Preview

Medical Immunology (Russia)

Advanced search

PLATELET-MONOCYTE COMPLEXES AND THEIR POTENTIAL ROLE IN THE PATHOGENESIS OF PREECLAMPSIA

https://doi.org/10.15789/1563-0625-PCA-2941

Abstract

Abstract. Pregnancy represents the state with particularly activated constituents of hemostasis and immune systems. Hyperactivation of platelets and monocytes may be a causative factor for pregnancy complications including preeclampsia. The pathogenetic role of platelet-monocyte complexes (PMC), recognized as diagnostic marker and therapeutic target, is poorly investigated. The aim of the study was to determine quantitative changes in the peripheral blood PMC level and antigenic phenotype in preeclampsia, and to evaluate effects of platelets on the expression of monocyte surface marker proteins in normal and pathological pregnancy. The tested groups included third trimester pregnant women diagnosed with severe preeclampsia (35-41 weeks of gestation) and women with uncomplicated (physiological) pregnancies (33-41 weeks of gestation). All participants were between the age of 24 and 42 years. PMC levels and CD62P, CD11b, CD86, CD162, HLA-DR, TREM-1 expressed by PMC and free circulating cells were determined by flow cytometry in the peripheral blood total monocytes and monocyte subpopulations.It was found that PMC level increased (29.2% of total monocyte population) when compared to uncomplicated pregnancy (17.5%), and this augmentation was ensured by two PMC-forming monocyte subpopulations: classical and intermediate. Moreover, expression levels of platelet and monocyte activation markers CD62P, CD162, HLA-DR, CD86, TREM-1, CD11b were significantly higher in preeclampsia. The fractions of classical, intermediate and non-classical monocytes differently contributed to preeclampsia-associated changes in the expression levels of monocyte activation markers. Comparison of PMC and free circulating monocytes demonstrated that observed changes in the surface antigenic phenotype of monocytes within PMC were ensured by platelets and other factors. In preeclampsia, platelet-induced augmentation of monocyte inflammatory and adhesive capacities displayed itself in the increased TREM-1 and CD11b expression. In contrast, increased levels of HLA-DR and CD86 in monocytes were not induced by the interaction with platelets. The results of the study suggest that preeclampsia is accompanied by increased peripheral blood PMC levels and activation of monocytes within PMC, demonstrate immunomodulatory effect of platelets, and provide a rationale for the evaluation of expression patterns of PMC surface antigenic markers with diagnostic and therapeutic purposes.

About the Authors

Oleg Pavlov
D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine
Russian Federation

PhD, MD (Biology), Senior Research Associate, Department of Immunology and Cell Interaction



Sergei Chepanov
D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine
Russian Federation

PhD (Medicine), Senior Research Associate, Department of Immunology and Cell Interaction



Ilya Peretyatko
D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine
Russian Federation

obstetrician-gynecologist, Maternity Department



Elena Mozgovaya
D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine
Russian Federation

PhD, MD (Medicine), Leading Research Associate, Department of Obstetrics and Perinatology



Igor Kogan
D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine
Russian Federation

PhD, MD (Medicine), corresponding member Russian Academy of Sciences, Professor, Director, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine



Sergei Selkov
D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductive Medicine
Russian Federation

PhD, MD (Medicine), Professor, Honored Scientist of the Russian Federation, Head, Department of Immunology and Cell Interaction



References

1. Серебряная Н.Б., Шанин С.Н., Фомичева Е.Е., Якуцени П.П. Тромбоциты как активаторы и регуляторы воспалительных и иммунных реакций. Часть 2. Тромбоциты как участники иммунных реакций // Медицинская иммунология. – 2019. – Т. 21, № 1. – С. 9-20. Serebryanaya N.B., Shanin S.N., Fomicheva E.E., Yakutseni P.P.

