Production of factors involved into fibrosis regulation by various types of human macrophages
https://doi.org/10.15789/1563-0625-POF-1954
Abstract
Macrophages (Mφ) play a key role in regulation of fibrogenesis, including proliferation of fibroblasts and myofibroblasts, differentiation of progenitor cells into myofibroblasts, as well as synthesis and secretion of the extracellular matrix, mainly collagen. The direction of the Mφ effects (stimulation or suppression) is determined by a number of factors, including the stage of the fibrotic process and the Mφ functional phenotype dependent on the signals of microenvironment. One of the feasible ways of the fibrogenesis regulating is the secretion of pro- or antifibrotic factors such as matrix metalloproteinases, inhibitors of metalloproteinases and some cytokines. However, existing data on ability to secrete these factors by various subpopulations of human Mφ are rare and controversial. The aim of this study was to characterize the ability of human M1, M2a, and M2c Mφ differentiating in the presence of GM-CSF to produce matrix metalloproteinases (MMP-9) and their tissue inhibitors (TIMP-1), as well as some cytokines and growth factors. As compared to M2 macrophages, the M1 macrophages polarized by lipopolysaccharide produced significantly more TNFα, IL-6 and IL-2 that have pro-inflammatory activity and are able to initiate a fibrotic process. In turn, M2a Mφ stimulated by IL-4 were characterized by a high level of VEGF production and, at the same time, low levels of TNFα and IL-6, which may determine the important role of these cells at the proliferative stage of fibrosis and stimulation of extracellular matrix deposition. Finally, M2c Mφ polarized by dexamethasone, exhibited the М2а-like cytokine profile, i.e., VEGF was actively produced against the background of low TNFα and IL-6 synthesis. Moreover, all three Mφ subpopulations did actively secrete MMP-9 and TIMP-1, without significant difference in production of these factors. However, M2c Mφ differed by a significantly higher MMP-9/TIMP-1 ratio index compared to M1 and M2a Mφ, and it is crucial at the rearrangement stage of the fibrotic process. Thus, the production of MMP-9 and TIMP-1, together with other pleiotropic cytokines and growth factors by various Mφ subtypes may reflect their role in regulation of fibrotic process at various stages.
About the Authors
A. A. MaksimovaRussian Federation
Maksimova Aleksandra A. - Postgraduate Student, Laboratory of Cellular Immunotherapy.
630099, Novosibirsk, Yadrintsevskaya str., 14, Phone: 7 (383) 222-26-74, Fax: 7 (383) 222-70-28Competing Interests: not
E. Ya. Shevela
Russian Federation
PhD, MD (Medicine), Leading Research Associate, Laboratory of Cellular Immunotherapy.
NovosibirskCompeting Interests: not
L. V. Sakhno
Russian Federation
PhD (Biology), Senior Research Associate, Laboratory of Cellular Immunotherapy.
NovosibirskCompeting Interests: not
A. A. Ostanin
Russian Federation
PhD, MD (Medicine), Professor, Main Research Associate, Laboratory of Cellular Immunotherapy.
NovosibirskCompeting Interests: not
E. R. Chernykh
PhD, MD (Medicine), Professor, Corresponding Member, Russian Academy of Sciences, Head, Laboratory of Cellular Immunotherapy.
