Preview

Medical Immunology (Russia)

Advanced search

A nonspecific component of BCG vaccination

https://doi.org/10.15789/1563-0625-2019-6-1015-1022

Abstract

Decades of research on the mechanisms of immunological protection against Mycobacterium tuberculosis, the causative agent of tuberculosis (ТВ), did not allow us to draw a final conclusion about the relative importance of specific pathways when forming protective immunological memory. The BCG vaccine, being the only so far approved tuberculosis vaccine protects children from severe forms of ТВ infection. It is still unclear why BCG does not save from primary infection, reactivation of ТВ and latent carrying. At the same time, the association between BCG vaccination and a reduced risk of non-mycobacterial infections, allergies, cancer and general mortality has been demonstrated. Such nonspecific effects of BCG are dependent mostly on the innate immune cells, rather than on specific memory Т cells. There is evidence of an adjuvant effect of BCG vaccination with respect to the humoral immune response to a variety of childhood vaccines. This review is focused mostly on the analysis of works aimed at studying the relatively recently identified mechanism for generating the non-specific effect of the BCG vaccine, i.e., development of induced natural immunity. This phenomenon is mediated by NOD2 signaling and epigenetic macrophage modification and, due to BCG vaccination, leads to enhanced capacity of macrophages to produce TNFa and IL-6 in response to stimulation by BCG-nonrelated microorganisms or TLR ligands. Induced immunity does not only reshape transmission of immunological signals between the cells of innate immune system, but also induces profound changes in the balance of metabolic pathways, such as glycolysis, oxidative phosphorylation, metabolism of amino acids and fatty acids, being accompanied by enhanced ability of innate immune cells to respond to the secondary stimulation. Realizing these intracellular processes opens up new opportunities for therapeutic intervention into the regulation of immune processes accompanying infectious and inflammatory diseases. In general, an in-depth study of the non-specific component of BCG vaccination should lead to emergence of new ideas about the mechanisms of its protective action, as well as affect development of a new ТВ vaccine. This knowledge can stimulate changes in global vaccination policy, aiming for optimization of vaccination benefits and reduction of childhood morbidity and mortality, as well as decrease of the post-vaccinal complications.

About the Authors

V. V. Yeremeev
Federal State Budgetary Scientific Institution “Central Tuberculosis Research Institute” (CTRI)
Russian Federation

Vladimir V. Yeremeev - PhD, MD, DSci, Deputy Director.

107564, Moscow, Yauza all., 2, Phone: 7 (499) 785-91-59


Competing Interests: not


G. S. Shepelkova
Federal State Budgetary Scientific Institution “Central Tuberculosis Research Institute” (CTRI)
Russian Federation

Galina S Shepelkova - PhD, Senior Staff Scientist Laboratory for Clinical Immunogenetics and Cell Technologies.

Moscow


Competing Interests: not


A. E. Ergeshov
Federal State Budgetary Scientific Institution “Central Tuberculosis Research Institute” (CTRI)
Russian Federation

Atadzhan E. Ergeshov - MD, DSci, Professor, Director.

Moscow


Competing Interests: not


References

1. Abubakar I., Pimpin L., Ariti C., Beynon R., Mangtani P, Sterne J.A., Fine PE., Smith P.G., Lipman M., Elliman D., Watson J.M., Drumright L.N., Whiting P.F., Vynnycky E., Rodrigues L.C. Systematic review and metaanalysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol. Assess., 2013, Vol. 17, no. 37, pp. 1-372.

2. Alm J.S., Sanjeevi C.B., Miller E.N., Dabadghao P, Lilja G., Pershagen G., Blackwell J.M., Scheynius A. Atopy in children in relation to BCG vaccination and genetic polymorphisms at SLC11A1 (formerly NRAMP1) and D2S1471. Genes Immun., 2002, Vol. 3, no. 2, pp. 71-77.

3. Arts R.J.W, Blok B.A., Aaby P, Joosten L.A., de Jong D., van der Meer J.W, Benn C.S., van Crevel R., Netea M.G. Long-term in vitro and in vivo effects of y-irradiated BCG on innate and adaptive immunity. J. Leukoc. Biol., 2015, Vol. 98, no. 6, pp. 995-1001.

4. Arts R.J.W., Carvalho A., la Rocca C., Palma C., Rodrigues F., Silvestre R., Kleinnijenhuis J., Lachmandas E., Gonqalves L.G., Belinha A., Cunha C., Oosting M., Joosten L.A.B., Matarese G., van Crevel R., Netea M.G. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep., 2016, Vol. 17, no. 10, pp. 2562-2571.

