POSSIBLE ROLE OF PLATELET-MONOCYTE COMPLEXES IN THE PATHOGENESIS OF RECURRENT PREGNANCY LOSS
https://doi.org/10.15789/1563-0625-PRO-2992
Abstract
Recurrent pregnancy loss is a significant clinical problem that affects 1-5% of the population, and in more than half of cases the cause of premature pregnancy loss remains unknown. One of the possible reasons is an imbalance in the maternal hemostatic system, leading to thrombosis of the uteroplacental vessels, decreased placental perfusion and hypoxia. Changes in the morphofunctional features of monocytes and the aggregates formed by them and activated platelets can be factors causing various complications of pregnancy, in particular, miscarriage. However, the role of platelet-monocyte complexes (PMC), which are of interest as a diagnostic marker and as a therapeutic target, is virtually unknown in the pathogenesis of recurrent pregnancy loss. The purpose of the study was to determine quantitative changes in the content and phenotypic characteristics of the peripheral blood PMC in patients with recurrent miscarriage, and to assess the effect of platelets on the expression of monocyte surface marker proteins during the physiological and pathological pregnancy. The study groups consisted of women aged 24-42 years diagnosed with recurrent miscarriage, having a current pregnancy of 6-12 weeks, and women with an uncomplicated (physiological) pregnancy of 7-12 weeks. In the total population and subpopulations of peripheral blood monocytes, the PMC content and expression of platelet and monocyte surface antigens CD62P, CD11b, CD86, CD162, HLA-DR, TREM-1 were determined using cytoflorimetric analysis. It was found that in recurrent pregnancy loss, the level of PMC was increased (26.5%) compared to uncomplicated pregnancy (15.3%), and all three subpopulations of monocytes (classical, intermediate and non-classical) contributed to the increase. At the same time, a decrease in HLA-DR expression and increase in CD11b expression was observed in the total PMC, while the expression of CD62P, CD162, CD86 and TREM-1 did not change significantly. Monocyte subpopulations differently contributed to the changes in the expression of activation markers associated with recurrent miscarriage, and the changes seen in subpopulations were not always evident in the toatl monocyte population. A comparison of PMC and free monocytes showed that changes in the surface phenotype of monocytes aggregated with platelets, were caused by both the influence of platelets and other factors. In cases of recurrent miscarriage, a platelet-induced increase in the adhesive properties of monocytes was observed, which was manifested in an increase in CD11b expression. In contrast, the decrease in the level of HLA-DR expression in monocytes was not associated with their interaction with platelets. The results obtained suggest that recurrent miscarriage is accompanied by an increase in the content of peripheral blood PMC and changes in the antigenic phenotype of platelet-associated and free monocytes, demonstrate the immunomodulatory effect of platelets, and also provide justification for the importance of determining the expression patterns of surface antigenic markers of PMC for diagnostic and therapeutic purposes.
About the Authors
Oleg V. PavlovRussian Federation
PhD, MD (Biology), Senior Research Associate, Department of Immunology and Cell Interaction
Sergei V. Chepanov
Russian Federation
PhD (Medicine), Senior Research Associate, Department of Immunology and Cell Interaction
Ekaterina A. Kornyushina
Russian Federation
PhD (Medicine), Senior Research Associate, Department of Obstetrics and Perinatology
Margarita O. Shengeliia
Russian Federation
PhD (Medicine), Research Associate, Department of Obstetrics and Perinatology
Daria V. Tkhai
Russian Federation
Research Technician, Department of Immunology and Cell Interaction
Sergei A. Selkov
Russian Federation
PhD, MD (Medicine), Professor, Honored Scientist of the Russian Federation, Head, Department of Immunology and Cell Interaction
References
1. Alecsandru D., Klimczak A. M. Garcia Velasco J. A., Pirtea P., Franasiak J. M. Immunologic causes and thrombophilia in recurrent pregnancy loss. Fertil. Steril., 2021, Vol. 115, no. 3, pp. 561-56. DOI: 10.1016/j.fertnstert.2021.01.017.