NovosibirskCompeting Interests: not
References
1. Adhyatmika A. Putri, K. S. S., Beljaars, L., Melgert, B. N. The elusive antifibrotic macrophage. Front. Med., 2015, Vol.2, pp. 1–11. DOI: 10.3389/fmed.2015.00081
2. Chanteux H. Guisset, A. C., Pilette, C., Sibille, Y. LPS induces IL-10 production by human alveolar macrophages via MAPKinases- and Sp1-dependent mechanisms. Respir. Res., 2007, Vol.8, pp. 1–10. DOI: 10.1186/1465-9921-8-71
3. Craig V.J., Zhang L., Hagood J.S., Owen C.A. Matrix metalloproteinases as therapeutic targets for idiopathic pulmonary fibrosis. Am. J. Respir. Cell. Mol. Biol., 2015, Vol.53, no. 5, pp. 585–600. DOI:10.1165/rcmb.2015-0020TR
4. Doersch K.M., DelloStritto D.J., Newell-Rogers M.K. The contribution of interleukin-2 to effective wound healing. Exp. Biol. Med. (Maywood), 2017, Vol.242, no. 4, pp. 384–396. DOI:10.1177/1535370216675773
5. Duan J., Liu, X., Wang, H., Guo, S. W. The M2a macrophage subset may be critically involved in the fibrogenesis of endometriosis in mice. Reprod. Biomed. Online, 2018, Vol.37, no.3, pp. 254–268. DOI: 10.1016/j.rbmo.2018.05.017
6. Feng Y., Sun Z.L., Liu S.Y., Wu J.J., Zhao B.H., Lv G.Z., Du Y., Yu S., Yang M.L., Yuan F.L., Zhou X.J. Direct and Indirect Roles of Macrophages in Hypertrophic Scar Formation. Front. Physiol., 2019, no.10, p.1101. DOI:10.3389/fphys.2019.01101
7. Fielding C.A., Jones G.W., McLoughlin R.M., McLeod L., Hammond V.J., Uceda J., Williams A.S., Lambie M., Foster T.L., Liao C., Rice C.M., Greenhill C.J., Colmont C.S., Hams E., Coles B., Kift-Morgan A., Newton Z., Craig K.J., Williams J.D., Williams G.T., Davies S.J., Humphreys I.R., O’Donnell V.B., Taylor P.R., Jenkins B.J., Topley N., Jones S.A. Interleukin-6 Signaling Drives Fibrosis in Unresolved Inflammation. Immunity, 2014, Vol. 40, no.1, pp. 40–50. DOI: 10.1016/j.immuni.2013.10.022
8. Fraternale A., Brundu S., Magnani M. Polarization and Repolarization of Macrophages. J. Clin. Cell. Immunol., 2015, Vol.06, no.02, pp. 1–10. DOI: 10.4172/2155-9899.1000319
9. Gensel J.C., Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res., 2015, Vol. 1619, pp. 1–11. DOI: 10.1016/j.brainres.2014.12.045
10. Hamada N., Kuwano K., Yamada M., Hagimoto N., Hiasa K., Egashira K., Nakashima N., Maeyama T., Yoshimi M., Nakanishi Y. Anti-vascular endothelial growth factor gene therapy attenuates lung injury and fibrosis in mice. J. Immunol., 2005, Vol.175, no. 2, pp.1224-1231. DOI: 10.4049/jimmunol.175.2.1224
11. Hernandez-Munoz I., de la Torre, P., Sanchez-Alcazar, J.A., Garcia, I., Santiago, E., Munoz-Yague, M.T., Solis-Herruzo, J.A. Tumor necrosis factor alpha inhibits collagen alpha 1(I) gene expression in rat hepatic stellate cells through a G protein. Gastroenterology, 1997, Vol.113, no. 2, pp. 625–640. DOI: 10.1053/gast.1997.v113.pm9247485
12. Hesketh M., Sahin K.B., West Z.E., Murray R.Z. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing. Int. J. Mol. Sci., 2017, Vol.18, no.7, p.1545. DOI: 10.3390/ijms18071545
13. Huang W.C., Sala-Newby G.B., Susana A., Johnson J.L., Newby A.C. Classical macrophage activation up-regulates several matrix metalloproteinases through mitogen activated protein kinases and nuclear factor-κB. PLoS ONE, 2012, Vol.7, no.8. DOI: 10.1371/journal.pone.0042507
14. Huaux F., Liu T., McGarry B., Ullenbruch M., Phan S.H. Dual roles of IL-4 in lung injury and fibrosis. J. Immunol., 2003, Vol.170, no.4, pp. 2083-92. DOI: https://doi.org/10.4049/jimmunol.170.4.2083
15. Kang R, Tang D, Lotze MT, Zeh Iii HJ. Autophagy is required for IL-2-mediated fibroblast growth. Exp. Cell. Res., 2013, Vol.319, no.4, pp.556-565. DOI: 10.1016/j.yexcr.2012.11.012
16. Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature, 2016, Vol.529, no.7586, pp. 307-315. DOI: 10.1038/nature17039.