2. Blood platelets as activators and regulators of inflammatory

3. and immune reactions. Part 2. Thrombocytes as participants of

4. immune reactions. Meditsinskaya

5. Immunologiya = Medical Immunology, 2019, Vol. 21, no. 1, pp. 9-20. DOI: 10.15789/1563-0625-2019-1-9-20

6. Allen N., Barrett T.J., Guo Y., Nardi M., Ramkhelawon B., Rockman C.B., Hochman J.S., Berger J.S. Circulating monocyte-platelet aggregates are a robust marker of platelet activity in cardiovascular disease. Atherosclerosis, 2019, Vol. 282, pp. 11-18. - DOI: 10.1016/j.atherosclerosis.2018.12.029

7. Aleva F.E., Temba G., de Mast Q., Simons S.O., de Groot P.G., Heijdra Y.F., van der Ven A. Increased platelet-monocyte interaction in stable COPD in the absence of platelet hyper-reactivity. Respiration, 2018, Vol. 95, no. 1, pp. 35-43. DOI: 10.1159/000480457

8. Arts R.J., Joosten L.A., van der Meer J.W., Netea M.G. TREM-1: intracellular signaling pathways and interaction with pattern recognition receptors. J. Leukoc. Biol., 2013, Vol. 93, no. 1, pp. 209-215. DOI: 10.1189/jlb.0312145

9. Ashman N., Macey M.G., Fan S.L., Azam U., Yaqoob M.M. Increased platelet-monocyte aggregates and cardiovascular disease in end-stage renal failure patients. Nephrol. Dial. Transplant., 2003, Vol. 18, no. 10, pp. 2088-2096. DOI: 10.1093/ndt/gfg348

10. Brambilla M., Canzano P., Becchetti A., Tremoli E., Camera M. Alterations in platelets during SARS-CoV-2 infection. Platelets, 2022, Vol. 33, no. 2, pp. 192-199. DOI: 10.1080/09537104.2021.1962519

11. Brosens I., Puttemans P., Benagiano G. Placental bed research: I. The placental bed: from spiral arteries remodeling to the great obstetrical syndromes. Am. J. Obstet. Gynecol., 2019, Vol. 221, no. 2, pp. 437-456. DOI: 10.1016/j.ajog.2019.05.044

12. Di Renzo G.C. The great obstetrical syndromes. J. Matern. Fetal Neonatal Med., 2009, Vol. 22, no. 8, pp. 633-635. DOI: 10.1080/14767050902866804

13. Elalamy I., Chakroun T., Gerotziafas G.T., Petropoulou A., Robert F., Karroum A., Elgrably F., Samama M.M., Hatmi M. Circulating platelet-leukocyte aggregates: a marker of microvascular injury in diabetic patients. Thromb. Res., 2008, Vol. 121, no. 6, pp. 843-848. DOI: 10.1016/j.thromres.2007.07.016

14. Faas M.M., Spaans F., De Vos P. Monocytes and macrophages in pregnancy and pre-eclampsia. Immunol., 2014, Vol. 5, pp. 298. DOI: 10.3389/fimmu.2014.00298

15. Faas M.M., de Vos P. Maternal monocytes in pregnancy and preeclampsia in humans and in rats. J. Reprod. Immunol., 2017, Vol. 119, pp. 91-97. DOI: 10.1016/j.jri.2016.06.009

16. Forstner D., Guettler J., Gauster M. Changes in maternal platelet physiology during gestation and their interaction with trophoblasts. International Journal of Molecular Sciences, 2021, Vol. 22, no. 19, pp. e10732. DOI: 10.3390/ijms221910732

17. Freitas L.G., Sathler-Avelar R., Vitelli-Avelar D.M., Bela S.R., Teixeira-Carvalho A., Carvalho M., Martins-Filho O.A., Dusse L.M. Preeclampsia: integrated network model of platelet biomarkers interaction as a tool to evaluate the hemostatic/immunological interface. Clin. Chim. Acta, 2014, Vol. 436, pp. 193-201. DOI: 10.1016/j.cca.2014.05.020

18. Graff J., Harder S., Wahl O., Scheuermann E.H., Gossmann J. Anti-inflammatory effects of clopidogrel intake in renal transplant patients: effects on platelet-leukocyte interactions, platelet CD40 ligand expression, and proinflammatory biomarkers. Clin. Pharmacol. Ther., 2005, Vol. 78, no. 5, pp. 468-476. DOI: 10.1016/j.clpt.2005.08.002

19. Harding S.A., Sommerfield A.J., Sarma J., Twomey P.J., Newby D.E., Frier B.M., Fox K.A. Increased CD40 ligand and platelet-monocyte aggregates in patients with type 1 diabetes mellitus. Atherosclerosis, 2004, Vol. 176, no. 2, pp. 321-325. DOI: 10.1016/j.atherosclerosis.2004.05.008.

20. Haselmayer P., Grosse-Hovest L., von Landenberg P., Schild H., Radsak M.P. TREM-1 ligand expression on platelets enhances neutrophil activation. Blood, 2007, Vol. 110, no. 3, pp. 1029-1035. DOI: 10.1182/blood-2007-01-069195.

