Preview

Medical Immunology (Russia)

Advanced search

Possible role of platelet-monocyte complexes in the pathogenesis of recurrent pregnancy loss

https://doi.org/10.15789/1563-0625-PRO-2992

Abstract

Recurrent pregnancy loss (RPL) is a significant clinical problem that affects 1-5% of population. Moreover, the cause of RPL remains unknown in more than half of cases. Possible reasons include imbalanced maternal hemostasis, thrombosis of uteroplacental vessels, decreased placental perfusion and hypoxia. Changes in morphofunctional features of monocytes and platelet-monocyte aggregates may be the factors causing pregnancy complications. However, role of platelet-monocyte complexes (PMC) in pathogenesis of RPL is unknown. The purpose of our study was to determine quantitative changes in contents and antigenic phenotype of PMCs in peripheral blood of the patients with RPL, and to assess the effect of platelets on the expression of monocyte surface proteins in normal and pathological pregnancy. The study groups consisted of 6 to12-week pregnant women diagnosed with RPL and females with uncomplicated pregnancy (7-12 weeks). PMC content and expression of CD62P, CD11b, CD86, CD162, HLA-DR, TREM-1 were determined in total cell population and subpopulations of peripheral blood monocytes using cytofluorimetry technique. It was found that PMC level was increased in patients with RPL (26.5%) compared to uncomplicated pregnancy (15.3%) with all monocyte subpopulations contributing to this increase. Decrease in HLA-DR expression and increase in CD11b expression was observed in total PMCs, while expression of CD62P, CD162, CD86 and TREM-1 did not change significantly. Monocyte subpopulations were differently involved into the RPLassociated expression of activation markers, while the changes detected in distinct subpopulations were not always evident in total monocyte populations in recurrent pregnancy loss. A comparison of PMC and free monocytes demonstrated that changes in surface phenotype of monocytes were caused by platelets and other exogenous factors. In patients with RPL, we observed platelet-induced increase in adhesive properties of monocytes which manifested as increased CD11b expression. In contrast, decrease in monocyte HLA-DR levels was not caused by platelets. The results obtained suggest that RPL is accompanied by increased level of peripheral blood PMC and changes in antigenic profile of platelet-associated and free monocytes, thus demonstrating the immunomodulatory effect of platelets, and also confirming the importance of determining expression patterns of surface antigenic markers of PMC for diagnostic and therapeutic purposes.

About the Authors

O. V. Pavlov
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Pavlov O.V., PhD, MD (Biology), Senior Researcher, Department of Immunology and Cell Interaction 

3 Mendeleev Line St. Petersburg 199034



S. V. Chepanov
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Chepanov S.V., PhD (Medicine), Senior Researcher, Department of Immunology and Cell Interaction 

3 Mendeleev Line St. Petersburg 199034



E. A. Kornyushina
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Kornyushina E.A., PhD (Medicine), Senior Researcher, Department of Obstetrics and Perinatology 

3 Mendeleev Line St. Petersburg 199034



M. O. Shengeliia
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Shengeliia M.O., PhD (Medicine), Researcher, Department of Obstetrics and Perinatology 

3 Mendeleev Line St. Petersburg 199034



D. V. Tkhai
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology
Russian Federation

Tkhai D.V., Laboratory Research Assistant, Department of Immunology and Cell Interactions 

3 Mendeleev Line St. Petersburg 199034



S. A. Selkov
D. Ott Research Institute of Obstetrics, Gynecology and Reproductology; First St. Petersburg State I. Pavlov Medical University
Russian Federation

Selkov S.A., PhD, MD (Medicine), Professor, Honored Scientist of the Russian Federation, Head, Department of Immunology and Intercellular Interactions; Professor, Department of Immunology 

3 Mendeleev Line St. Petersburg 199034



References

1. Alecsandru D., Klimczak A.M., Garcia Velasco J.A., Pirtea P., Franasiak J.M. Immunologic causes and thrombophilia in recurrent pregnancy loss. Fertil. Steril., 2021, Vol. 115, no. 3, pp. 561-566.

