrane-bound CD54 (mCD54) and soluble form of CD54 (sCD54) in endothelial cells by glucosyl transferase inhibitor: possible role of ceramide for the shedding of mCD54. Biochem Biophys Res Commun, 2002, Vol.296, no 1, pp. 26-31. https://www.ncbi.nlm.nih.gov/pubmed/12147222
48. Kawauchi K., Ihjima K.,Yamada O. IL-2 increases human telomerase reverse transcriptase activity transcriptionally and posttranslationally through phosphatidylinositol 3'-kinase/Akt, heat shock protein 90, and mammalian target of rapamycin in transformed NK cells. J Immunol, 2005, Vol.174, no 9, pp. 5261-9. http://www.ncbi.nlm.nih.gov/pubmed/15843522
49. http://www.jimmunol.org/content/174/9/5261.full.pdf
50. Kim M., Park H.J., Seol J.W., Jang J.Y., Cho Y.S., Kim K.R., Choi Y., Lydon J.P., Demayo F.J., Shibuya M., Ferrara N., Sung H.K., Nagy A., Alitalo K.,Koh G.Y. VEGF-A regulated by progesterone governs uterine angiogenesis and vascular remodelling during pregnancy. EMBO Mol Med, 2013, Vol.5, no 9, pp. 1415-30. [10.1002/emmm.201302618] http://www.ncbi.nlm.nih.gov/pubmed/23853117
51. Komatsu F.,Kajiwara M. Relation of natural killer cell line NK-92-mediated cytolysis (NK-92-lysis) with the surface markers of major histocompatibility complex class I antigens, adhesion molecules, and Fas of target cells. Oncol Res, 1998, Vol.10, no 10, pp. 483-9. http://www.ncbi.nlm.nih.gov/pubmed/10338151
52. Korenevskii A.V., Milyutina Y.P., Zhdanova A.A., Pyatygina K.M., Sokolov D.I.,Sel'kov S.A. Mass-Spectrometric Analysis of Proteome of Microvesicles Produced by NK-92 Natural Killer Cells. Bull Exp Biol Med, 2018, Vol.165, no 4, pp. 564-571. [10.1007/s10517-018-4214-7] https://www.ncbi.nlm.nih.gov/pubmed/30121912
53. Kowal J., Arras G., Colombo M., Jouve M., Morath J.P., Primdal-Bengtson B., Dingli F., Loew D., Tkach M.,Thery C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A, 2016, Vol.113, no 8, pp. E968-77. [10.1073/pnas.1521230113] http://www.ncbi.nlm.nih.gov/pubmed/26858453
54. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776515/pdf/pnas.201521230.pdf
55. Krueger A., Schmitz I., Baumann S., Krammer P.H.,Kirchhoff S. Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem, 2001, Vol.276, no 23, pp. 20633-40. [10.1074/jbc.M101780200] https://www.ncbi.nlm.nih.gov/pubmed/11279218
56. Kumar S., Pan C.C., Bloodworth J.C., Nixon A.B., Theuer C., Hoyt D.G.,Lee N.Y. Antibody-directed coupling of endoglin and MMP-14 is a key mechanism for endoglin shedding and deregulation of TGF-beta signaling. Oncogene, 2014, Vol.33, no 30, pp. 3970-9. [10.1038/onc.2013.386] http://www.ncbi.nlm.nih.gov/pubmed/24077288
57. Lash G.E., Robson S.C.,Bulmer J.N. Review: Functional role of uterine natural killer (uNK) cells in human early pregnancy decidua. Placenta, 2010, Vol.31 Suppl, no, pp. S87-92. [10.1016/j.placenta.2009.12.022] https://www.ncbi.nlm.nih.gov/pubmed/20061017
58. Leonard S., Murrant C., Tayade C., van den Heuvel M., Watering R.,Croy B.A. Mechanisms regulating immune cell contributions to spiral artery modification -- facts and hypotheses -- a review. Placenta, 2006, Vol.27 Suppl A, no, pp. S40-6. [10.1016/j.placenta.2005.11.007] https://www.ncbi.nlm.nih.gov/pubmed/16413937
59. Li P., Kaslan M., Lee S.H., Yao J.,Gao Z. Progress in Exosome Isolation Techniques. Theranostics, 2017, Vol.7, no 3, pp. 789-804. [10.7150/thno.18133] https://www.ncbi.nlm.nih.gov/pubmed/28255367
60. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5327650/pdf/thnov07p0789.pdf
