Preview

Medical Immunology (Russia)

Advanced search

MODERN WAYS TO OVERCOME ANTIBIOTIC RESISTANCE AND PROSPECTS FOR THE USE OF NK CELLS AS AGENTS OF ANTIBACTERIAL THERAPY

https://doi.org/10.15789/1563-0625-MWT-2945

Abstract

Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. represent ESKAPE group, which is characterized by the greatest resistance to antibiotics. Due to the wide spread of pathogens and their danger to the health care system, the search for new ways to treat bacterial infections remains relevant.

Antibiotics were first obtained in the early twentieth century, but their widespread use began during the Second World War. To date, the range of antibacterial drugs is wide, but despite this, the problem of bacterial resistance to them is acute.

An urgent task of modern science is considered to be the search for overcoming the resistance of bacteria to antibacterial drugs. Since the search for new classes of substances is a long and expensive process, combined drug regimens are used, methods of delivering antibiotics to the source of infection in the body are modified, the structure of the active substance molecules is changed, and adjuvants are used.

NK cells are traditionally considered as part of antitumor or antiviral immunity. However, due to the appearance of data indicating the presence of antibacterial proteins in them and the ability to exhibit cytotoxicity against cells infected with intracellular prokaryotic organisms, today they can be considered as a component of antibacterial immunity.

NK-92 cells reproduce the characteristics of NK cells and have similar properties. In addition, the possibility of their use as a component of antitumor therapy is being actively studied, and clinical trials are being conducted at different stages. In combination with the antibacterial properties of NK cells and the facts described above, it becomes possible to use NK-92 cells as an adjuvant in the antimicrobial therapy of infections caused by antibiotic-resistant bacteria.

The review presents data on the possibility of using the NK-92 cell line and the microvesicles produced by them to combat antibiotic-resistant bacteria of ESKAPE group. Currently, there is not enough research in this area, but data on NK cells presented in the review allow us to propose a cell line reproducing their characteristics and the MV produced by them as a promising adjuvant of antibacterial therapy.

About the Authors

Polina Vladimirovna Grebenkina
Saint-Petersburg Pasteur Institute; Federal State Budgetary Scientific Institution “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott;
Russian Federation

postgraduate student, junior researcher



Varvara Alekseevna Jukhina
Federal State Budgetary Scientific Institution “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott;

student



Ananstasia Maksimovna Gulina
Federal State Budgetary Scientific Institution “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott

student



Sergey Alekseevich Selkov
Federal State Budgetary Scientific Institution “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott;

MD (Medicine), Professor, Honoured Science Worker, Head of Department of Immunology and Intercellular Interactions



Lyudmila Alexandrovna Kraeva
Saint-Petersburg Pasteur Institute;

MD, Head of the Laboratory of Medical Bacteriology;



Dmitriy Igorevich Sokolov
Saint-Petersburg Pasteur Institute; Federal State Budgetary Scientific Institution “The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O.Ott;

MD (Biology), leading researcher of the Laboratory of molecular immunology, Head of Laboratory of Intercellular Interactions.

 



References

1. Abraham E.P.,Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis, 1988, Vol.10, no 4, pp. 677-8. -

2. Ananthan S.,Subha A. Cefoxitin Resistance Mediated by Loss of a Porin in Clinical Strains of Klebsiella Pneumoniae and Escherichia Coli. Indian Journal of Medical Microbiology, 2005, Vol.23, no 1, pp. 20-23. - 10.1016/s0255-0857(21)02706-7

3. Anderl J.N., Franklin M.J.,Stewart P.S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother, 2000, Vol.44, no 7, pp. 1818-24. - 10.1128/AAC.44.7.1818-1824.2000

4. Ayobami O., Brinkwirth S., Eckmanns T.,Markwart R. Antibiotic resistance in hospital-acquired ESKAPE-E infections in low- and lower-middle-income countries: a systematic review and meta-analysis. Emerging Microbes & Infections, 2022, Vol.11, no 1, pp. 443-451. - 10.1080/22221751.2022.2030196

5. Azevedo-Barbosa H., Dias D.F., Franco L.L., Hawkes J.A.,Carvalho D.T. From Antibacterial to Antitumour Agents: A Brief Review on The Chemical and Medicinal Aspects of Sulfonamides. Mini Rev Med Chem, 2020, Vol.20, no 19, pp. 2052-2066. - 10.2174/1389557520666200905125738

6. Baroud M., Dandache I., Araj G.F., Wakim R., Kanj S., Kanafani Z., Khairallah M., Sabra A., Shehab M., Dbaibo G.,Matar G.M. Underlying mechanisms of carbapenem resistance in extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli isolates at a tertiary care centre in Lebanon: role of OXA-48 and NDM-1 carbapenemases. Int J Antimicrob Agents, 2013, Vol.41, no 1, pp. 75-9. - 10.1016/j.ijantimicag.2012.08.010

