Role of сathepsin G in pathogenesis of chronic obstructive lung disease: possible ways of regulation
https://doi.org/10.15789/1563-0625-ROC-1769
Abstract
This review article presents the literature data supporting an idea on the role of serine proteases, and, especially, cathepsin G (CG), in pathogenesis of chronic obstructive pulmonary disease (COPD). Most studies show that the imbalance in protease-antiprotease systems in COPD is one of the main factors in the disease progression and deterioration of patient’s prognosis. CG seems to act simultaneously in several main pathogenetic aspects of the disease: it stimulates inflammation in the bronchial mucous membranes, leads to remodeling of elastic framework of the lungs, causes degradation of the phospholipid transfer protein (PLTP). A study by Gudmann et al. (2018) reported on quantitative assays of elastin fragments, which are formed under the action of CG (EL-CG) and significantly increased in COPD, thus proving the effects of CG on destruction of elastic framework in lungs. In a recent study, Rønnow S.R. et al. have recommended the assays of EL-CG fragments, reflecting elastin CG remodeling, for use as a prognostic biomarker for overall mortality in COPD. The effect of CG on PLTP was studied in the works of Brehm A. et al. It is known that the anti-inflammatory effect of PLTP is mediated by macrophages, via the ATP-binding cassette transporter (ABCA1), blocking the nuclear factor light chain enhancer (NF-kB) and reducing secretion of pro-inflammatory mediators by these cells, including (TNFα). The CG inhibition in bronchoalveolar lavage fluid (BALF) of the patients with COPD consistently disrupts its ability to cleave recombinant PLTP (rPLTP). At the same time, the highest CG activity was registered in BALF from smokers and in patients with COPD. Negative correlations between CG activity and PLTP level were detected. With respect to above, one may expect an increased interest for developing the inhibitors of serine proteases, including CG. E.g., the sunflower trypsin-1 inhibitor (SFTI-1) is a potent CG inhibitor, showing a significant increase of its activity when the P1 residue is replaced from Arg5 to Phe5. According to most researchers, powerful and selective CG inhibitors may be developed in future on the basis of SFTI-1, thus requiring further in-depth research.
About the Authors
V. A. BeloglazovRussian Federation
PhD, MD (Medicine), Professor, Head, Department of Internal Medicine No. 2
Simferopol, Republic of Crimea
I. A. Yatskov
Russian Federation
Yatskov Igor A. – Assistant Professor, Department of Internal Medicine No. 2
295491, Republic of Crimea, Simferopol, Aeroflotsky smt, Malchenko str., 7, apt 28.
Phone: 7 (978) 709-40-15.
References
1. Abboud R.T., Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. Int. J. Tuberc. Lung Dis., 2008, Vol. 12, no. 4, pp. 361-367.
2. Arpino V., Brock M., Gill S.E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biology, 2015, Vol. 44-46, pp. 247-254.
3. Arribas S.M., Hinek A., González M.C. Elastic fibres and vascular structure in hypertension. Pharmacol. Ther., 2006, Vol. 111, no. 3, pp. 771-791.
4. Baldwin A.K., Simpson A., Steer R., Cain S.A., Kielty C.M. Elastic fibres in health and disease. Expert Rev. Mol. Med., 2013, Vol. 15, e8. doi: 10.1017/erm.2013.9.
5. Barnes P.J. Mediators of chronic obstructive pulmonary disease. Pharmacol. Rev., 2004, Vol. 56, no. 4, pp. 515-548.
6. Belaaouaj A., McCarthy R., Baumann M., Gao Z., Ley T.J., Abraham S.N., Shapiro S.D. Mice lacking neutrophil elastase reveal impaired host defense against gram-negative bacterial sepsis. Nat. Med., 1998, Vol. 4, no. 5, pp. 615-618.