2. Aleva F.E., Temba G., de Mast Q., Simons S.O., de Groot P.G., Heijdra Y.F., van der Ven A. Increased platelet-monocyte interaction in stable COPD in the absence of platelet hyper-reactivity. Respiration, 2018, Vol. 95, no. 1, pp. 35-43. DOI: 10.1159/000480457.
3. Allen N., Barrett T.J., Guo Y., Nardi M., Ramkhelawon B., Rockman C.B., Hochman J.S., Berger J.S. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis, 2019, Vol. 282, pp. 11-18. DOI: 10.1016/j.atherosclerosis.2018.12.029.
4. Arts R.J., Joosten L.A., van der Meer J.W., Netea M.G. TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors. J. Leukoc. Biol., 2013, Vol. 93, no. 1, pp. 209-215. DOI: 10.1189/jlb.0312145.
5. Ashman N., Macey M.G., Fan S.L., Azam U., Yaqoob M.M. Increased platelet-monocyte aggregates and cardiovascular disease in end-stage renal failure patients. Nephrol. Dial. Transplant., 2003, Vol. 18, no. 10, pp. 2088-2096. DOI: 10.1093/ndt/gfg348.
6. Blumenfeld, Z., Brenner, B. Thrombophilia-associated pregnancy wastage. Fertil. Steril., 1999, Vol. 72, no. 5, pp. 765-774. DOI: 10.1016/s0015-0282(99)00360-x.
7. Brambilla M., Canzano P., Becchetti A., Tremoli E., Camera M. Alterations in platelets during SARS-CoV-2 infection. Platelets, 2022, Vol. 33, no. 2, pp. 192-199.DOI: 10.1080/09537104.2021.1962519
8. Clinical guidelines. Recurrent miscarriage.(In Russ.) Available at: https://cr.minzdrav.gov.ru/recomend/721_1 (Electronic source). URL: https://cr.minzdrav.gov.ru/recomend/721_1.
9. Dimitriadis E., Menkhorst E., Saito S., Kutteh W. H., Brosens, J. J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers, 2020, Vol. 6, no. 1, p. 98. DOI: 10.1038/s41572-020-00228-z.
10. Elalamy I., Chakroun T., Gerotziafas G.T., Petropoulou A., Robert F., Karroum A., Elgrably F., Samama M.M., Hatmi M. Circulating platelet-leukocyte aggregates: a marker of microvascular injury in diabetic patients. Thromb. Res., 2008, Vol. 121, no. 6, pp. 843-848. DOI: 10.1016/j.thromres.2007.07.016.
11. Gawaz M. P., Loftus J. C., Bajt M. L., Frojmovic M. M., Plow E. F., Ginsberg M. H. Ligand bridging mediates integrin alpha IIb beta 3 (platelet GPIIB-IIIA) dependent homotypic and heterotypic cell-cell interactions. J. Clin. Invest., 1991, Vol. 88., no. 4, pp.1128-1134. DOI: 10.1172/JCI115412.
12. Graff J., Harder S., Wahl O., Scheuermann E.H., Gossmann J. Anti-inflammatory effects of clopidogrel intake in renal transplant patients: effects on platelet-leukocyte interactions, platelet CD40 ligand expression, and proinflammatory biomarkers. Clin. Pharmacol. Ther., 2005, Vol. 78, no. 5, pp. 468-476. DOI: 10.1016/j.clpt.2005.08.002.
13. Grandone E., Piazza G. Thrombophilia, inflammation, and recurrent pregnancy loss: a case-based review. Semin. Reprod. Med., 2021, Vol. 39, no. 01/02, pp. 62-68. DOI: 10.1055/s-0041-1731827.
14. Harding S.A., Sommerfield A.J., Sarma J., Twomey P.J., Newby D.E., Frier B.M., Fox K.A. Increased CD40 ligand and platelet-monocyte aggregates in patients with type 1 diabetes mellitus. Atherosclerosis, 2004, Vol. 176, no. 2, pp. 321-325. DOI: 10.1016/j.atherosclerosis.2004.05.008.