7. Baumler A.J., Ivin M., Dumigan A., de Vasconcelos F.N., Ebner F., Borroni M., Kavirayani A., Przybyszewska K.N., Ingram R.J., Lienenklaus S., Kalinke U., Stoiber D., Bengoechea J.A.,Kovarik P. Natural killer cell-intrinsic type I IFN signaling controls Klebsiella pneumoniae growth during lung infection. PLOS Pathogens, 2017, Vol.13, no 11. - 10.1371/journal.ppat.1006696

8. Bhattacharjee M.K., Antimetabolites: Antibiotics That Inhibit Nucleotide Synthesis, in Chemistry of Antibiotics and Related Drugs. 2022. p. 109-123. -

9. Binda E., Marinelli F.,Marcone G.L. Old and New Glycopeptide Antibiotics: Action and Resistance. Antibiotics (Basel), 2014, Vol.3, no 4, pp. 572-94. - 10.3390/antibiotics3040572

10. Bisacchi G.,Hale M. A “Double-Edged” Scaffold: Antitumor Power within the Antibacterial Quinolone. Current Medicinal Chemistry, 2016, Vol.23, no 6, pp. 520-577. - 10.2174/0929867323666151223095839

11. Bisacchi G.S. Origins of the Quinolone Class of Antibacterials: An Expanded "Discovery Story". J Med Chem, 2015, Vol.58, no 12, pp. 4874-82. - 10.1021/jm501881c

12. Blair J.M.A., Webber M.A., Baylay A.J., Ogbolu D.O.,Piddock L.J.V. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 2014, Vol.13, no 1, pp. 42-51. - 10.1038/nrmicro3380

13. Blake F.G.,Craige B. Penicillin in Suppurative Disease of the Lungs: A Report of Three Cases. Yale J Biol Med, 1943, Vol.15, no 3, pp. 507-516 7.

14. -

15. Blaskovich M.A.T., Hansford K.A., Butler M.S., Jia Z., Mark A.E.,Cooper M.A. Developments in Glycopeptide Antibiotics. ACS Infect Dis, 2018, Vol.4, no 5, pp. 715-735. - 10.1021/acsinfecdis.7b00258

16. Bourne C.R. Utility of the Biosynthetic Folate Pathway for Targets in Antimicrobial Discovery. Antibiotics (Basel), 2014, Vol.3, no 1, pp. 1-28. - 10.3390/antibiotics3010001

17. Boyiadzis M., Agha M., Redner R.L., Sehgal A., Im A., Hou J.-Z., Farah R., Dorritie K.A., Raptis A., Lim S.H., Wang H., Lapteva N., Mei Z., Butterfield L.H., Rooney C.M.,Whiteside T.L. Phase 1 clinical trial of adoptive immunotherapy using “off-the-shelf” activated natural killer cells in patients with refractory and relapsed acute myeloid leukemia. Cytotherapy, 2017, Vol.19, no 10, pp. 1225-1232. - 10.1016/j.jcyt.2017.07.008

18. Breijyeh Z., Jubeh B.,Karaman R. Resistance of Gram-Negative Bacteria to Current Antibacterial Agents and Approaches to Resolve It. Molecules, 2020, Vol.25, no 6. - 10.3390/molecules25061340

19. Brockmann H.,Henkel W. Pikromycin, ein bitter schmeckendes Antibioticum aus Actinomyceten (Antibiotica aus Actinomyceten, VI. Mitteil. Chemische Berichte, 2006, Vol.84, no 3, pp. 284-288. - 10.1002/cber.19510840306

20. Brooks L.E., Ul-Hasan S., Chan B.K.,Sistrom M.J. Quantifying the Evolutionary Conservation of Genes Encoding Multidrug Efflux Pumps in the ESKAPE Pathogens To Identify Antimicrobial Drug Targets. mSystems, 2018, Vol.3. - 10.1128/mSystems.00024-18

21. Bryan L.E.,Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamicin. Antimicrob Agents Chemother, 1983, Vol.23, no 6, pp. 835-45. - 10.1128/AAC.23.6.835

22. Camussi G., Deregibus M.C., Bruno S., Cantaluppi V.,Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int, 2010, Vol.78, no 9, pp. 838-48. - 10.1038/ki.2010.278

23. Chalifour A., Jeannin P., Gauchat J.F., Blaecke A., Malissard M., N'Guyen T., Thieblemont N.,Delneste Y. Direct bacterial protein PAMP recognition by human NK cells involves TLRs and triggers alpha-defensin production. Blood, 2004, Vol.104, no 6, pp. 1778-83. - 10.1182/blood-2003-08-2820

24. Chen N.,Jiang C. Antimicrobial peptides: Structure, mechanism, and modification. European Journal of Medicinal Chemistry, 2023, Vol.255, no. 7