21. Hellgren M. Hemostasis during normal pregnancy and puerperium. Semin. Thromb. Hemost., 2003, Vol. 29, no. 2, pp.125-130. DOI: 10.1055/s-2003-38897

22. Hottz E.D., Azevedo-Quintanilha I.G., Palhinha L., Teixeira L., Barreto E.A., Pao C.R.R., Righy C., Franco S., Souza T.M.L., Kurtz P., Bozza F.A., Bozza P.T. Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood, 2020, Vol. 136, no. 11, pp. 1330-1341. DOI: 10.1182/blood.2020007252

23. Hottz E.D., Medeiros-de-Moraes I.M., Vieira-de-Abreu A., de Assis E.F., Vals-de-Souza R., Castro-Faria-Neto H.C., Weyrich A.S., Zimmerman G.A., Bozza F.A., Bozza P.T. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J. Immunol., 2014, Vol. 193, no. 4, pp. 1864-1872. DOI: 10.4049/jimmunol.1400091

24. Hottz E.D., Quirino-Teixeira A.C., Merij L.B., Pinheiro M.B.M., Rozini S.V., Bozza F.A., Bozza P.T. Platelet-leukocyte interactions in the pathogenesis of viral infections. Platelets, 2022, Vol. 33, no. 2, pp. 200-207. DOI: 10.1080/09537104.2021.1952179.

25. Ishikawa T., Shimizu M., Kohara S., Takizawa S., Kitagawa Y., Takagi S. Appearance of WBC-platelet complex in acute ischemic stroke, predominantly in atherothrombotic infarction. J. Atheroscler. Thromb., 2012, Vol. 19, no. 5, pp. 494-501. DOI: 10.5551/jat.10637

26. Kullaya V., van der Ven A., Mpagama S., Mmbaga B.T., de Groot P., Kibiki G., de Mast Q. Platelet-monocyte interaction in Mycobacterium tuberculosis infection. Tuberculosis, 2018, Vol. 111, pp. 86-93. DOI: 10.1016/j.tube.2018.05.002

27. Liang H., Duan Z., Li D., Li D., Wang Z., Ren L., Shen T., Shao Y. Higher levels of circulating monocyte-platelet aggregates are correlated with viremia and increased sCD163 levels in HIV-1 infection. Cell. Mol. Immunol., 2015, Vol. 12, no. 4, pp. 435-443. DOI: 10.1038/cmi.2014.66

28. Loguinova M., Pinegina N., Kogan V., Vagida M., Arakelyan A., Shpektor A., Margolis L., Vasilieva E. Monocytes of different subsets in complexes with platelets in patients with myocardial infarction. Thromb. Haemost., 2018, Vol. 118, no. 11, pp. 1969-1981. DOI: 10.1055/s-0038-1673342

29. Macey M.G., Bevan S., Alam S., Verghese L., Agrawal S., Beski S., Thuraisingham R., MacCallum P.K. Platelet activation and endogenous thrombin potential in pre-eclampsia. Thromb. Res., 2010, Vol. 125, no. 3, pp. e76-e81. DOI: 10.1016/j.thromres.2009.09.013

30. Maclay J.D., McAllister D.A., Johnston S., Raftis J., McGuinnes C., Deans A., Newby D.E., Mills N.L., MacNee W. Increased platelet activation in patients with stable and acute exacerbation of COPD. Thorax, 2011, Vol. 66, no. 9, pp. 769-774. DOI: 10.1136/thx.2010.157529

31. Major H.D., Campbell R.A., Silver R.M., Branch D.W., Weyrich A.S. Synthesis of sFlt-1 by platelet-monocyte aggregates contributes to the pathogenesis of preeclampsia. Am. J. Obstet. Gynecol., 2014, Vol. 210, no. 6, pp. 547.e1-e7. DOI: 10.1016/j.ajog.2014.01.024

32. Marquardt L., Anders C., Buggle F., Palm F., Hellstern P., Grau A.J. Leukocyte-platelet aggregates in acute and subacute ischemic stroke. Cerebrovasc. Dis., 2009, Vol. 28, no. 3, pp. 276-282. DOI: 10.1159/000228710

33. Nieswandt B., Kleinschnitz C., Stoll G. Ischaemic stroke: a thrombo-inflammatory disease? J. Physiol. (Lond), 2011, Vol. 589, no. 17, pp. 4115-4123. DOI: 10.1113/jphysiol.2011.212886