61. Liang S., Zhang J., Wei H., Sun R.,Tian Z. Differential roles of constitutively activated ERK1/2 and NF-kappa B in cytotoxicity and proliferation by human NK cell lines. Int Immunopharmacol, 2005, Vol.5, no 5, pp. 839-48. [10.1016/j.intimp.2004.12.016] http://www.ncbi.nlm.nih.gov/pubmed/15778120
62. Liang Y.J.,Yang W.X. Kinesins in MAPK cascade: How kinesin motors are involved in the MAPK pathway? Gene, 2019, Vol.684, no, pp. 1-9. [10.1016/j.gene.2018.10.042] https://www.ncbi.nlm.nih.gov/pubmed/30342167
63. https://www.sciencedirect.com/science/article/pii/S0378111918310813?via%3Dihub
64. Lieberman J. The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol, 2003, Vol.3, no 5, pp. 361-70. [10.1038/nri1083] http://www.ncbi.nlm.nih.gov/pubmed/12766758
65. Liu K., He B., Xu J., Li Y., Guo C., Cai Q.,Wang S. miR-483-5p Targets MKNK1 to Suppress Wilms' Tumor Cell Proliferation and Apoptosis In Vitro and In Vivo. Med Sci Monit, 2019, Vol.25, no, pp. 1459-1468. [10.12659/MSM.913005] https://www.ncbi.nlm.nih.gov/pubmed/30798328
66. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6398281/pdf/medscimonit-25-1459.pdf
67. Liu S., Yu D., Xu Z.P., Riordan J.F.,Hu G.F. Angiogenin activates Erk1/2 in human umbilical vein endothelial cells. Biochem Biophys Res Commun, 2001, Vol.287, no 1, pp. 305-10. [10.1006/bbrc.2001.5568] http://www.ncbi.nlm.nih.gov/pubmed/11549292
68. https://www.sciencedirect.com/science/article/pii/S0006291X01955688?via%3Dihub
69. Lugini L., Cecchetti S., Huber V., Luciani F., Macchia G., Spadaro F., Paris L., Abalsamo L., Colone M., Molinari A., Podo F., Rivoltini L., Ramoni C.,Fais S. Immune surveillance properties of human NK cell-derived exosomes. J Immunol, 2012, Vol.189, no 6, pp. 2833-42. [10.4049/jimmunol.1101988] http://www.ncbi.nlm.nih.gov/pubmed/22904309
70. Male V., Sharkey A., Masters L., Kennedy P.R., Farrell L.E.,Moffett A. The effect of pregnancy on the uterine NK cell KIR repertoire. Eur J Immunol, 2011, Vol.41, no 10, pp. 3017-27. [10.1002/eji.201141445] http://www.ncbi.nlm.nih.gov/pubmed/21739430
71. http://onlinelibrary.wiley.com/store/10.1002/eji.201141445/asset/3017_ftp.pdf?v=1&t=ijl19x4z&s=385877e59ce0828795bccf295fe67650867e2d5f
72. Mandal A.,Viswanathan C. Natural killer cells: In health and disease. Hematol Oncol Stem Cell Ther, 2015, Vol.8, no 2, pp. 47-55. [10.1016/j.hemonc.2014.11.006] http://www.ncbi.nlm.nih.gov/pubmed/25571788
73. https://www.sciencedirect.com/science/article/pii/S1658387614001083?via%3Dihub
74. Markov A.S., Markova K.L., Sokolov D.I.,Selkov S.A., MARKMIGRATION. 2019: Russia.
75. Martinez-Lostao L., de Miguel D., Al-Wasaby S., Gallego-Lleyda A.,Anel A. Death ligands and granulysin: mechanisms of tumor cell death induction and therapeutic opportunities. Immunotherapy, 2015, Vol.7, no 8, pp. 883-2. [10.2217/imt.15.56] http://www.ncbi.nlm.nih.gov/pubmed/26314314
76. https://www.futuremedicine.com/doi/10.2217/imt.15.56
77. Micheau O., Thome M., Schneider P., Holler N., Tschopp J., Nicholson D.W., Briand C.,Grutter M.G. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem, 2002, Vol.277, no 47, pp. 45162-71. [10.1074/jbc.M206882200] https://www.ncbi.nlm.nih.gov/pubmed/12215447
78. Mikhailova V.A. B.K.L., Vyazmina L.P., Sheveleva A.R., Selkov S.A., Sokolov D.I. EVALUATION OF MICROVESICLES FORMED BY NATURAL KILLER (NK) CELLS USING FLOW CYTOMETRY. Medical Immunology 2018, Vol.20(2), no, pp. 251-254.