25. - 10.1016/j.ejmech.2023.11537

26. Comin F., Speziali E., Martins-Filho O.A., Caldas I.R., Moura V., Gazzinelli A., Correa-Oliveira R.,Faria A.M.C. Ageing and Toll-like receptor expression by innate immune cells in chronic human schistosomiasis. Clinical and Experimental Immunology, 2007, Vol.149, no 2, pp. 274-284. - 10.1111/j.1365-2249.2007.03403.x

27. Crespo Â.C., Mulik S., Dotiwala F., Ansara J.A., Sen Santara S., Ingersoll K., Ovies C., Junqueira C., Tilburgs T., Strominger J.L.,Lieberman J. Decidual NK Cells Transfer Granulysin to Selectively Kill Bacteria in Trophoblasts. Cell, 2020, Vol.182, no 5, pp. 1125-1139.e18. - 10.1016/j.cell.2020.07.019

28. Demerec M.,Fano U. Bacteriophage-Resistant Mutants in Escherichia Coli. Genetics, 1945, Vol.30, no 2, pp. 119-136. - 10.1093/genetics/30.2.119

29. Dinos G.P. The macrolide antibiotic renaissance. Br J Pharmacol, 2017, Vol.174, no 18, pp. 2967-2983. - 10.1111/bph.13936

30. El-Badawy M.F., Tawakol W.M., El-Far S.W., Maghrabi I.A., Al-Ghamdi S.A., Mansy M.S., Ashour M.S.,Shohayeb M.M. Molecular Identification of Aminoglycoside-Modifying Enzymes and Plasmid-Mediated Quinolone Resistance Genes among Klebsiella pneumoniae Clinical Isolates Recovered from Egyptian Patients. International Journal of Microbiology, 2017, Vol.2017, no, pp. 1-12. - 10.1155/2017/8050432

31. El-Sayed Ahmed M.A.E.-G., Zhong L.-L., Shen C., Yang Y., Doi Y.,Tian G.-B. Colistin and its role in the Era of antibiotic resistance: an extended review (2000–2019). Emerging Microbes & Infections, 2020, Vol.9, no 1, pp. 868-885. - 10.1080/22221751.2020.1754133

32. Emelianova A.G., Petrova N.V., Fremez C., Fontanié M., Tarasov S.А.,Epstein О.I. Therapeutic potential of highly diluted antibodies in antibiotic-resistant infection. European Journal of Pharmaceutical Sciences, 2022, Vol.173, no. - 10.1016/j.ejps.2022.106161

33. Eriksson M., Meadows S.K., Basu S., Mselle T.F., Wira C.R.,Sentman C.L. TLRs mediate IFN-gamma production by human uterine NK cells in endometrium. J Immunol, 2006, Vol.176, no 10, pp. 6219-24. - 10.4049/jimmunol.176.10.6219

34. Eyler R.F.,Shvets K. Clinical Pharmacology of Antibiotics. Clinical Journal of the American Society of Nephrology, 2019, Vol.14, no 7, pp. 1080-1090. - 10.2215/cjn.08140718

35. Fazly Bazzaz B.S., Khameneh B., Zarei H.,Golmohammadzadeh S. Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microbial Pathogenesis, 2016, Vol.93, no, pp. 137-144. - 10.1016/j.micpath.2015.11.031

36. Fernández-Martínez M., Ruiz del Castillo B., Lecea-Cuello M.J., Rodríguez-Baño J., Pascual Á., Martínez-Martínez L., Michaus L., Martínez Peinado C., Yagüe A., Torreblanca A., Fleites A., Ordás J.F., Moreno J.J., Garduño E., Gil J., Oliver A., Domínguez M.A., Marco F., del Valle O., Navarro F., Prats G., Corcoy F., Ojeda E., Marín P., Fernández C., Martínez L., Carranza R., Rodríguez F., García Tejero C., Artiles F., Álamo I., Palop B., De la Rosa M., Gutiérrez J., Gomáriz M., Cuesta I., Cartelle M., Rodríguez M., Fernández I., Ugalde E., Picazo J.J., Chaves F., Cantón R., Cercenado E., Folgueira L., Delgado Iribarren A., Guerrero C., Torroba L., García Irure J.J., Fernández B., García M., Lueiro F., Otero I., García Sánchez E., Elías J., Treviño M., Hernández J.R., Ruiz M., Díaz M.A., Moreno A., Lara M., Aspiroz C., Torres L., García Leoni E., Navarro D., Gobernado M., Tenorio A., Ezpeleta C., Castillo J.,García Moya J. Prevalence of Aminoglycoside-Modifying Enzymes in Escherichia coli and Klebsiella pneumoniae Producing Extended Spectrum β-Lactamases Collected in Two Multicenter Studies in Spain. Microbial Drug Resistance, 2018, Vol.24, no 4, pp. 367-376. - 10.1089/mdr.2017.0102

