Preview

Medical Immunology (Russia)

Advanced search

Effect of virulent and vaccine variants of influenza virus on the immunophenotype of dendritic cells generated from murine bone marrow

https://doi.org/10.15789/1563-0625-EOV-1869

Abstract

The aim of this study was to generate dendritic cells from the bone marrow of mice (DC) in vitro and to assess the effect of virulent and attenuated variants of influenza virus on the maturation of DCs. Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) were used in combination, to induce differentiation of mouse bone marrow (BM) mononucleocytes into DCs. On the 5th day, distinct variants of influenza virus were added to the cell culture, and the cells were additionally incubated for 2 days. The morphological characteristics of DCs, immunophenotype of DCs and expression of some Toll-like receptors were evaluated. On the 5th day of incubation. the DCs acquired typical morphological characteristics. DCs were large in size with an eccentrically located nucleous, often irregular in shape, with numerous processes. On the 7th day of incubation with influenza virus variants, their cytoplasm was somewhat denser. DCs acquired more processes, necessary for intercellular contacts. Expression levels of CD11c, a specific marker of BM-derived DCs, and of co-stimulatory molecules such as CD40, CD80, CD86, and MHC-II were elevated in mature DCs. Virulent versus attenuated strains of the influenza virus induced special variants of DCs differentiation, with respect to expression rates of differentiation markers, as well as expression of Toll-like receptors and costimulatory molecules. Conclusions. The in vitro cultured murine mononucleocytes derived from bone marrow can produce a large number of n-DCs, that can mature in the presence of different variants.

During evolution of the DC immunophenotype treated with variant influenza viruses, we have found distinct signs of immunosuppression.

The attenuated U-2 and M-26 influenza variants obtained by site-specific mutagenesis upon development of DCs immunophenotype, exhibited a decreased immunosuppressive activity and were not inferior to the cold-adapted (CA) reassortant for the most positions, but exceeded it in some instances. These studies can help to assess the criteria for evaluation the efficiency of in vitro developed influenza vaccines.

About the Authors

N. K. Akhmatova
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Akhmatova Nelli K., PhD, MD (Medicine), Head, Laboratory of Immunity Regulation Mechanisms

115404, Moscow, Birulevskaya str., 1, bldg 3, apt 25.
Phone: 7 (919) 776-55-70



A. A. Rtishchev
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Junior Research Associate, RNA Virus Genetics Laboratory

Moscow



S. G. Markushin
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

PhD, MD (Biology), Head, RNA Virus Genetics Laboratory

Moscow



A. M. Kostinova
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Junior Research Associate, Laboratory of Immunity Regulation Mechanisms

Moscow



E. A. Akhmatova
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Junior Research Associate, Laboratory of Immunity Regulation Mechanisms

Moscow



V. N. Stolpnikova
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

PhD (Biology), Senior Research Associate, Laboratory of Immunity Regulation Mechanisms

Moscow



E. O. Kalinichenko
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Junior Research Associate, Laboratory of Immunity Regulation Mechanisms

Moscow



I. Zh. Shubina
N. Blokhin National Medical Research Center of Oncology
Russian Federation

PhD, MD (Biology), Leading Reseach Associate, Laboratory of Cellular Immunity

Moscow



I. A. Bisheva
I. Mechnikov Research Institute of Vaccines and Sera
Russian Federation

Junior Research Associate, Laboratory of Immunity Regulation Mechanisms

Moscow



References

1. Akhmatova N.K., Markushin S.G., Krivtsov G.G., Akopova I.I., Koptyaeva I.B. A comparative study of the adjuvant properties of chitosan preparations during parenteral immunization with an inactivated influenza vaccine. Epidemiologiya i vaktsinoprofilaktika = Epidemiology and Vaccine Prevention, 2011, no. 3, pp. 42-53. (In Russ.)

2. Kost V.Yu., Rtischev A.A., Mintaev R.R., Akopova I.I., Lisovskaya K.V., Markushin S.G. Study of the biological properties of attenuated variants of strain A/WSN/33 of the influenza virus obtained using site-specific mutagenesis of the PB2 gene. Zhurnal mikrobiologii, epidemiologii, immunobiologii = Journal of Microbiology, Epidemiology, Immunobiology 2019, no. 2, pp. 68-76. (In Russ.)

3. Markushin S.G., Gendon Yu.Z., Krivtsov G.G. , Akopova I. I. , Sukhno A.S., Pereverzev A.D. Increasing the immunogenicity of a living cold-adapted influenza vaccine using an adjuvant. Zhurnal mikrobiologii, epidemiologii, immunobiologii = Journal of Microbiology, Epidemiology, Immunobiology, 2010, no. 5, pp. 29-34. (In Russ.)

4. Bicback K., Breer C., Nanan R., Ter Meulen V., Schneider-Schulies S. Expansion of human gamma/delta T cells in vitro is different ially regulated by the measles virus glycoproteins. J. Gen Virol., 2003, Vol. 84, no. 5, pp. 1179-1188.