79. Mikhailova V.A., Ovchinnikova O.M., Zainulina M.S., Sokolov D.I.,Sel'kov S.A. Detection of microparticles of leukocytic origin in the peripheral blood in normal pregnancy and preeclampsia. Bull Exp Biol Med, 2014, Vol.157, no 6, pp. 751-6. [10.1007/s10517-014-2659-x] https://www.ncbi.nlm.nih.gov/pubmed/25348564
80. Murphy K., Weaver, C. Janeway's Immunology. -: Garland Science, Taylor & Francis Group, 2017. - с.
81. Naruse K., Lash G.E., Bulmer J.N., Innes B.A., Otun H.A., Searle R.F.,Robson S.C. The urokinase plasminogen activator (uPA) system in uterine natural killer cells in the placental bed during early pregnancy. Placenta, 2009, Vol.30, no 5, pp. 398-404. [10.1016/j.placenta.2009.02.002] http://www.ncbi.nlm.nih.gov/pubmed/19272641
82. Okada H., Nakajima T., Sanezumi M., Ikuta A., Yasuda K.,Kanzaki H. Progesterone enhances interleukin-15 production in human endometrial stromal cells in vitro. J Clin Endocrinol Metab, 2000, Vol.85, no 12, pp. 4765-70. [10.1210/jcem.85.12.7023] http://www.ncbi.nlm.nih.gov/pubmed/11134140
83. Osinska I., Popko K.,Demkow U. Perforin: an important player in immune response. Cent Eur J Immunol, 2014, Vol.39, no 1, pp. 109-15. [10.5114/ceji.2014.42135] https://www.ncbi.nlm.nih.gov/pubmed/26155110
84. Philpott N.J., Scopes J., Marsh J.C., Gordon-Smith E.C.,Gibson F.M. Increased apoptosis in aplastic anemia bone marrow progenitor cells: possible pathophysiologic significance. Exp Hematol, 1995, Vol.23, no 14, pp. 1642-8. https://www.ncbi.nlm.nih.gov/pubmed/8542959
85. Pinto-Diez C., Garcia-Recio E.M., Perez-Morgado M.I., Garcia-Hernandez M., Sanz-Criado L., Sacristan S., Toledo-Lobo M.V., Perez-Mies B., Esteban-Rodriguez I., Pascual A., Garcia-Villanueva M., Martinez-Janez N., Gonzalez V.M.,Martin M.E. Increased expression of MNK1b, the spliced isoform of MNK1, predicts poor prognosis and is associated with triple-negative breast cancer. Oncotarget, 2018, Vol.9, no 17, pp. 13501-13516. [10.18632/oncotarget.24417] https://www.ncbi.nlm.nih.gov/pubmed/29568373
86. Raposo G.,Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013, Vol.200, no 4, pp. 373-83. [10.1083/jcb.201211138] http://www.ncbi.nlm.nih.gov/pubmed/23420871
87. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575529/pdf/JCB_201211138.pdf
88. Riesbeck K., Billstrom A., Tordsson J., Brodin T., Kristensson K.,Dohlsten M. Endothelial cells expressing an inflammatory phenotype are lysed by superantigen-targeted cytotoxic T cells. Clin Diagn Lab Immunol, 1998, Vol.5, no 5, pp. 675-82. http://www.ncbi.nlm.nih.gov/pubmed/9729535
89. Robson A., Harris L.K., Innes B.A., Lash G.E., Aljunaidy M.M., Aplin J.D., Baker P.N., Robson S.C.,Bulmer J.N. Uterine natural killer cells initiate spiral artery remodeling in human pregnancy. FASEB J, 2012, Vol.26, no 12, pp. 4876-85. [10.1096/fj.12-210310] http://www.ncbi.nlm.nih.gov/pubmed/22919072
90. Schuler M.,Green D.R. Mechanisms of p53-dependent apoptosis. Biochem Soc Trans, 2001, Vol.29, no Pt 6, pp. 684-8. https://www.ncbi.nlm.nih.gov/pubmed/11709054
91. Sedgwick A.E.,D'Souza-Schorey C. The Biology of Extracellular Microvesicles. Traffic, 2018 no. [10.1111/tra.12558] http://www.ncbi.nlm.nih.gov/pubmed/29479795
92. Si Y., Chu H., Zhu W., Xiao T., Shen X., Fu Y., Xu R.,Jiang H. Concentration-dependent effects of rapamycin on proliferation, migration and apoptosis of endothelial cells in human venous malformation. Exp Ther Med, 2018, Vol.16, no 6, pp. 4595-4601. [10.3892/etm.2018.6782] https://www.ncbi.nlm.nih.gov/pubmed/30542410
93. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6257489/pdf/etm-16-06-4595.pdf