17. Li B., Liu Y.M., Yan Y., Yang N., Gao J., Jiang T., Shang X.Q., Tian F.M., Ding J.B., Ma X.M. Effect of different types of macrophages on hepatic fibrosis in Echinococcus Granulosus mice. Biomed. Pharmacother., 2019, Vol.117. DOI: 10.3389/fimmu.2018.01175
18. Lim D.H., Cho J.Y., Miller M., McElwain K., McElwain S., Broide D.H. Reduced peribronchial fibrosis in allergen-challenged MMP-9-deficient mice. Am. J. Physiol. Lung Cell. Mol. Physiol., 2006, Vol. 291, no.2, pp. L265-L271. DOI: 10.1152/ajplung.00305.2005
19. Liu X. Inflammatory cytokines augments TGF-b1–induced epithelial–mesenchymal transition in A549 cells by up-regulating TbR-I. Cell. Motil. Cytoskelet, 2008, no.65, pp.935–944. DOI: 10.1002/cm.20315
20. Lovelock J.D., Baker A.H., Gao F., Dong J.F., Bergeron A.L., McPheat W., Sivasubramanian N., Mann D.L. Heterogeneous effects of tissue inhibitors of matrix metalloproteinases on cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol., 2005, Vol.288, no.2, pp. H461-8. DOI: 10.1152/ajpheart.00402.2004
21. Lu Y, Liu S, Zhang S, Cai G., Jiang H., Su H., Li X., Hong Q., Zhang X., Chen X. Tissue inhibitor of metalloproteinase-1 promotes NIH3T3 fibroblast proliferation by activating p-Akt and cell cycle progression. Mol. Cells, 2011, Vol.31, no.3, pp. 225–230. DOI:10.1007/s10059-011-0023-9
22. Matsumoto Y., Park I.K., Kohyama K. Matrix metalloproteinase (MMP)-9, but not MMP-2, is involved in the development and progression of c protein-induced myocarditis and subsequent dilated cardiomyopathy. J. Immunol., 2009, Vol.183, no.7, pp. 4773-4781. DOI: 10.4049/jimmunol.0900871
23. Meng X.M., Nikolic-Paterson D.J., Lan H.Y. TGF-β: the master regulator of fibrosis. Nat. Rev. Nephrol., 2016, Vol.12, no.6, pp.325-338. DOI: 10.1038/nrneph.2016.48
24. Nikonova A.A., Khaitov M.R., Khaitov R.M. Characteristics and role of macrophages in pathogenesis of acute and chronic lung diseases. Med. Immunol., 2017, Vol.19, no.6, pp. 657–672.DOI: 10.15789/1563-0625-2017-6-657-672
25. Pakshir P., Hinz B. The big five in fibrosis: Macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol., 2018, Vol.68–69, pp. 81–93. DOI: 10.1016/j.matbio.2018.01.019
26. Plas M.J.A. van der, Dissel J.T. van, Nibbering P.H. Maggot Secretions Skew Monocyte-Macrophage Differentiation Away from a Pro-Inflammatory to a Pro-Angiogenic Type. PLoS ONE, 2009, Vol.4, no.11. DOI: 10.1371/journal.pone.0008071
27. Redente E.F., Keith R.C., Janssen W., Henson P.M., Ortiz L.A., Downey G.P., Bratton D.L., Riches D.W. Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages. Am. J. Respir. Cell. Mol. Biol., 2014, Vol.50, no.4, pp.825-837. DOI: 10.1165/rcmb.2013-0386OC.