7. Brehm A., Geraghty P., Campos M., Garcia-Arcos I., Dabo A.J., Gaffney A., Eden E., Jiang X., d’Armiento J., Foronjy R. Cathepsin G degradation of phospholipid transfer protein (PLTP) augments pulmonary inflammation. FASEB J., 2014, Vol. 28, no. 5, pp. 2318-2331.
8. Chuchalin A., Khaltaev N., Antonov N., Galkin D., Manakov L., Antonini P., Murphy M., Solodovnikov A., Bousquet J., Pereira M., Demko I. Chronic respiratory diseases and risk factors in 12 regions of the Russian Federation. Int. J. Chron. Obstruct. Pulmon. Dis., 2014, Vol. 9, pp. 963-974.
9. Churg A.,Wright J.L. Proteases and emphysema. Curr. Opin. Pulm. Med., 2005, Vol. 11, no. 2, pp. 153-159.
10. de Garavilla L., Greco M. N., Sukumar N., Chen Z., Pineda A.O., Mathews F.S., di Cera E., Giardino E.C., Wells G.I., Haertlein B.J., Kauffman J.A., Corcoran T.W., Derian C.K., Eckardt A.J., Damiano B.P., AndradeGordon P., Maryanoff B.E. A novel, potent dual inhibitor of the leukocyte proteases cathepsin G and chymase. J. Biol. Chem., 2005, Vol. 280, no. 18, pp. 18001-18007.
11. Demedts I.K., Demoor T., Bracke K.R., Joos G.F., Brusselle G.G. Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir. Res., 2006, Vol. 7, no. 1, 53. doi: 10.1186/1465-9921-7-53.
12. de Veer S.J., Wang C.K., Harris J.M., Craik D.J., Swedberg J.E. Improving the selectivity of engineered protease inhibitors: optimizing the P2 Prime residue using a versatile cyclic peptide library. J. Med. Chem., 2015, Vol. 58, no. 20, pp. 8257-8268.
13. Dillon T.J., Walsh R.L., Scicchitano R., Eckert B., Cleary E.G., Mclennan G. Plasma elastin-derived peptide levels in normal adults, children, and emphysematous subjects: physiologic and computed tomographic scan correlates. Am. Rev. Respir. Dis., 1992, Vol. 146, no. 5, Pt 1, pp. 1143-1148.
14. Gadek J.E., Pacht E.R. The protease-antiprotease balance within the human lung: Implications for the pathogenesis of emphysema. Lung, 1990, Vol. 168, no. 1, pp. 552-564.
15. Gogebakan B., Bayraktar R., Ulaslı M., Oztuzcu S., Tasdemir D., Bayram H. The role of bronchial epithelial cell apoptosis in the pathogenesis of COPD. Mol. Biol.Rep., 2014, Vol. 41, no. 8, pp. 5321-5327.
16. Gudmann N.S., Manon-Jensen T., Sand J.M.B., Diefenbach C., Sun S., Danielsen A., Karsdal M.A., Leeming D.J. Lung tissue destruction by proteinase 3 and cathepsin G mediated elastin degradation is elevated in chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun., 2018, Vol. 503, no. 3, pp. 1284-1290.
17. Hautamaki R.D., Kobayashi D.K., Senior R.M., Shapiro S.D. Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science, Vol. 277, no. 5334, pp. 2002-2004.
18. Heinz A., Jung M.C., Jahreis G., Rusciani A., Duca L., Debelle L., Weiss A.S., Neubert R.H., Schmelzer C.E. The action of neutrophil serine proteases on elastin and its precursor. Biochimie, 2012, Vol. 94, no. 1, pp. 192-202.
19. Jiang X., d’Armiento J., Mallampalli R.K., Mar J., Yan S., Lin M. Expression of plasma phospholipid transfer protein mRNA in normal and emphysematous lungs and regulation by hypoxia. J. Biol. Chem., 1998, Vol. 273, no. 25, pp. 15714-15718.