94. Simak J., Gelderman M.P., Yu H., Wright V.,Baird A.E. Circulating endothelial microparticles in acute ischemic stroke: a link to severity, lesion volume and outcome. J Thromb Haemost, 2006, Vol.4, no 6, pp. 1296-302. [10.1111/j.1538-7836.2006.01911.x] http://www.ncbi.nlm.nih.gov/pubmed/16706974
95. http://onlinelibrary.wiley.com/store/10.1111/j.1538-7836.2006.01911.x/asset/j.1538-7836.2006.01911.x.pdf?v=1&t=ihop3pcq&s=7361b844b286dc65af8432831d589134e2aaa1cb
96. Singh R., Letai A.,Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol, 2019, Vol.20, no 3, pp. 175-193. [10.1038/s41580-018-0089-8] https://www.ncbi.nlm.nih.gov/pubmed/30655609
97. https://www.nature.com/articles/s41580-018-0089-8.pdf
98. Smith S.D., Dunk C.E., Aplin J.D., Harris L.K.,Jones R.L. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol, 2009, Vol.174, no 5, pp. 1959-71. [10.2353/ajpath.2009.080995] http://www.ncbi.nlm.nih.gov/pubmed/19349361
99. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2671283/pdf/JPATH174001959.pdf
100. Smulski C.R., Decossas M., Chekkat N., Beyrath J., Willen L., Guichard G., Lorenzetti R., Rizzi M., Eibel H., Schneider P.,Fournel S. Hetero-oligomerization between the TNF receptor superfamily members CD40, Fas and TRAILR2 modulate CD40 signalling. Cell Death Dis, 2017, Vol.8, no 2, pp. e2601. [10.1038/cddis.2017.22] https://www.ncbi.nlm.nih.gov/pubmed/28182009
101. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386471/pdf/cddis201722a.pdf
102. Sokolov D.I., Ovchinnikova O.M., Korenkov D.A., Viknyanschuk A.N., Benken K.A., Onokhin K.V.,Selkov S.A. Influence of peripheral blood microparticles of pregnant women with preeclampsia on the phenotype of monocytes. Transl Res, 2016, Vol.170, no, pp. 112-23. [10.1016/j.trsl.2014.11.009] http://www.ncbi.nlm.nih.gov/pubmed/25530473
103. http://ac.els-cdn.com/S1931524414004253/1-s2.0-S1931524414004253-main.pdf?_tid=8fb008a4-4342-11e6-a86d-00000aacb35d&acdnat=1467786564_5a6b6a1218f32a1bf27c4675f98a212a
104. Susanto O., Trapani J.A.,Brasacchio D. Controversies in granzyme biology. Tissue Antigens, 2012, Vol.80, no 6, pp. 477-87. [10.1111/tan.12014] https://www.ncbi.nlm.nih.gov/pubmed/23137319
105. Svensson K.J., Christianson H.C., Wittrup A., Bourseau-Guilmain E., Lindqvist E., Svensson L.M., Morgelin M.,Belting M. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem, 2013, Vol.288, no 24, pp. 17713-24. [10.1074/jbc.M112.445403] https://www.ncbi.nlm.nih.gov/pubmed/23653359
106. http://www.jbc.org/content/288/24/17713.full.pdf
107. Thornhill M.H., Li J.,Haskard D.O. Leucocyte endothelial cell adhesion: a study comparing human umbilical vein endothelial cells and the endothelial cell line EA-hy-926. Scand J Immunol, 1993, Vol.38, no 3, pp. 279-86. http://www.ncbi.nlm.nih.gov/pubmed/8356403
108. van der Pol E., Coumans F.A., Grootemaat A.E., Gardiner C., Sargent I.L., Harrison P., Sturk A., van Leeuwen T.G.,Nieuwland R. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost, 2014, Vol.12, no 7, pp. 1182-92. [10.1111/jth.12602] http://www.ncbi.nlm.nih.gov/pubmed/24818656
109. Vermeulen K., Van Bockstaele D.R.,Berneman Z.N. Apoptosis: mechanisms and relevance in cancer. Ann Hematol, 2005, Vol.84, no 10, pp. 627-39. [10.1007/s00277-005-1065-x] https://www.ncbi.nlm.nih.gov/pubmed/16041532
110. https://link.springer.com/content/pdf/10.1007%2Fs00277-005-1065-x.pdf
111. Wallace A.E., Fraser R.,Cartwright J.E. Extravillous trophoblast and decidual natural killer cells: a remodelling partnership. Hum Reprod Update, 2012, Vol.18, no 4, pp. 458-71. [10.1093/humupd/dms015] http://www.ncbi.nlm.nih.gov/pubmed/22523109