5. Arts R.J.W., Moorlag S.J.C.F.M., Novakovic B., Li Y., Wang S.Y., Oosting M., Kumar V., Xavier R.J., Wijmenga C., Joosten L.A.B., Reusken C.B.E.M., Benn C.S., Aaby P, Koopmans M.P, Stunnenberg H.G., van Crevel R., Netea M.G. BCG Vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe, 2018, Vol. 23, no. 1, pp. 89-100.e5.

6. Arts R.J.W., Novakovic B., ter Horst R., Carvalho A., Bekkering S., Lachmandas E., Rodrigues F., Silvestre R., Cheng S.C., Wang S.Y., Habibi E., Gonqalves L.G., Mesquita I., Cunha C., van Laarhoven A., van de Veerdonk F.L., Williams D.L., van der Meer J.W., Logie C., O’Neill L.A., Dinarello C.A., Riksen N.P, van Crevel R., Clish C., Notebaart R.A, Joosten L.A., Stunnenberg H.G., Xavier R.J., Netea M.G. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab., 2016, Vol. 24, no. 6, pp. 807-819.

7. Auguste P, Tsertsvadze A., Pink J., Court R., McCarthy N., Sutcliffe P, Clarke A. Comparing interferon-gamma release assays with tuberculin skin test for identifying latent tuberculosis infection that progresses to active tuberculosis: systematic review and meta-analysis. BMC Infect. Dis., 2017, Vol. 17, no. 1, p. 200.

8. Barlan I.B., Tukenmez F., Bahqeciler N.N., Ba^aran M.M. The impact of in vivo Calmette-Guerin Bacillus administration on in vitro IgE secretion in atopic children. J. Asthma, 2002, Vol. 39, no. 3, pp. 239-246.

9. Bekkering S., Arts R.J.W., Novakovic B., Kourtzelis I., van der Heijden C.D.C.C., Li Y., Popa C.D., ter Horst R., van Tuijl J., Netea-Maier R.T., van de Veerdonk F.L., Chavakis T., Joosten L.A.B., van der Meer J.W.M., Stunnenberg H., Riksen N.P., Netea M.G. Metabolic induction of trained immunity through the mevalonate pathway. Cell, 2018, Vol. 172, no. 1-2, pp. 135-146.e9.

10. Blok B.A., Arts R.J.W., van Crevel R., Benn C.S., Netea M.G. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J. Leukoc. Biol., 2015, Vol. 98, no. 3, pp. 347-356.

11. Buffen K., Oosting M., Quintin J., Ng A., Kleinnijenhuis J., Kumar V., van de Vosse E., Wijmenga C., van Crevel R., Oosterwijk E., Grotenhuis A.J., Vermeulen S.H., Kiemeney L.A., van de Veerdonk F.L., Chamilos G., Xavier R., van der Meer J.W., Netea M.G., Joosten L.A. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. Deretic V, ed. PLoS Pathog., 2014, Vol. 10, no. 10, e1004485. doi: 10.1371/journal.ppat.1004485.

12. Byrne A.L., Marais B.J., Mitnick C.D., Garden F.L., Lecca L., Contreras C., Yauri Y., Garcia F., Marks G.B. Asthma and atopy prevalence are not reduced among former tuberculosis patients compared with controls in Lima, Peru. BMC Pulm. Med., 2019, Vol. 19, no. 1, p. 40.

13. Cavallo G.P., Elia M., Giordano D., Baldi C., Cammarota R. Decrease of specific and total IgE levels in allergic patients after BCG vaccination: preliminary report. Arch. Otolaryngol. Head Neck Surg., 2002, Vol. 128, no. 9, pp. 1058-1060.

14. Cheng S.-C., Quintin J., Cramer R.A., Shepardson K.M., Saeed S., Kumar V, Giamarellos-Bourboulis E.J., Martens J.H., Rao A., Aghajanirefah A., Manjeri G.R., Li Y., Ifrim D.C., Arts R.J., van der Veer B.M., Deen PM., Logie C., O’Neill L.A., Willems P, van de Veerdonk F.L., van der Meer J.W., Ng A., Joosten L.A., Wijmenga C., Stunnenberg H.G., Xavier R.J., Netea M.G. mTOR- and HIF-1a-mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, Vol. 345, no. 6204, 1250684. doi: 10.1126/science.1250684.

15. Coley W.B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin. Orthop. Relat. Res., 1991, Vol. 262, pp. 3-11.

16. Coley W.B. Treatment of inoperable malignant tumors with the toxines of erysipelas and the bacillus prodigiosus. Am. J. Med. Sci., 1894, Vol. 108, ed. 1. Accessed September 18, 2019. Available at: http://search.proquest.com/openview/2b4fb5bca8b11309314814797b826375/1?pq-origsite=gscholar&cbl=41361.