20. Kielty C.M., Woolley D.E., Whittaker S.P., Shuttleworth C. Catabolism of intact fibrillin microfibrils by neutrophil elastase, chymotrypsin and trypsin. FEBS Lett., 1994, Vol. 351, no. 1, pp. 85-89.
21. Kosikowska P., Lesner A. Inhibitors of cathepsin G: a patent review (2005 to present). Expert Opin. Ther. Pat., 2013, Vol. 23, no. 12, pp. 1611-1624.
22. Lamprecht B., McBurnie M.A., Vollmer W.M., Gudmundsson G., Welte T., Nizankowska-Mogilnicka E., Studnicka M., Bateman E., Anto J.M., Burney P., Mannino D.M., Buist S.A. COPD in never smokers. Chest, 2011, Vol. 139, no. 4, pp. 752-763.
23. Łęgowska A., Dębowski D., Lesner A., Wysocka M., Rolka K. Introduction of non-natural amino acid residues into the substrate-specific P1 position of trypsin inhibitor SFTI-1 yields potent chymotrypsin and cathepsin G inhibitors. Bioorg. Med. Chem., 2009, Vol. 17, no. 9, pp. 3302-3307.
24. Lucas S.D., Costa E., Guedes R.C., Moreira R. Targeting COPD: advances on low-molecular-weight inhibitors of human neutrophil elastase. Med. Res. Rev., 2011, Vol. 33, no. 1, pp. 73-101.
25. Maryanoff B.E., de Garavilla L., Greco M.N., Haertlein B.J., Wells G.I., Andrade-Gordon P., Abraham W.M. Dual inhibition of cathepsin G and chymase is effective in animal models of pulmonary inflammation. Am. J. Respir. Crit. Care Med., 2010, Vol. 181, no. 3, pp. 247-253.
26. Mathers C.D., Loncar D.M. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med., 2006, Vol. 3, no. 11, e442. doi: 10.1371/journal.pmed.0030442.
27. Murray C.J.L., Lopez A.D. The global burden of disease. Cambridge: MA, 1996. 906 p.
28. Muzio M., Stockwell B.R., Stennicke H.R., Salvesen G.S., Dixit V.M. An induced proximity model for caspase-8 activation. J. Biol. Chem., 1998, Vol. 273, no. 5, pp. 2926-2930.
29. Oram J.F., Wolfbauer G., Tang C., Davidson W.S., Albers J.J. An amphipathic helical region of the N-terminal barrel of phospholipid transfer protein is critical for ABCA1-dependent cholesterol efflux. J. Biol.Chem., 2008, Vol. 283, no. 17, pp. 11541-11549.
30. Owen C.A. Roles for proteinases in the pathogenesis of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis., 2008, Vol. 3, no. 2, pp. 253-268.
31. Qiu Y., Zhu J., Bandi V., Atmar R.L., Hattotuwa K., Guntupalli K.K., Jeffery P.K. Biopsy neutrophilia, neutrophil chemokine and receptor gene expression in severe exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2003, Vol. 168, no. 8, pp. 968-975.
32. Quimbar P., Malik U., Sommerhoff C.P., Kaas Q., Chan L.Y., Huang Y., Grundhuber M., Dunse K., Craik D.J., Anderson M.A., Daly N.L. High-affinity cyclic peptide matriptase inhibitors. J. Biol. Chem., 2013, Vol. 288, no. 19, pp. 13885-13896.
33. Rønnow S.R., Langholm L.L., Sand J.M.B., Thorlacius-Ussing J., Leeming D.J., Manon-Jensen T., TalSinger R., Miller B.E., Karsdal M.A., Vestbo J. Specific elastin degradation products are associated with poor outcome in the ECLIPSE COPD cohort. Sci. Rep., 2019, Vol. 9, no. 1, 4064. doi: 10.1038/s41598-019-40785-2.