2. Aleva F.E., Temba G., de Mast Q., Simons S.O., de Groot P.G., Heijdra Y.F., van der Ven A. Increased plateletmonocyte interaction in stable COPD in the absence of platelet hyper-reactivity. Respiration, 2018, Vol. 95, no. 1, pp. 35-43.

3. Allen N., Barrett T.J., Guo Y., Nardi M., Ramkhelawon B., Rockman C.B., Hochman J.S., Berger J.S. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis, 2019, Vol. 282, pp. 11-18.

4. Arts R.J., Joosten L.A., van der Meer J.W., Netea M.G. TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors. J. Leukoc. Biol., 2013, Vol. 93, no. 1, pp. 209-215

5. Ashman N., Macey M.G., Fan S.L., Azam U., Yaqoob M.M. Increased platelet-monocyte aggregates and cardiovascular disease in end-stage renal failure patients. Nephrol. Dial. Transplant., 2003, Vol. 18, no. 10, pp. 2088-2096.

6. Blumenfeld Z., Brenner B. Thrombophilia-associated pregnancy wastage. Fertil. Steril., 1999, Vol. 72, no. 5, pp. 765-774.

7. Brambilla M., Canzano P., Becchetti A., Tremoli E., Camera M. Alterations in platelets during SARS-CoV-2 infection. Platelets, 2022, Vol. 33, no. 2, pp. 192-199.

8. Dimitriadis E., Menkhorst E., Saito S., Kutteh W.H., Brosens J.J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers, 2020, Vol. 6, no. 1, 98. doi: 10.1038/s41572-020-00228-z.

9. Elalamy I., Chakroun T., Gerotziafas G.T., Petropoulou A., Robert F., Karroum A., Elgrably F., Samama M.M., Hatmi M. Circulating platelet-leukocyte aggregates: a marker of microvascular injury in diabetic patients. Thromb. Res., 2008, Vol. 121, no. 6, pp. 843-848.

10. Gawaz M.P., Loftus J.C., Bajt M.L., Frojmovic M.M., Plow E.F., Ginsberg M.H. Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. J. Clin. Invest., 1991, Vol. 88., no. 4, pp. 1128-1134.

11. Graff J., Harder S., Wahl O., Scheuermann E.H., Gossmann J. Anti-inflammatory effects of clopidogrel intake in renal transplant patients: effects on platelet-leukocyte interactions, platelet CD40 ligand expression, and proinflammatory biomarkers. Clin. Pharmacol. Ther., 2005, Vol. 78, no. 5, pp. 468-476.

12. Grandone E., Piazza G. Thrombophilia, inflammation, and recurrent pregnancy loss: a case-based review. Semin. Reprod. Med., 2021, Vol. 39, no. 1-02, pp. 62-68.

13. Harding S.A., Sommerfield A.J., Sarma J., Twomey P.J., Newby D.E., Frier B.M., Fox K.A. Increased CD40 ligand and platelet-monocyte aggregates in patients with type 1 diabetes mellitus. Atherosclerosis, 2004, Vol. 176, no. 2, pp. 321-325.

14. Haselmayer P., Grosse-Hovest L., von Landenberg P., Schild H., Radsak M.P. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood, 2007, Vol. 110, no. 3, pp. 1029-1035.

15. Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L., Teixeira L., Barreto E.A., Pao C.R.R., Righy C., Franco S., Souza T.M.L., Kurtz P., Bozza F.A., Bozza P.T. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood, 2020, Vol. 136, no. 11, pp. 1330-1341.

16. Hottz E.D., Medeiros-de-Moraes I.M., Vieira-de-Abreu A., de Assis E.F., Vals-de-Souza R., Castro-FariaNeto H.C., Weyrich A.S., Zimmerman G.A., Bozza F.A., Bozza P.T. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J. Immunol., 2014, Vol. 193, no. 4, pp. 1864-1872.

17. Hottz E.D., Quirino-Teixeira A.C., Merij L.B., Pinheiro M.B.M., Rozini S.V., Bozza F.A., Bozza P.T. Plateletleukocyte interactions in the pathogenesis of viral infections. Platelets, 2022, Vol. 33, no. 2, pp. 200-207.