37. Ferreira M., Pinto S.N., Aires-da-Silva F., Bettencourt A., Aguiar S.I.,Gaspar M.M. Liposomes as a Nanoplatform to Improve the Delivery of Antibiotics into Staphylococcus aureus Biofilms. Pharmaceutics, 2021, Vol.13, no 3. - 10.3390/pharmaceutics13030321

38. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. 1929. Bull World Health Organ, 2001, Vol.79, no 8, pp. 780-90. - 10.3390/molecules26144280

39. Foti C., Piperno A., Scala A.,Giuffrè O. Oxazolidinone Antibiotics: Chemical, Biological and Analytical Aspects. Molecules, 2021, Vol.26, no 14. -

40. Fouts J.R., Kamm J.J.,Brodie B.B. Enzymatic reduction of prontosil and other azo dyes. J Pharmacol Exp Ther, 1957, Vol.120, no 3, pp. 291-300. -

41. Gautier-Bouchardon A.V., Aarestrup F.M., Schwarz S., Shen J.,Cavaco L. Antimicrobial Resistance in

42. Mycoplasma

43. spp. Microbiology Spectrum, 2018, Vol.6, no 4. - 10.1128/microbiolspec.ARBA-0030-2018

44. Geigenmuller U.,Nierhaus K.H. Tetracycline can inhibit tRNA binding to the ribosomal P site as well as to the A site. Eur J Biochem, 1986, Vol.161, no 3, pp. 723-6. - 10.1111/j.1432-1033.1986.tb10499.x

45. González-Paredes A., Sitia L., Ruyra A., Morris C.J., Wheeler G.N., McArthur M.,Gasco P. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. European Journal of Pharmaceutics and Biopharmaceutics, 2019, Vol.134, no, pp. 166-177. - 10.1016/j.ejpb.2018.11.017

46. Hahn A., Sami I., Chaney H., Koumbourlis A.C., Del Valle Mojica C., Cochrane C., Chan B.K.,Koff J.L. Bacteriophage Therapy for Pan-Drug-Resistant Pseudomonas aeruginosa in Two Persons With Cystic Fibrosis. Journal of Investigative Medicine High Impact Case Reports, 2023, Vol.11, no. - 10.1177/23247096231188243

47. Haney E., Trimble M., Cheng J., Vallé Q.,Hancock R. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules, 2018, Vol.8, no 2. - 10.3390/biom8020029

48. Hilliard J.J., Datta V., Tkaczyk C., Hamilton M., Sadowska A., Jones-Nelson O., O'Day T., Weiss W.J., Szarka S., Nguyen V., Prokai L., Suzich J., Stover C.K.,Sellman B.R. Anti-Alpha-Toxin Monoclonal Antibody and Antibiotic Combination Therapy Improves Disease Outcome and Accelerates Healing in a Staphylococcus aureus Dermonecrosis Model. Antimicrobial Agents and Chemotherapy, 2015, Vol.59, no 1, pp. 299-309. - 10.1128/aac.03918-14

49. Hoffman L.R., D'Argenio D.A., MacCoss M.J., Zhang Z., Jones R.A.,Miller S.I. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 2005, Vol.436, no 7054, pp. 1171-5. - 10.1038/nature03912

50. Høiby N., Bjarnsholt T., Givskov M., Molin S.,Ciofu O. Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents, 2010, Vol.35, no 4, pp. 322-332. - 10.1016/j.ijantimicag.2009.12.011

51. Hooper D.C.,Jacoby G.A. Mechanisms of drug resistance: quinolone resistance. Annals of the New York Academy of Sciences, 2015, Vol.1354, no 1, pp. 12-31. - 10.1111/nyas.12830

52. Horton D., Wander J.D.,Foltz R.L. Chemical-ionization mass spectrometry of lincomycin and clindamycin. Analytical Biochemistry, 1974, Vol.59, no 2, pp. 452-461. - 10.1016/0003-2697(74)90298-x

53. Ichikawa M., Nakamoto N., Kredo-Russo S., Weinstock E., Weiner I.N., Khabra E., Ben-Ishai N., Inbar D., Kowalsman N., Mordoch R., Nicenboim J., Golembo M., Zak N., Jablonska J., Sberro-Livnat H., Navok S., Buchshtab N., Suzuki T., Miyamoto K., Teratani T., Fujimori S., Aoto Y., Konda M., Hayashi N., Chu P.-S., Taniki N., Morikawa R., Kasuga R., Tabuchi T., Sugimoto S., Mikami Y., Shiota A., Bassan M.,Kanai T. Bacteriophage therapy against pathological Klebsiella pneumoniae ameliorates the course of primary sclerosing cholangitis. Nature Communications, 2023, Vol.14, no 1. - 10.1038/s41467-023-39029-9