15. Haselmayer P., Grosse-Hovest L., von Landenberg P., Schild H., Radsak M.P. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood, 2007, Vol. 110, no. 3, pp. 1029-1035. DOI: 10.1182/blood-2007-01-069195.
16. Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L., Teixeira L., Barreto E.A., Pao C.R.R., Righy C., Franco S., Souza T.M.L., Kurtz P., Bozza F.A., Bozza P.T. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood, 2020, Vol. 136, no. 11, pp. 1330-1341. DOI: 10.1182/blood.2020007252.
17. Hottz E.D., Medeiros-de-Moraes I.M., Vieira-de-Abreu A., de Assis E.F., Vals-de-Souza R., Castro-Faria-Neto H.C., Weyrich A.S., Zimmerman G.A., Bozza F.A., Bozza P.T. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J. Immunol., 2014, Vol. 193, no. 4, pp. 1864-1872. DOI: 10.4049/jimmunol.1400091.
18. Hottz E.D., Quirino-Teixeira A.C., Merij L.B., Pinheiro M.B.M., Rozini S.V., Bozza F.A., Bozza P.T. Platelet-leukocyte interactions in the pathogenesis of viral infections. Platelets, 2022, Vol. 33, no. 2, pp. 200-207. DOI: 10.1080/09537104.2021.1952179.
19. Ishikawa T., Shimizu M., Kohara S., Takizawa S., Kitagawa Y., Takagi S. Appearance of WBC-platelet complex in acute ischemic stroke, predominantly in atherothrombotic infarction. J. Atheroscler. Thromb., 2012, Vol. 19, no. 5, pp. 494-501. DOI: 10.5551/jat.10637.
20. Kaplar M., Kappelmayer J., Veszpremi A., Szabo K., Udvardy M. The possible association of in vivo leukocyte-platelet heterophilic aggregate formation and the development of diabetic angiopathy. Platelets, 2001, Vol. 12, no. 7, pp. 419-422. DOI: 10.1080/09537100120078368.
21. Kullaya V., van der Ven A., Mpagama S., Mmbaga B.T., de Groot P., Kibiki G., de Mast Q. Platelet-monocyte interaction in Mycobacterium tuberculosis infection. Tuberculosis, 2018, Vol. 111, pp. 86-93. DOI: 10.1016/j.tube.2018.05.002.
22. Liang H., Duan Z., Li D., Li D., Wang Z., Ren L., Shen T., Shao Y. Higher levels of circulating monocyte-platelet aggregates are correlated with viremia and increased sCD163 levels in HIV-1 infection. Cell. Mol. Immunol., 2015, Vol. 12, no. 4, pp. 435-443. DOI: 10.1038/cmi.2014.66.
23. Liu X., Chen Y., Ye C., Xing D., Wu R., Li F., Chen L., Wang T. Hereditary thrombophilia and recurrent pregnancy loss: a systematic review and meta-analysis. Hum. Reprod., 2021, Vol.36, no. 5, pp.1213-1229. DOI: 10.1093/humrep/deab010.
24. Loguinova M., Pinegina N., Kogan V., Vagida M., Arakelyan A., Shpektor A., Margolis L., Vasilieva E. Monocytes of different subsets in complexes with platelets in patients with myocardial infarction. Thromb. Haemost., 2018, Vol. 118, no. 11, pp. 1969-1981. DOI: 10.1055/s-0038-1673342.
25. Lukanov T. H, Veleva G. L., Konova E. I., Ivanov P. D., Kovacheva, K. S., Stoykov D. J. Levels of platelet-leukocyte aggregates in women with both thrombophilia and recurrent pregnancy loss. Clin Appl Thromb. Hemost., 2011, Vol.17, no. 2, pp.181-187. DOI: 10.1177/1076029609350891.
26. Maclay J.D., McAllister D.A., Johnston S., Raftis J., McGuinnes C., Deans A., Newby D.E., Mills N.L., MacNee W. Increased platelet activation in patients with stable and acute exacerbation of COPD. Thorax, 2011, Vol. 66, no. 9, pp. 769-774. DOI: 10.1136/thx.2010.157529.