18. Ishikawa T., Shimizu M., Kohara S., Takizawa S., Kitagawa Y., Takagi S. Appearance of WBC-platelet complex in acute ischemic stroke, predominantly in atherothrombotic infarction. J. Atheroscler. Thromb., 2012, Vol. 19, no. 5, pp. 494-501.

19. Kaplar M., Kappelmayer J., Veszpremi A., Szabo K., Udvardy M. The possible association of in vivo leukocyte-platelet heterophilic aggregate formation and the development of diabetic angiopathy. Platelets, 2001, Vol. 12, no. 7, pp. 419-422.

20. Kullaya V., van der Ven A., Mpagama S., Mmbaga B.T., de Groot P., Kibiki G., de Mast Q. Platelet-monocyte interaction in Mycobacterium tuberculosis infection. Tuberculosis, 2018, Vol. 111, pp. 86-93.

21. Liang H., Duan Z., Li D., Li D., Wang Z., Ren L., Shen T., Shao Y. Higher levels of circulating monocyteplatelet aggregates are correlated with viremia and increased sCD163 levels in HIV-1 infection. Cell. Mol. Immunol., 2015, Vol. 12, no. 4, pp. 435-443.

22. Liu X., Chen Y., Ye C., Xing D., Wu R., Li F., Chen L., Wang T. Hereditary thrombophilia and recurrent pregnancy loss: a systematic review and meta-analysis. Hum. Reprod., 2021, Vol.36, no. 5, pp.1213-1229.

23. Loguinova M., Pinegina N., Kogan V., Vagida M., Arakelyan A., Shpektor A., Margolis L., Vasilieva E. Monocytes of different subsets in complexes with platelets in patients with myocardial infarction. Thromb. Haemost., 2018, Vol. 118, no. 11, pp. 1969-1981.

24. Lukanov T.H., Veleva G.L., Konova E.I., Ivanov P.D., Kovacheva K.S., Stoykov D.J. Levels of plateletleukocyte aggregates in women with both thrombophilia and recurrent pregnancy loss. Clin. Appl. Thromb. Hemost., 2011, Vol. 17, no. 2, pp.181-187.

25. Maclay J.D., McAllister D.A., Johnston S., Raftis J., McGuinnes C., Deans A., Newby D.E., Mills N.L., MacNee W. Increased platelet activation in patients with stable and acute exacerbation of COPD. Thorax, 2011, Vol. 66, no. 9, pp. 769-774.

26. Marquardt L., Anders C., Buggle F., Palm F., Hellstern P., Grau A.J. Leukocyte-platelet aggregates in acute and subacute ischemic stroke. Cerebrovasc. Dis., 2009, Vol. 28, no. 3, pp. 276-282.

27. Ozanska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol., 2020, V28 ol. 92, no. 1, e12883. doi: 10.1111/sji.12883.

28. Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil. Steril., 2012, Vol. 98, no. 5, pp. 1103-1111.

29. Recurrent miscarriage: Clinical guidelines. Moscow, 2022. 52 p. Available at: https://cr.minzdrav.gov.ru/preview-cr/721_1.

30. Rondina M.T., Brewster B., Grissom C.K., Zimmerman G.A., Kastendieck D.H., Harris E.S., Weyrich A.S. In vivo platelet activation in critically ill patients with primary 2009 influenza A(H1N1). Chest, 2012, Vol. 141, no. 6, pp. 1490-1495.

31. Samfireag M., Potre C., Potre O., Tudor R., Hoinoiu T., Anghel A. Approach to thrombophilia in pregnancy-a narrative review. Medicina, 2022, Vol. 58, no. 5, 692. doi: 10.3390/medicina58050692.

32. Sayed D., Amin N.F., Galal G.M. Monocyte-platelet aggregates and platelet micro-particles in patients with post-hepatitic liver cirrhosis. Thromb. Res., 2010, Vol. 125, no. 5, pp. e228-e233.

33. Schrottmaier W.C., Kral J.B., Badrnya S., Assinger A. Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb. Haemost., 2015, Vol. 114, no. 3, pp. 478-489.

34. Serebryanaya N.B., Shanin S.N., Fomicheva E.E., Yakutseni P.P. Blood platelets as activators and regulators of inflammatory and immune reactions. Part 2. Thrombocytes as participants of immune reactions. Medical Immunology (Russia), 2019, Vol. 21, no. 1, pp. 9-20. (In Russ.) doi: 10.15789/1563-0625-2019-1-9-20.