54. Jong A.Y., Wu C.H., Li J., Sun J., Fabbri M., Wayne A.S.,Seeger R.C. Large‐scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. Journal of Extracellular Vesicles, 2017, Vol.6, no 1. - 10.1080/20013078.2017.1294368

55. Kang H.-K.,Park Y. Glycopeptide Antibiotics: Structure and Mechanisms of Action. Journal of Bacteriology and Virology, 2015, Vol.45, no 2. - 10.4167/jbv.2015.45.2.67

56. Kannan K., Vazquez-Laslop N.,Mankin A.S. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell, 2012, Vol.151, no 3, pp. 508-20. - 10.1016/j.cell.2012.09.018

57. Karballaei Mirzahosseini H., Hadadi-Fishani M., Morshedi K.,Khaledi A. Meta-Analysis of Biofilm Formation, Antibiotic Resistance Pattern, and Biofilm-Related Genes in Pseudomonas aeruginosa Isolated from Clinical Samples. Microbial Drug Resistance, 2020, Vol.26, no 7, pp. 815-824. - 10.1089/mdr.2019.0274

58. Kishk R., Soliman N., Nemr N., Eldesouki R., Mahrous N., Gobouri A., Azab E.,Anani M. Prevalence of Aminoglycoside Resistance and Aminoglycoside Modifying Enzymes in Acinetobacter baumannii Among Intensive Care Unit Patients, Ismailia, Egypt. Infection and Drug Resistance, 2021, Vol.Volume 14, no, pp. 143-150. - 10.2147/idr.S290584

59. Klingemann H. The NK-92 cell line—30 years later: its impact on natural killer cell research and treatment of cancer. Cytotherapy, 2023, Vol.25, no 5, pp. 451-457. - 10.1016/j.jcyt.2022.12.003

60. Korenevsky A.V., Shcherbitskaia A.D., Berezkina M.E., Markova K.L., Alexandrova E.P., Balabas O.A., Selkov S.A.,Sokolov D.I. MALDI-TOF mass spectrometric protein profiling of microvesicles produced by the NK-92 natural killer cell line. Medical Immunology (Russia), 2020, Vol.22, no 4, pp. 633-646. - 10.15789/1563-0625-mms-1976

61. Lamichhane T.N., Raiker R.S.,Jay S.M. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Mol Pharm, 2015, Vol.12, no 10, pp. 3650-7. - 10.1021/acs.molpharmaceut.5b00364

62. Ledger E.V.K., Sabnis A.,Edwards A.M. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort. Microbiology, 2022, Vol.168, no 2. - 10.1099/mic.0.001136

63. León D.L., Fellay I., Mantel P.-Y.,Walch M., Killing Bacteria with Cytotoxic Effector Proteins of Human Killer Immune Cells: Granzymes, Granulysin, and Perforin, in Bacterial Pathogenesis. 2017. p. 275-284. -

64. Lin Q., Deslouches B., Montelaro R.C.,Di Y.P. Prevention of ESKAPE pathogen biofilm formation by antimicrobial peptides WLBU2 and LL37. Int J Antimicrob Agents, 2018, Vol.52, no 5, pp. 667-672. - 10.1016/j.ijantimicag.2018.04.019

65. Luo G., Zhang J., Wang H., Sun Y., Cheng B., Xu Z., Zhang Y., Li H., Lu W., Nemeth E., Ganz T.,Fang X. Human defensin-inspired discovery of peptidomimetic antibiotics. Proc Natl Acad Sci U S A, 2022, Vol.119, no 10, pp. e2117283119. - 10.1073/pnas.2117283119

66. Luquero A., Vilahur G., Crespo J., Badimon L.,Borrell‐Pages M. Microvesicles carrying LRP5 induce macrophage polarization to an anti‐inflammatory phenotype. Journal of Cellular and Molecular Medicine, 2021, Vol.25, no 16, pp. 7935-7947. - 10.1111/jcmm.16723

67. Mankin A.S. Nascent peptide in the "birth canal" of the ribosome. Trends Biochem Sci, 2006, Vol.31, no 1, pp. 11-3. - 10.1016/j.tibs.2005.11.007

68. Matzov D., Eyal Z., Benhamou R.I., Shalev-Benami M., Halfon Y., Krupkin M., Zimmerman E., Rozenberg H., Bashan A., Fridman M.,Yonath A. Structural insights of lincosamides targeting the ribosome of Staphylococcus aureus. Nucleic Acids Research, 2017, Vol.45, no 17, pp. 10284-10292. - 10.1093/nar/gkx658

69. Mingeot-Leclercq M.P., Glupczynski Y.,Tulkens P.M. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother, 1999, Vol.43, no 4, pp. 727-37. - 10.1128/AAC.43.4.727

70. Mohr K.I. History of Antibiotics Research. Curr Top Microbiol Immunol, 2016, Vol.398, no, pp. 237-272. - 10.1007/82_2016_499