27. Marquardt L., Anders C., Buggle F., Palm F., Hellstern P., Grau A.J. Leukocyte-platelet aggregates in acute and subacute ischemic stroke. Cerebrovasc. Dis., 2009, Vol. 28, no. 3, pp. 276-282. DOI: 10.1159/000228710.
28. Ozanska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol., 2020, Vol. 92, no.1, pp. e12883. DOI: 10.1111/sji.12883.
29. Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil. Steril., 2012, Vol. 98, no. 5, pp. 1103-1111. DOI: 10.1016/j.fertnstert.2012.06.048.
30. Rondina M.T., Brewster B., Grissom C.K., Zimmerman G.A., Kastendieck D.H., Harris E.S., Weyrich A.S. In vivo platelet activation in critically ill patients with primary 2009 influenza A(H1N1). Chest, 2012, Vol. 141, no. 6, pp. 1490-1495. DOI: 10.1378/chest.11-2860.
31. Samfireag M., Potre C., Potre O., Tudor R., Hoinoiu T., Anghel A. Approach to thrombophilia in pregnancy-a narrative review. Medicina (Kaunas), 2022, Vol. 58, no. 5, pp. 692. DOI: 10.3390/medicina58050692.
32. Sayed D., Amin N.F., Galal G.M. Monocyte-platelet aggregates and platelet micro-particles in patients with post-hepatitic liver cirrhosis. Thromb. Res., 2010, Vol. 125, no. 5, pp. e228-e233. DOI: 10.1016/j.thromres.2009.12.002.
33. Schrottmaier W.C., Kral J.B., Badrnya S., Assinger A. Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb. Haemost., 2015, Vol. 114, no. 3, pp. 478-489. DOI: 10.1160/TH14-11-0943.
34. Serebryanaya N.B., Shanin S.N., Fomicheva E.E., Yakutseni P.P.
35. Blood platelets as activators and regulators of inflammatory and immune reactions. Part 2. Thrombocytes as participants of
36. immune reactions. Meditsinskaya Immunologiya = Medical Immunology, 2019, Vol. 21, no. 1, pp. 9-20. (In Russ.) DOI: 10.15789/1563-0625-2019-1-9-20.
37. Simcox L. E., Ormesher L., Tower C., Greer I. A. Thrombophilia and pregnancy complications. Int. J. Mol. Sci, 2015, Vol. 16, no. 12, pp. 28418-28428. DOI: 10.3390/ijms161226104.
38. Simon D. I., Chen Z., Xu H., Li C. Q., Dong J., McIntire L. V., Ballantyne C. M., Zhang L., Furman M. I., Berndt M. C., Lopez J. A. Platelet glycoprotein Ibα is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J. Exp. Med., 2000, Vol. 192, no. 2, pp. 193-204. DOI: 10.1084/jem.192.2.193.
39. Tao L., Changfu W., Linyun L., Bing M., Xiaohui H. Correlations of platelet-leukocyte aggregates with P-selectin S290N and P-selectin glycoprotein ligand-1 M62I genetic polymorphisms in patients with acute ischemic stroke. J. Neurol. Sci., 2016, Vol. 367, pp. 95-100. DOI: 10.1016/j.jns.2016.05.046.
40. Taus F., Salvagno G., Cane S., Fava C., Mazzaferri F., Carrara E., Petrova V., Barouni R.M., Dima F., Dalbeni A., Romano S., Poli G., Benati M., De Nitto S., Mansueto G., Iezzi M., Tacconelli E., Lippi G., Bronte V., Minuz P. Platelets promote thromboinflammation in SARS-CoV-2 pneumonia. Arterioscler. Thromb. Vasc. Biol., 2020, Vol. 40, no. 12, pp. 2975-2989. DOI: 10.1161/ATVBAHA.120.315175.
41. Thomas M.R., Storey R.F. The role of platelets in inflammation. Thromb. Haemost., 2015, Vol. 114, no. 3, pp. 449-458. DOI: 10.1160/TH14-12-1067.