17. Deng Y., Li W., Luo Y., Wang L.J., Xie X.H., Luo J., Luo Z.X., Zhao X.D., Fu Z., Liu E.M. Inhibition of IFN-y promotes anti-asthma effect of Mycobacterium bovis Bacillus Calmette-Guerin neonatal vaccination: a murine asthma model. Vaccine, 2014, Vol. 32, no. 18, pp. 2070-2078.

18. Domlnguez-Andres J., Joosten L.A., Netea M.G. Induction of innate immune memory: the role of cellular metabolism. Curr. Opin. Immunol., 2019, Vol. 56, pp. 10-16.

19. Eifan A.O., Akkoc T., Ozdemir C., Bahceciler N.N., Barlan I.B. No association between tuberculin skin test and atopy in a bacillus Calmette-Guerin vaccinated birth cohort. Pediatr. Allergy Immunol., 2009, Vol. 20, no. 6, pp. 545-550.

20. El-Zein M., Conus F., Benedetti A., Menzies D., Parent M.-E., Rousseau M.-C. Association between bacillus Calmette-Guerin vaccination and childhood asthma in the Quebec birth cohort on immunity and health. Am. J. Epidemiol., 2017, Vol. 186, no. 3, pp. 344-355.

21. Freyne B., Donath S., Germano S., Gardiner K., Casalaz D., Robins-Browne R.M., Amenyogbe N., Messina N.L., Netea M.G., Flanagan K.L., Kollmann T., Curtis N. Neonatal BCG vaccination influences cytokine responses to toll-like receptor ligands and heterologous antigens. J. Infect. Dis., 2018, Vol. 217, no. 11, pp. 1798-1808.

22. Gruenbacher G., Thurnher M. Mevalonate metabolism in cancer stemness and trained immunity. Front. Oncol., 2018, Vol. 8, p. 394.

23. Guerra-Maupome M., Vang D.X., McGill J.L. Aerosol vaccination with Bacille Calmette-Guerin induces a trained innate immune phenotype in calves. PLoS ONE, 2019, Vol. 14, no. 2, e0212751. doi:10.1371/journal.pone.0212751.

24. Higgins J.P.T., Soares-Weiser K., Lopez-Lopez J.A., Kakourou A., Chaplin K., Christensen H., Martin N.K., Sterne J.A., Reingold A.L. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ, 2016, Vol. 355, 15170. doi:10.1136/bmj.i5170.

25. Hirve S., Bavdekar A., Juvekar S., Benn C.S., Nielsen J., Aaby P. Non-specific and sex-differential effects of vaccinations on child survival in rural western India. Vaccine, 2012, Vol. 30, no. 50, pp. 7300-7308.

26. Jensen K.J., Larsen N., Biering-Sorensen S., Andersen A., Eriksen H.B., Monteiro I., Hougaard D., Aaby P, Netea M.G., Flanagan K.L., Benn C.S. Heterologous immunological effects of early BCG vaccination in low-birth-weight infants in Guinea-Bissau: a randomized-controlled trial. J. Infect. Dis., 2015, Vol. 211, no. 6, pp. 956-967.

27. Kaufmann E., Sanz J., Dunn J.L., Khan N., Mendoni^a L.E., Pacis A., Tzelepis F., Pernet E., Dumaine A., Grenier J.C., Mailhot-Leonard F., Ahmed E., Belle J., Besla R., Mazer B., King I.L., Nijnik A., Robbins C.S., Barreiro L.B., Divangahi M. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell, 2018, Vol. 172, no. 1-2, pp. 176-190.e19.

28. Kleinnijenhuis J., Quintin J., Preijers F., Joosten L.A., Jacobs C., Xavier R.J., van der Meer J.W., van Crevel R., Netea M.G. BCG-induced trained immunity in NK cells: Role for non-specific protection to infection. Clin. Immunol., 2014, Vol. 155, no. 2, pp. 213-219.

29. Kleinnijenhuis J., Quintin J., Preijers F., Joosten L.A., Ifrim D.C., Saeed S., Jacobs C., van Loenhout J., de Jong D., Stunnenberg H.G., Xavier R.J., van der Meer J.W., van Crevel R., Netea M.G. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. USA, 2012, Vol. 109, no. 43, pp. 17537-17542.