71. Morin A.M., Kerwat K.M., Klotz M., Niestolik R., Ruf V.E., Wulf H., Zimmermann S.,Eberhart L.H. Risk factors for bacterial catheter colonization in regional anaesthesia. BMC Anesthesiol, 2005, Vol.5, no 1, pp. 1. - 10.1186/1471-2253-5-1

72. Nasser M., Palwe S., Bhargava R.N., Feuilloley M.G.J.,Kharat A.S. Retrospective Analysis on Antimicrobial Resistance Trends and Prevalence of beta-lactamases in Escherichia coli and ESKAPE Pathogens Isolated from Arabian Patients during 2000-2020. Microorganisms, 2020, Vol.8, no 10. - 10.3390/microorganisms8101626

73. National Nosocomial Infections Surveillance S. National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control, 2004, Vol.32, no 8, pp. 470-85. - 10.1016/S0196655304005425

74. Nelson M.L.,Levy S.B. The history of the tetracyclines. Ann N Y Acad Sci, 2011, Vol.1241, no, pp. 17-32. - 10.1111/j.1749-6632.2011.06354.x

75. Neu H.C. Relation of structural properties of beta-lactam antibiotics to antibacterial activity. Am J Med, 1985, Vol.79, no 2A, pp. 2-13. - 10.1016/0002-9343(85)90254-2

76. Nikaido H.,Rosenberg E.Y. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol, 1983, Vol.153, no 1, pp. 241-52. - 10.1128/jb.153.1.241-252.1983

77. Pathania R., Sharma A.,Gupta V. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian Journal of Medical Research, 2019, Vol.149, no 2. - 10.4103/ijmr.IJMR_2079_17

78. Pham T.D.M., Ziora Z.M.,Blaskovich M.A.T. Quinolone antibiotics. Medchemcomm, 2019, Vol.10, no 10, pp. 1719-1739. - 10.1039/c9md00120d

79. Pirnay J.-P., Djebara S., Steurs G., Griselain J., Cochez C., De Soir S., Glonti T., Spiessens A., Berghe E.V., Green S., Wagemans J., Lood C., Schrevens E., Chanishvili N., Kutateladze M., de Jode M., Ceyssens P.-J., Draye J.-P., Verbeken G., De Vos D., Rose T., Onsea J., Van Nieuwenhuyse B., Soentjens P., Lavigne R.,Merabishvili M. 2023 no. - 10.1101/2023.08.28.23294728

80. Plé C., Tam H.-K., Vieira Da Cruz A., Compagne N., Jiménez-Castellanos J.-C., Müller R.T., Pradel E., Foong W.E., Malloci G., Ballée A., Kirchner M.A., Moshfegh P., Herledan A., Herrmann A., Deprez B., Willand N., Vargiu A.V., Pos K.M., Flipo M.,Hartkoorn R.C. Pyridylpiperazine-based allosteric inhibitors of RND-type multidrug efflux pumps. Nature Communications, 2022, Vol.13, no 1. - 10.1038/s41467-021-27726-2

81. Postma D.F., van Werkhoven C.H., van Elden L.J., Thijsen S.F., Hoepelman A.I., Kluytmans J.A., Boersma W.G., Compaijen C.J., van der Wall E., Prins J.M., Oosterheert J.J., Bonten M.J.,Group C.-S.S. Antibiotic treatment strategies for community-acquired pneumonia in adults. N Engl J Med, 2015, Vol.372, no 14, pp. 1312-23. - 10.1056/NEJMoa1406330

82. Poulou A., Voulgari E., Vrioni G., Koumaki V., Xidopoulos G., Chatzipantazi V., Markou F.,Tsakris A. Outbreak caused by an ertapenem-resistant, CTX-M-15-producing Klebsiella pneumoniae sequence type 101 clone carrying an OmpK36 porin variant. J Clin Microbiol, 2013, Vol.51, no 10, pp. 3176-82. - 10.1128/JCM.01244-13

83. Pradel E.,Pages J.M. The AcrAB-TolC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother, 2002, Vol.46, no 8, pp. 2640-3. - 10.1128/AAC.46.8.2640-2643.2002

84. Rice L.B. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis, 2008, Vol.197, no 8, pp. 1079-81. - 10.1086/533452

85. Sahly H., Schubert S., Harder J., Kleine M., Sandvang D., Ullmann U., Schroder J.M.,Podschun R. Activity of human beta-defensins 2 and 3 against ESBL-producing Klebsiella strains. J Antimicrob Chemother, 2006, Vol.57, no 3, pp. 562-5. - 10.1093/jac/dkl003

86. Santajit S.,Indrawattana N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. BioMed Research International, 2016, Vol.2016, no, pp. 1-8. - 10.1155/2016/2475067