42. Wu Q., Ren J., Hu D., Wu X., Li G., Wang G., Gu G., Chen J., Li R., Li Y., Hong Z., Ren H., Zhao Y., Li J. Monocyte subsets and monocyte-platelet aggregates: implications in predicting septic mortality among surgical critical illness patients. Biomarkers, 2016, Vol. 21, no. 6, pp. 509-516. DOI: 10.3109/1354750X.2016.1160290.
43. Yang S., Huang X., Liao J., Li Q., Chen S., Liu C., Ling L., Zhou J. Platelet-leukocyte aggregates - a predictor for acute kidney injury after cardiac surgery. Ren. Fail., 2021, Vol. 43, no. 1, pp. 1155-1162. DOI: 10.1080/0886022X.2021.1948864.
44. Zahran A.M., El-Badawy O., Mohamad I.L., Tamer D.M., Abdel-Aziz S.M., Elsayh K.I. Platelet activation and platelet-leukocyte aggregates in type I diabetes mellitus. Clin. Appl. Thromb. Hemost., 2018, Vol. 24, no. 9_suppl, pp. 230S-239S. DOI: 10.1177/1076029618805861.
45. Zarbock A., Muller H., Kuwano Y., Ley K. PSGL-1-dependent myeloid leukocyte activation. J. Lekoc. Biol. 2009, Vol. 86, no. 5, pp. 1119-1124. DOI: 10.1189/jlb.0209117.
46. Zhou X., Liu X.L., Ji W.J., Liu J.X., Guo Z.Z., Ren D., Ma Y.Q., Zeng S., Xu Z.W., Li H.X., Wang P.P., Zhang Z., Li Y.M., Benefield B.C., Zawada A.M., Thorp E.B., Lee D.C., Heine G.H. The kinetics of circulating monocyte subsets and monocyte-platelet aggregates in the acute phase of ST-elevation myocardial infarction: associations with 2-year cardiovascular events. Medicine (Baltimore), 2016, Vol. 95, no. 18, pp. e3466. DOI: 10.1097/MD.0000000000003466.
47. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D. N., Leenen P. J., Liu Y. J., MacPherson G., Randolph G. J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J. M., Lutz M. B. Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, Vol. 116, no. 16, pp. e74-e80. DOI: 10.1182/blood-2010-02-258558.
Supplementary files
![]() |
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(17KB)
|
Indexing metadata ▾ |
![]() |
2. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(246KB)
|
Indexing metadata ▾ |
![]() |
3. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(465KB)
|
Indexing metadata ▾ |
![]() |
4. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(289KB)
|
Indexing metadata ▾ |
![]() |
5. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(559KB)
|
Indexing metadata ▾ |
![]() |
6. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(711KB)
|
Indexing metadata ▾ |
![]() |
7. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(743KB)
|
Indexing metadata ▾ |
![]() |
8. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(771KB)
|
Indexing metadata ▾ |
![]() |
9. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(757KB)
|
Indexing metadata ▾ |
![]() |
10. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(749KB)
|
Indexing metadata ▾ |
![]() |
11. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(16KB)
|
Indexing metadata ▾ |
![]() |
12. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(31KB)
|
Indexing metadata ▾ |
![]() |
13. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(16KB)
|
Indexing metadata ▾ |
![]() |
14. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(17KB)
|
Indexing metadata ▾ |
![]() |
15. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(691KB)
|
Indexing metadata ▾ |
![]() |
16. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(520KB)
|
Indexing metadata ▾ |
![]() |
17. 2992 | |
Subject | ||
Type | Other | |
Download
(2MB)
|
Indexing metadata ▾ |
Review
For citations:
Pavlov O.V., Chepanov S.V., Kornyushina E.A., Shengeliia M.O., Tkhai D.V., Selkov S.A. POSSIBLE ROLE OF PLATELET-MONOCYTE COMPLEXES IN THE PATHOGENESIS OF RECURRENT PREGNANCY LOSS. Medical Immunology (Russia). https://doi.org/10.15789/1563-0625-PRO-2992