35. Simcox L. E., Ormesher L., Tower C., Greer I.A. Thrombophilia and pregnancy complications. Int. J. Mol. Sci, 2015, Vol. 16, no. 12, pp. 28418-28428.

36. Simon D.I., Chen Z., Xu H., Li C.Q., Dong J., McIntire L.V., Ballantyne C.M., Zhang L., Furman M.I., Berndt M.C., Lopez J. A. Platelet glycoprotein Ibα is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J. Exp. Med., 2000, Vol. 192, no. 2, pp. 193-204.

37. Tao L., Changfu W., Linyun L., Bing M., Xiaohui H. Correlations of platelet-leukocyte aggregates with P-selectin S290N and P-selectin glycoprotein ligand-1 M62I genetic polymorphisms in patients with acute ischemic stroke. J. Neurol. Sci., 2016, Vol. 367, pp. 95-100.

38. Taus F., Salvagno G., Cane S., Fava C., Mazzaferri F., Carrara E., Petrova V., Barouni R.M., Dima F., Dalbeni A., Romano S., Poli G., Benati M., De Nitto S., Mansueto G., Iezzi M., Tacconelli E., Lippi G., Bronte V., Minuz P. Platelets promote thromboinflammation in SARS-CoV-2 pneumonia. Arterioscler. Thromb. Vasc. Biol., 2020, Vol. 40, no. 12, pp. 2975-2989.

39. Thomas M.R., Storey R.F. The role of platelets in inflammation. Thromb. Haemost., 2015, Vol. 114, no. 3, pp. 449-458.

40. Wu Q., Ren J., Hu D., Wu X., Li G., Wang G., Gu G., Chen J., Li R., Li Y., Hong Z., Ren H., Zhao Y., Li J. Monocyte subsets and monocyte-platelet aggregates: implications in predicting septic mortality among surgical critical illness patients. Biomarkers, 2016, Vol. 21, no. 6, pp. 509-516.

41. Yang S., Huang X., Liao J., Li Q., Chen S., Liu C., Ling L., Zhou J. Platelet-leukocyte aggregates – a predictor for acute kidney injury after cardiac surgery. Ren. Fail., 2021, Vol. 43, no. 1, pp. 1155-1162.

42. Zahran A.M., El-Badawy O., Mohamad I.L., Tamer D.M., Abdel-Aziz S.M., Elsayh K.I. Platelet activation and platelet-leukocyte aggregates in type I diabetes mellitus. Clin. Appl. Thromb. Hemost., 2018, Vol. 24, no. 9 Suppl., pp. 230S-239S.

43. Zarbock A., Muller H., Kuwano Y., Ley K. PSGL-1-dependent myeloid leukocyte activation. J. Lekoc. Biol. 2009, Vol. 86, no. 5, pp. 1119-1124.

44. Zhou X., Liu X.L., Ji W.J., Liu J.X., Guo Z.Z., Ren D., Ma Y.Q., Zeng S., Xu Z.W., Li H.X., Wang P.P., Zhang Z., Li Y.M., Benefield B.C., Zawada A.M., Thorp E.B., Lee D.C., Heine G.H. The kinetics of circulating monocyte subsets and monocyte-platelet aggregates in the acute phase of ST-elevation myocardial infarction: associations with 2-year cardiovascular events. Medicine, 2016, Vol. 95, no. 18, e3466. doi: 10.1097/MD.0000000000003466.

45. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D.N., Leenen P.J., Liu Y.J., MacPherson G., Randolph G.J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J.M., Lutz M.B. Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, Vol. 116, no. 16, pp. e74-e80.


Supplementary files

Review

For citations:


Pavlov O.V., Chepanov S.V., Kornyushina E.A., Shengeliia M.O., Tkhai D.V., Selkov S.A. Possible role of platelet-monocyte complexes in the pathogenesis of recurrent pregnancy loss. Medical Immunology (Russia). 2025;27(5):1111-1126. https://doi.org/10.15789/1563-0625-PRO-2992

Views: 293


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)