87. Sauer K., Stoodley P., Goeres D.M., Hall-Stoodley L., Burmølle M., Stewart P.S.,Bjarnsholt T. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology, 2022, Vol.20, no 10, pp. 608-620. - 10.1038/s41579-022-00767-0

88. Spížek J.,Řezanka T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochemical Pharmacology, 2017, Vol.133, no, pp. 20-28. - 10.1016/j.bcp.2016.12.001

89. Stephens C.R., Conover L.H., Hochstein F.A., Regna P.P., Pilgrim F.J., Brunings K.J.,Woodward R.B. Terramycin. Viii. Structure of Aureomycin and Terramycin. Journal of the American Chemical Society, 2002, Vol.74, no 19, pp. 4976-4977. - 10.1021/ja01139a533

90. Suresh M.K., Biswas R.,Biswas L. An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. International Journal of Medical Microbiology, 2019, Vol.309, no 1, pp. 1-12. - 10.1016/j.ijmm.2018.11.002

91. Sutterwala Fayyaz S., Secher T., Fas S., Fauconnier L., Mathieu M., Rutschi O., Ryffel B.,Rudolf M. The Anti-Pseudomonas aeruginosa Antibody Panobacumab Is Efficacious on Acute Pneumonia in Neutropenic Mice and Has Additive Effects with Meropenem. PLoS ONE, 2013, Vol.8, no 9. - 10.1371/journal.pone.0073396

92. Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., Ouellette M., Outterson K., Patel J., Cavaleri M., Cox E.M., Houchens C.R., Grayson M.L., Hansen P., Singh N., Theuretzbacher U., Magrini N.,Group W.H.O.P.P.L.W. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis, 2018, Vol.18, no 3, pp. 318-327. - 10.1016/S1473-3099(17)30753-3

93. Tai K.P., Kamdar K., Yamaki J., Le V.V., Tran D., Tran P., Selsted M.E., Ouellette A.J.,Wong-Beringer A. Microbicidal effects of alpha- and theta-defensins against antibiotic-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Innate Immun, 2015, Vol.21, no 1, pp. 17-29. - 10.1177/1753425913514784

94. Tehrani K.H.M.E.,Martin N.I. β-lactam/β-lactamase inhibitor combinations: an update. MedChemComm, 2018, Vol.9, no 9, pp. 1439-1456. - 10.1039/c8md00342d

95. Tu D., Blaha G., Moore P.B.,Steitz T.A. Structures of MLSBK antibiotics bound to mutated large ribosomal subunits provide a structural explanation for resistance. Cell, 2005, Vol.121, no 2, pp. 257-70. - 10.1016/j.cell.2005.02.005

96. Valore E.V., Park C.H., Quayle A.J., Wiles K.R., McCray P.B., Jr.,Ganz T. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J Clin Invest, 1998, Vol.101, no 8, pp. 1633-42. - 10.1172/JCI1861

97. Vazquez-Laslop N.,Mankin A.S. How Macrolide Antibiotics Work. Trends Biochem Sci, 2018, Vol.43, no 9, pp. 668-684. - 10.1016/j.tibs.2018.06.011

98. Velkov T., Gallardo-Godoy A., Swarbrick J.D., Blaskovich M.A.T., Elliott A.G., Han M., Thompson P.E., Roberts K.D., Huang J.X., Becker B., Butler M.S., Lash L.H., Henriques S.T., Nation R.L., Sivanesan S., Sani M.-A., Separovic F., Mertens H., Bulach D., Seemann T., Owen J., Li J.,Cooper M.A. Structure, Function, and Biosynthetic Origin of Octapeptin Antibiotics Active against Extensively Drug-Resistant Gram-Negative Bacteria. Cell Chemical Biology, 2018, Vol.25, no 4, pp. 380-391.e5. - 10.1016/j.chembiol.2018.01.005

99. Verma P., Tiwari M.,Tiwari V. Efflux pumps in multidrug-resistant Acinetobacter baumannii: Current status and challenges in the discovery of efflux pumps inhibitors. Microbial Pathogenesis, 2021, Vol.152, no. - 10.1016/j.micpath.2021.104766

100. Waksman S.A. What is an Antibiotic or an Antibiotic Substance? Mycologia, 2018, Vol.39, no 5, pp. 565-569. - 10.1080/00275514.1947.12017635

101. Walch M., Dotiwala F., Mulik S., Thiery J., Kirchhausen T., Clayberger C., Krensky Alan M., Martinvalet D.,Lieberman J. Cytotoxic Cells Kill Intracellular Bacteria through Granulysin-Mediated Delivery of Granzymes. Cell, 2014, Vol.157, no 6, pp. 1309-1323. - 10.1016/j.cell.2014.03.062

102. Waxman D.J.,Strominger J.L. Penicillin-Binding Proteins and the Mechanism of Action of Beta-Lactam Antibiotics. Annual Review of Biochemistry, 1983, Vol.52, no 1, pp. 825-869. - 10.1146/annurev.bi.52.070183.004141