34. Nirupama R., Divyashree S., Janhavi P., Muthukumar S.P., Ravindra P.V. Preeclampsia: Pathophysiology and management. J.Gynecol. Obstet. Hum.Reprod., 2021, Vol. 50, no. 2, pp. 101975. DOI: 10.1016/j.jogoh.2020.101975

35. Ozanska A., Szymczak D., Rybka J. Pattern of human monocyte subpopulations in health and disease. Scand. J. Immunol., 2020, Vol. 92, no.1, pp. e12883. DOI: 10.1111/sji.12883

36. Romero R. Prenatal medicine: the child is the father of the man. 1996. J. Matern. Fetal Neonatal Med., 2009, Vol. 22, no. 8, pp. 636-639. DOI: 10.1080/14767050902784171

37. Rondina M.T., Brewster B., Grissom C.K., Zimmerman G.A., Kastendieck D.H., Harris E.S., Weyrich A.S. In vivo platelet activation in critically ill patients with primary 2009 influenza A(H1N1). Chest, 2012, Vol. 141, no. 6, pp. 1490-1495. DOI: 10.1378/chest.11-2860

38. Sayed D., Amin N.F., Galal G.M. Monocyte-platelet aggregates and platelet micro-particles in patients with post-hepatitic liver cirrhosis. Thromb. Res., 2010, Vol. 125, no. 5, pp. e228-e233. DOI: 10.1016/j.thromres.2009.12.002

39. Schrottmaier W.C., Kral J.B., Badrnya S., Assinger A. Aspirin and P2Y12 Inhibitors in platelet-mediated activation of neutrophils and monocytes. Thromb. Haemost., 2015, Vol. 114, no. 3, pp. 478-489. DOI: 10.1160/TH14-11-0943

40. Shoji T., Koyama H., Fukumoto S., Maeno T., Yokoyama H., Shinohara K., Emoto M., Shoji T., Inaba M., Nishizawa Y. Platelet-monocyte aggregates are independently associated with occurrence of carotid plaques in type 2 diabetic patients. J. Atheroscler. Thromb., 2005, Vol. 12, no. 6, pp. 344-352. DOI: 10.5551/jat.12.344

41. Su X., Zhao W. Platelet aggregation in normal pregnancy. Clin. Chim. Acta, 2022, Vol. 536, pp. 94-97.DOI: 10.1016/j.cca.2022.09.016

42. Szklanna P.B., Parsons M.E., Wynne K., O'Connor H., Egan K., Allen S., Ni Ainle F., Maguire P. B. The platelet releasate is altered in human pregnancy. Proteomics Clin. Appl., 2019, Vol. 13, no. 3, pp. e1800162. DOI: 10.1002/prca.201800162

43. Tao L., Changfu W., Linyun L., Bing M., Xiaohui H. Correlations of platelet-leukocyte aggregates with P-selectin S290N and P-selectin glycoprotein ligand-1 M62I genetic polymorphisms in patients with acute ischemic stroke. J. Neurol. Sci., 2016, Vol. 367, pp. 95-100. DOI: 10.1016/j.jns.2016.05.046

44. Taus F., Salvagno G., Cane S., Fava C., Mazzaferri F., Carrara E., Petrova V., Barouni R.M., Dima F., Dalbeni A., Romano S., Poli G., Benati M., De Nitto S., Mansueto G., Iezzi M., Tacconelli E., Lippi G., Bronte V., Minuz P. Platelets promote thromboinflammation in SARS-CoV-2 pneumonia. Arterioscler. Thromb. Vasc. Biol., 2020, Vol. 40, no. 12, pp. 2975-2989. DOI: 10.1161/ATVBAHA.120.315175

45. Thomas M.R., Storey R.F. The role of platelets in inflammation. Thromb. Haemost., 2015, Vol. 114, no. 3, pp. 449-458. DOI: 10.1160/TH14-12-1067

46. True H., Blanton M., Sureshchandra S., Messaoudi I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunological Reviews, 2022, Vol. 308, no. 1, pp. 77-92. DOI: 10.1111/imr.13080

47. Wu Q., Ren J., Hu D., Wu X., Li G., Wang G., Gu G., Chen J., Li R., Li Y., Hong Z., Ren H., Zhao Y., Li J. Monocyte subsets and monocyte-platelet aggregates: implications in predicting septic mortality among surgical critical illness patients. Biomarkers, 2016, Vol. 21, no. 6, pp. 509-516. DOI: 10.3109/1354750X.2016.1160290