5. Dalod M., Chelbi R., Malissen B., Lawrence T. Dendritic cell maturation: functional specialization through signaling specificity atranscriptional programming. EMBO J., 2014, Vol. 33, no. 10, pp. 1104-1116.

6. Dowling J.K., Mansell A. Toll-like receptors: the swiss army knife of immunity and vaccine development. Clin. Transl. Immunology, 2016, Vol. 5, no. 5, e85. doi: 10.1038/cti.2016.22.

7. Jiang P.L., Lin H.J., Wang H.W., Tsai W.Y., Lin S.F., Chien M.Y., Liang P.H., Huang Y.Y., Liu D.Z. Galactosylated liposome as a dendritic cell-targeted mucosal vaccine for inducing protective anti-tumor immunity. Acta Biomater., 2015, Vol. 11, pp. 356-367.

8. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, Vol. 11, pp. 373-384.

9. Kost V.Y., Koptyaeva I.B., Akopova I.I., Tsfasman T.M., Rtishchev A.A., Lisovskaya A.V., Markushin S.G. Investigation of efficiency of site-specific mutants of the influenza virus in homological and heterological control infection. ECronicon Microbiology J., 2017, Vol. 12, no. 5, pp. 232-242.

10. Lin W., Chen Y.L., Jiang L., Chen J.K. Reduced expression of chemerin is associated with a poor prognosis and a lowed infiltration of both dendritic cells and natural killer cells in human hepatocellular carcinoma. Clin. Lab., 2011, Vol. 57, pp. 879-885.

11. Paul W.E. Fundamental Immunology, 6 th edition. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins, 2008. 1603 p.

12. Polezhaev F.I. Conditions for production of thermosensitive attenuated influenza virus recombinants. Acta Virologica, 1978, Vol. 22, pp. 263-269.

13. Rosalia R.A., Cruz L.J., van Duikeren S., Tromp A.T., Silva A.L., Jiskoot W., de Gruijl T., Löwik C., Oostendorp J., van der Burg S.H., Ossendorp F. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials, 2015, Vol. 40, pp. 88-97.

14. Wang H.L., Xu H., Lu W.H., Zhu L., Yu Y.H., Hong F.Z. In vitro and in vivo evaluations of human papillomavirus type 16 (HPV16)-derived peptide-loaded dendritic cells (DCs) with a CpG oligodeoxynucleotide (CpG-ODN) adjuvant as tumor vaccines for immunotherapy of cervical cancer. Arch. Ginecol. Obstet., 2014. Vol. 289, pp. 155-162.

15. Wang W., Li J., Wu K., Azhati B., Rexiati M. Culture and identification of mouse bone marrow-derived dendritic cells and their capability to induce T-lymphocyte proliferation. Med. Sci. Monit., 2016, Vol. 22, pp. 244-250.

16. Zheng C., Yu G., Wang H., Tang A., Geng P., Zhang H., Zhu Z., Li F., Xie X. Meta-analysis of chemotherapy and dendritic cells with cytokine-induced killer cells in the treatment of non-small-cell lung cancer. Int. J. Clin. Exp. Med., 2015, Vol. 8, pp. 14527-14537.


Supplementary files

1. Метаданные
Subject
Type Исследовательские инструменты
Download (18KB)    
Indexing metadata ▾
2. Метаданные с подписями авторов
Subject
Type Исследовательские инструменты
Download (562KB)    
Indexing metadata ▾
3. Резюме
Subject
Type Исследовательские инструменты
Download (16KB)    
Indexing metadata ▾
4. Титульный лист
Subject
Type Исследовательские инструменты
Download (17KB)    
Indexing metadata ▾
5. Список литературы
Subject
Type Исследовательские инструменты
Download (19KB)    
Indexing metadata ▾
6. Рисунок 1
Subject
Type Исследовательские инструменты
View (729KB)    
Indexing metadata ▾
7. Рисунок 2
Subject
Type Исследовательские инструменты
View (568KB)    
Indexing metadata ▾
8. Таблица 1
Subject
Type Исследовательские инструменты
Download (19KB)    
Indexing metadata ▾
9. Таблица 2
Subject
Type Исследовательские инструменты
Download (20KB)    
Indexing metadata ▾
10. Таблица 3
Subject
Type Исследовательские инструменты
Download (17KB)    
Indexing metadata ▾
11. Откорректированная статья
Subject
Type Other
Download (1MB)    
Indexing metadata ▾
12. Откорректированная статья с переводом
Subject
Type Other
Download (1MB)    
Indexing metadata ▾

Review

For citations:


Akhmatova N.K., Rtishchev A.A., Markushin S.G., Kostinova A.M., Akhmatova E.A., Stolpnikova V.N., Kalinichenko E.O., Shubina I.Zh., Bisheva I.A. Effect of virulent and vaccine variants of influenza virus on the immunophenotype of dendritic cells generated from murine bone marrow. Medical Immunology (Russia). 2020;22(3):473-482. (In Russ.) https://doi.org/10.15789/1563-0625-EOV-1869

Views: 777


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)