103. Wei Z., Zhang X., Yong T., Bie N., Zhan G., Li X., Liang Q., Li J., Yu J., Huang G., Yan Y., Zhang Z., Zhang B., Gan L., Huang B.,Yang X. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nature Communications, 2021, Vol.12, no 1. - 10.1038/s41467-020-20723-x

104. Williams B.A., Law A.D., Routy B., denHollander N., Gupta V., Wang X.-H., Chaboureau A., Viswanathan S.,Keating A. A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget, 2017, Vol.8, no 51, pp. 89256-89268. - 10.18632/oncotarget.19204

105. Wilson D.N., Schluenzen F., Harms J.M., Starosta A.L., Connell S.R.,Fucini P. The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning. Proc Natl Acad Sci U S A, 2008, Vol.105, no 36, pp. 13339-44. - 10.1073/pnas.0804276105

106. Wozniak A., Villagra N.A., Undabarrena A., Gallardo N., Keller N., Moraga M., Roman J.C., Mora G.C.,Garcia P. Porin alterations present in non-carbapenemase-producing Enterobacteriaceae with high and intermediate levels of carbapenem resistance in Chile. J Med Microbiol, 2012, Vol.61, no Pt 9, pp. 1270-1279. - 10.1099/jmm.0.045799-0

107. Xiong Z., Zhu D., Wang F., Zhang Y., Okamoto R.,Inoue M. Investigation of extended-spectrum beta-lactamase in Klebsiellae pneumoniae and Escherichia coli from China. Diagn Microbiol Infect Dis, 2002, Vol.44, no 2, pp. 195-200. - 10.1016/s0732-8893(02)00441-8

108. Xu X., Weiss I.D., H. Zhang H., Singh S.P., Wynn T.A., Wilson M.S.,Farber J.M. Conventional NK Cells Can Produce IL-22 and Promote Host Defense in Klebsiella pneumoniae Pneumonia. The Journal of Immunology, 2014, Vol.192, no 4, pp. 1778-1786. - 10.4049/jimmunol.1300039

109. Yan F., He S., Han X., Wang J., Tian X., Wang C., James T.D., Cui J., Ma X.,Feng L. High-throughput fluorescent screening of beta-lactamase inhibitors to improve antibiotic treatment strategies for tuberculosis. Biosens Bioelectron, 2022, Vol.216, no, pp. 114606. - 10.1016/j.bios.2022.114606

110. Zárate S., De la Cruz Claure M., Benito-Arenas R., Revuelta J., Santana A.,Bastida A. Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors. Molecules, 2018, Vol.23, no 2. - 10.3390/molecules23020284

111. Zhang F., Zhuang J., Li Z., Gong H., de Avila B.E., Duan Y., Zhang Q., Zhou J., Yin L., Karshalev E., Gao W., Nizet V., Fang R.H., Zhang L.,Wang J. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat Mater, 2022, Vol.21, no 11, pp. 1324-1332. - 10.1038/s41563-022-01360-9

112. Zhao H., Shao D., Jiang C., Shi J., Li Q., Huang Q., Rajoka M.S.R., Yang H.,Jin M. Biological activity of lipopeptides from Bacillus. Applied Microbiology and Biotechnology, 2017, Vol.101, no 15, pp. 5951-5960. - 10.1007/s00253-017-8396-0

113. Zhao W.H.,Hu Z.Q. Epidemiology and genetics of CTX-M extended-spectrum beta-lactamases in Gram-negative bacteria. Crit Rev Microbiol, 2013, Vol.39, no 1, pp. 79-101. - 10.3109/1040841X.2012.691460


Supplementary files

1. Metadata
Subject
Type Исследовательские инструменты
Download (15KB)    
Indexing metadata ▾
2. Resume
Subject
Type Исследовательские инструменты
Download (15KB)    
Indexing metadata ▾
3. Table
Subject
Type Исследовательские инструменты
Download (28KB)    
Indexing metadata ▾
4. Authors signs
Subject
Type Исследовательские инструменты
Download (241KB)    
Indexing metadata ▾
5. Title
Subject
Type Исследовательские инструменты
Download (15KB)    
Indexing metadata ▾
6. References
Subject
Type Исследовательские инструменты
Download (46KB)    
Indexing metadata ▾
7. 2945
Subject
Type Other
Download (26KB)    
Indexing metadata ▾

Review

For citations:


Grebenkina P.V., Jukhina V.A., Gulina A.M., Selkov S.A., Kraeva L.A., Sokolov D.I. MODERN WAYS TO OVERCOME ANTIBIOTIC RESISTANCE AND PROSPECTS FOR THE USE OF NK CELLS AS AGENTS OF ANTIBACTERIAL THERAPY. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-MWT-2945

Views: 684


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)