48. Yang S., Huang X., Liao J., Li Q., Chen S., Liu C., Ling L., Zhou J. Platelet-leukocyte aggregates - a predictor for acute kidney injury after cardiac surgery. Ren. Fail., 2021, Vol. 43, no. 1, pp. 1155-1162. DOI: 10.1080/0886022X.2021.1948864

49. Zahran A.M., El-Badawy O., Mohamad I.L., Tamer D.M., Abdel-Aziz S.M., Elsayh K.I. Platelet activation and platelet-leukocyte aggregates in type I diabetes mellitus. Clin. Appl. Thromb. Hemost., 2018, Vol. 24, no. 9_suppl, pp. 230S-239S. DOI: 10.1177/1076029618805861

50. Zhou X., Liu X.L., Ji W.J., Liu J.X., Guo Z.Z., Ren D., Ma Y.Q., Zeng S., Xu Z.W., Li H.X., Wang P.P., Zhang Z., Li Y.M., Benefield B.C., Zawada A.M., Thorp E.B., Lee D.C., Heine G.H. The kinetics of circulating monocyte subsets and monocyte-platelet aggregates in the acute phase of ST-elevation myocardial infarction: associations with 2-year cardiovascular events. Medicine (Baltimore), 2016, Vol. 95, no. 18, pp. e3466. DOI: 10.1097/MD.0000000000003466

51. Ziegler-Heitbrock L., Ancuta P., Crowe S., Dalod M., Grau V., Hart D. N., Leenen P. J., Liu Y. J., MacPherson G., Randolph G. J., Scherberich J., Schmitz J., Shortman K., Sozzani S., Strobl H., Zembala M., Austyn J. M., Lutz M. B. Nomenclature of monocytes and dendritic cells in blood. Blood, 2010, Vol. 116, no. 16, pp. e74-e80. DOI: 10.1182/blood-2010-02-258558


Supplementary files

1. Метаданные
Subject
Type Исследовательские инструменты
Download (16KB)    
Indexing metadata ▾
2. Титульный лист
Subject
Type Исследовательские инструменты
Download (18KB)    
Indexing metadata ▾
3. Подписи авторов
Subject
Type Исследовательские инструменты
Download (696KB)    
Indexing metadata ▾
4. Резюме
Subject
Type Исследовательские инструменты
Download (14KB)    
Indexing metadata ▾
5. Сопроводительное письмо
Subject
Type Исследовательские инструменты
Download (497KB)    
Indexing metadata ▾
6. Литература
Subject
Type Исследовательские инструменты
Download (28KB)    
Indexing metadata ▾
7. Подписи к рисункам
Subject
Type Исследовательские инструменты
Download (21KB)    
Indexing metadata ▾
8. Figure_1. Characterization of platelet-monocyte complexes in total monocyte population
Subject
Type Исследовательские инструменты
Download (685KB)    
Indexing metadata ▾
9. Figure_2. Expression of activation markers of platelet-monocyte complexes in total monocyte population
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾
10. Figure_3. Characterization of platelet-monocyte complexes in monocyte subsets
Subject
Type Исследовательские инструменты
Download (818KB)    
Indexing metadata ▾
11. Figure_4. Expression of activation markers of platelet-monocyte complexes in monocyte subsets
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾
12. Figure_5. CD162 expression in monocytes and platelet-monocyte complexes
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾
13. Figure_6. HLA-DR expression in monocytes and platelet-monocyte complexes
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾
14. Figure_7. CD86 expression in monocytes and platelet-monocyte complexes
Subject
Type Исследовательские инструменты
Download (2MB)    
Indexing metadata ▾
15. Figure_8. TREM-1 expression in monocytes and platelet-monocyte complexes
Subject
Type Исследовательские инструменты
Download (2MB)    
Indexing metadata ▾
16. Figure_9. CD11b expression in monocytes and platelet-monocyte complexes
Subject
Type Исследовательские инструменты
Download (1MB)    
Indexing metadata ▾
17. 2941
Subject
Type Other
Download (3MB)    
Indexing metadata ▾

Review

For citations:


Pavlov O., Chepanov S., Peretyatko I., Mozgovaya E., Kogan I., Selkov S. PLATELET-MONOCYTE COMPLEXES AND THEIR POTENTIAL ROLE IN THE PATHOGENESIS OF PREECLAMPSIA. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-PCA-2941

Views: 387


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)