34. Schriver E.E., Davidson J.M., Sutcliffe M.C., Swindell B.B., Bernard G.R. Comparison of elastin peptide concentrations in body fluids from healthy volunteers, smokers, and patients with chronic obstructive pulmonary disease. Am. Rev. Respir. Dis., 1992, Vol. 145, no. 4, pp. 762-766.
35. Stoller J.K., Aboussouan L.S. A review of α1-antitrypsin deficiency. Am. J. Respir. Crit. Care Med., 2012, Vol. 185, no. 3, pp. 246-259.
36. Swedberg J.E., de Veer S.J., Sit K.C., Reboul C.F., Buckle A.M., Harris J.M. Mastering the canonical loop of serine protease inhibitors: enhancing potency by optimising the internal hydrogen bond network. PLoS ONE, 2011, Vol. 6, no. 4, e19302. doi:10.1371/jou
37. Swedberg J.E., Li C.Y., de Veer S.J., Wang C.K., Craik D.J. Design of Potent and selective cathepsin G inhibitors based on the sunflower trypsin inhibitor-1 scaffold. J. Med. Chem., 2017, Vol. 60, no. 2, pp. 658-667.
38. Swedberg J.E., Nigon L.V., Reid J.C., de Veer S.J., Walpole C.M., Stephens C.R., Walsh T.P., Takayama T.K., Hooper J.D., Clements J.A., Buckle A.M., Harris J.M. Substrate-guided design of a potent and selective kallikreinrelated peptidase inhibitor for kallikrein 4. Chem. Biol., 2009, Vol. 16, no. 6, pp. 633-643.
39. Swee M.H., Parks W.C., Pierce R.A. Developmental regulation of elastin production. J. Biol. Chem., 1995, Vol. 270, no. 25, pp. 14899-14906.
40. von Nussbaum F., Li V. M. Neutrophil elastase inhibitors for the treatment of (cardio) pulmonary diseases: Into clinical testing with pre-adaptive pharmacophores. Bioorg. Med. Chem. Lett., 2015, Vol. 25, no. 20, pp. 4370-4381.
41. Vuletic S., Dong W., Wolfbauer G., Tang C., Albers J. PLTP regulates STAT3 and NFκB in differentiated THP1 cells and human monocyte-derived macrophages. Biochim. Biophys. Acta, 2011, Vol. 1813, no. 10, pp. 1917-1924.
42. Wise S.G., Yeo G.C., Hiob M.A., Rnjak-Kovacina J., Kaplan D.L., Ng M.K., Weiss A.S. Tropoelastin: a versatile, bioactive assembly module. Acta Biomater., 2014, Vol. 10, no. 4, pp. 1532-1541.
Supplementary files
![]() |
1. Метаданные | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(12KB)
|
Indexing metadata ▾ |
![]() |
2. Титульный лист | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(12KB)
|
Indexing metadata ▾ |
![]() |
3. Резюме | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(14KB)
|
Indexing metadata ▾ |
![]() |
4. Рисунок 1. Катепсин G в патогенезе ХОБЛ | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13MB)
|
Indexing metadata ▾ |
![]() |
5. Подписи метаданных | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(273KB)
|
Indexing metadata ▾ |
![]() |
6. Подписи к рисункам | |
Subject | ||
Type | Other | |
Download
(11KB)
|
Indexing metadata ▾ |
![]() |
7. Список литературы | |
Subject | ||
Type | Other | |
Download
(23KB)
|
Indexing metadata ▾ |
![]() |
8. Статья с исправленной библиографической нумерацией | |
Subject | ||
Type | Other | |
Download
(27KB)
|
Indexing metadata ▾ |
Review
For citations:
Beloglazov V.A., Yatskov I.A. Role of сathepsin G in pathogenesis of chronic obstructive lung disease: possible ways of regulation. Medical Immunology (Russia). 2020;22(3):443-448. (In Russ.) https://doi.org/10.15789/1563-0625-ROC-1769