28. Sindrilaru A., Peters T., Wieschalka S., Baican C., Baican A., Peter H., Hainzl A., Schatz S., Qi Y., Schlecht A., Weiss J.M., Wlaschek M., Sunderkötter C., Scharffetter-Kochanek K. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J. Clin. Invest., 2011, Vol.121, no.3, pp. 985–997. DOI: 10.1172/JCI44490
29. Sziksz E., Pap D., Lippai R., Béres N.J., Fekete A., Szabó A.J., Vannay Á. Fibrosis Related Inflammatory Mediators: Role of the IL-10 Cytokine Family. Mediators inflamm., 2015, p. 764641. DOI: 10.1155/2015/764641
30. Weng H.-L., Wang B.-E., Jia J.-D., Wu W.-F., Xian J.-Z., Mertens P.R., Cai W.-M., Dooley S. Effect of interferon-gamma on hepatic fibrosis in chronic hepatitis B virus infection: a randomized controlled study. Clin. gastroenterol. hepatol., 2005, Vol.3, no.8, pp. 819–28. DOI: 10.1016/S1542-3565(05)00404-0
31. Westermann D., Linthout S., Dhayat S., Dhayat N., Schmidt A., Noutsias M., Song X.-Y., Spillmann F., Riad A., Schultheiss H.-P., Tschöpe C. Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res. Cardiol., 2007, Vol.102, no.6, pp. 500–507. DOI: 10.1007/s00395-007-0673-0
32. Wynn T., Barron L. Macrophages: Master Regulators of Inflammation and Fibrosis. Semin. Liver. Dis., 2010, Vol. 30, no.3, pp. 245–257. DOI: 10.1055/s-0030-1255354
33. Yang L., Kwon J., Popov Y., Gajdos G.B., Ordog T., Brekken R.A., Mukhopadhyay D., Schuppan D., Bi Y., Simonetto D., Shah V.H. Vascular Endothelial Growth Factor Promotes Fibrosis Resolution and Repair in Mice. Gastroenterology, 2014, Vol.146, no.5, pp. 1339–1350.e1. DOI: 10.1053/j.gastro.2014.01.061
34. Yang Y.M., Seki E. TNFα in liver fibrosis. Curr. pathobiol. rep., 2015, Vol.3, no.4, pp. 253–261. DOI: 10.1007/s40139-015-0093-z
Supplementary files
![]() |
1. Метаданные | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13KB)
|
Indexing metadata ▾ |
![]() |
2. Титульный лист | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13KB)
|
Indexing metadata ▾ |
![]() |
3. Резюме | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(16KB)
|
Indexing metadata ▾ |
![]() |
4. Рисунок_1. Продукция ММР-9 и TIMP-1 различными субпопуляциями макрофагов | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(65KB)
|
Indexing metadata ▾ |
![]() |
5. Рисунок_2. Содержание цитокинов в супернатантах 7-дневных культур М1, М2а, М2с макрофагов | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(115KB)
|
Indexing metadata ▾ |
![]() |
6. Список литературы | |
Subject | ||
Type | Other | |
Download
(B)
|
Indexing metadata ▾ |
![]() |
7. Список литературы | |
Subject | ||
Type | Other | |
Download
(29KB)
|
Indexing metadata ▾ |
![]() |
8. Перевод названий рисунков и примечаний | |
Subject | ||
Type | Other | |
Download
(12KB)
|
Indexing metadata ▾ |
Review
For citations:
Maksimova A.A., Shevela E.Ya., Sakhno L.V., Ostanin A.A., Chernykh E.R. Production of factors involved into fibrosis regulation by various types of human macrophages. Medical Immunology (Russia). 2020;22(4):625-632. (In Russ.) https://doi.org/10.15789/1563-0625-POF-1954