112. Wang M.,Su P. The role of the Fas/FasL signaling pathway in environmental toxicant-induced testicular cell apoptosis: An update. Syst Biol Reprod Med, 2018, Vol.64, no 2, pp. 93-102. [10.1080/19396368.2017.1422046] https://www.ncbi.nlm.nih.gov/pubmed/29299971
113. https://www.tandfonline.com/doi/pdf/10.1080/19396368.2017.1422046?needAccess=true
114. Waters W.R., Harkins K.R.,Wannemuehler M.J. Five-color flow cytometric analysis of swine lymphocytes for detection of proliferation, apoptosis, viability, and phenotype. Cytometry, 2002, Vol.48, no 3, pp. 146-52. [10.1002/cyto.10122] https://www.ncbi.nlm.nih.gov/pubmed/12116360
115. Xu R., Greening D.W., Zhu H.J., Takahashi N.,Simpson R.J. Extracellular vesicle isolation and characterization: toward clinical application. J Clin Invest, 2016, Vol.126, no 4, pp. 1152-62. [10.1172/JCI81129] https://www.ncbi.nlm.nih.gov/pubmed/27035807
116. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811150/pdf/JCI81129.pdf
117. Yao L., Sgadari C., Furuke K., Bloom E.T., Teruya-Feldstein J.,Tosato G. Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood, 1999, Vol.93, no 5, pp. 1612-21. http://www.ncbi.nlm.nih.gov/pubmed/10029590
118. Zhang C., Gao F., Teng F.,Zhang M. Fas/FasL Complex Promotes Proliferation and Migration of Brain Endothelial Cells Via FADD-FLIP-TRAF-NF-kappaB Pathway. Cell Biochem Biophys, 2015, Vol.71, no 3, pp. 1319-23. [10.1007/s12013-014-0351-4] https://www.ncbi.nlm.nih.gov/pubmed/25427888
Supplementary files
![]() |
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(28KB)
|
Indexing metadata ▾ |
![]() |
2. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(14KB)
|
Indexing metadata ▾ |
![]() |
3. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(14KB)
|
Indexing metadata ▾ |
![]() |
4. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13KB)
|
Indexing metadata ▾ |
![]() |
5. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13KB)
|
Indexing metadata ▾ |
![]() |
6. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(35KB)
|
Indexing metadata ▾ |
![]() |
7. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(855KB)
|
Indexing metadata ▾ |
![]() |
8. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(35KB)
|
Indexing metadata ▾ |
![]() |
9. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(32MB)
|
Indexing metadata ▾ |
![]() |
10. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(2MB)
|
Indexing metadata ▾ |
![]() |
11. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(2MB)
|
Indexing metadata ▾ |
![]() |
12. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(302KB)
|
Indexing metadata ▾ |
![]() |
13. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
14. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
15. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(454KB)
|
Indexing metadata ▾ |
![]() |
16. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
17. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(6MB)
|
Indexing metadata ▾ |
![]() |
18. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(6MB)
|
Indexing metadata ▾ |
![]() |
19. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(247KB)
|
Indexing metadata ▾ |
![]() |
20. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(4MB)
|
Indexing metadata ▾ |
![]() |
21. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(197KB)
|
Indexing metadata ▾ |
Review
For citations:
Markova K.L., Mikhailova V.A., Korenevsky A.V., Milyutina Yu.P., Rodygina V.V., Aleksandrova E.P., Markov A.S., Balabas O.A., Selkov S.A., Sokolov D.I. Microvesicles produced by natural killer cells of the NK-92 cell line affect the phenotype and functions of endothelial cells of the EA.Hy926 cell line. Medical Immunology (Russia). 2020;22(2):249-268. https://doi.org/10.15789/1563-0625-MPB-1877