30. Kleinnijenhuis J., Quintin J., Preijers F., Benn C.S., Joosten L.A., Jacobs C., van Loenhout J., Xavier R.J., Aaby P, van der Meer J.W., van Crevel R., Netea M.G. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J. Innate Immun., 2014, Vol. 6, no. 2, pp. 152-158.

31. Koeken V.A.C.M., Verrall A.J., Netea M.G., Hill PC., van Crevel R. Trained innate immunity and resistance to Mycobacterium tuberculosis infection. Clin. Microbiol. Infect., 2019, Vol. 25, no. 12, pp. 1468-1472.

32. Kawai K., Miyazaki J., Joraku A., Nishiyama H., Akaza H. Bacillus Calmette-Guerin (BCG) immunotherapy for bladder cancer: Current understanding and perspectives on engineered BCG vaccine. Cancer Sci., 2013, Vol. 104, no. 1, pp. 22-27.

33. Ke X., Huang J., Chen Q., Hong S., Zhu D. Protective effects of combined Mycobacterium bovis BCG and interleukin-12 vaccination on airway inflammation in a murine model of allergic asthma. Clin. Invest. Med., 2010, Vol. 33, no. 3, pp. E196-202.

34. Levy O., Wynn J.L. A prime time for trained immunity: innate immune memory in newborns and infants. Neonatology, 2014, Vol. 105, no. 2, pp. 136-141.

35. Mangtani P, Nguipdop-Djomo P, Keogh R.H., Trinder L., Smith P.G., Fine PE., Sterne J., Abubakar I., Vynnycky E., Watson J., Elliman D., Lipman M., Rodrigues L.C. Observational study to estimate the changes in the effectiveness of bacillus Calmette-Guerin (BCG) vaccination with time since vaccination for preventing tuberculosis in the UK. Health Technol. Assess., 2017, Vol. 21, no. 39, pp. 1-54.

36. Mitroulis I., Ruppova K., Wang B., Chen L.S., Grzybek M., Grinenko T., Eugster A., Troullinaki M., Palladini A., Kourtzelis I., Chatzigeorgiou A., Schlitzer A., Beyer M., Joosten L.A.B., Isermann B., Lesche M., Petzold A., Simons K., Henry I., Dahl A., Schultze J.L., Wielockx B., Zamboni N., Mirtschink P, Coskun U., Hajishengallis G., Netea M.G., Chavakis T. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell, 2018, Vol. 172, no. 1-2, pp. 147-161.e12.

37. Moliva J.I., Turner J., Torrelles J.B. Immune responses to bacillus Calmette-Guerin vaccination: why do they fail to protect against Mycobacterium tuberculosis? Front. Immunol., 2017, Vol. 8, p. 407.

38. Moulton L.H., Rahmathullah L., Halsey N.A., Thulasiraj R.D., Katz J., Tielsch J.M. Evaluation of non-specific effects of infant immunizations on early infant mortality in a southern Indian population. Trop. Med. Int. Health, 2005, Vol. 10, no. 10, pp. 947-955.

39. Nemes E., Geldenhuys H., Rozot V, Rutkowski K.T., Ratangee F., Bilek N., Mabwe S., Makhethe L., Erasmus M., Toefy A., Mulenga H., Hanekom W.A., Self S.G., Bekker L.G., Ryall R., Gurunathan S., DiazGranados C.A., Andersen P, Kromann I., Evans T., Ellis R.D., Landry B., Hokey D.A., Hopkins R., Ginsberg A.M., Scriba T.J., Hatherill M.; C-040-404 Study Team. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N. Engl. J. Med., 2018, Vol. 379, no. 2, pp. 138-149.

40. Nicolle D., Fremond C., Pichon X., Bouchot A., Maillet I., Ryffel B., Quesniaux VJ. Long-term control of Mycobacterium bovis BCG infection in the absence of Toll-like receptors (TLRs): Investigation of TLR2-, TLR6-, or TLR2-TLR4-deficient mice. Infect. Immun., 2004, Vol. 72, no. 12, pp. 6994-7004.

41. Omenaas E., Jentoft H.F., Vollmer W.M., Buist A.S., Gulsvik A. Absence of relationship between tuberculin reactivity and atopy in BCG vaccinated young adults. Thorax, 2000, Vol. 55, no. 6, pp. 454-458.

42. Ota M.O.C., Vekemans J., Schlegel-Haueter S.E., Fielding K., Sanneh M., Kidd M., Newport M.J., Aaby P, Whittle H., Lambert PH., McAdam K.P, Siegrist C.A., Marchant A. Influence of Mycobacterium bovis bacillus Calmette-Guerin on antibody and cytokine responses to human neonatal vaccination. J. Immunol., 2002, Vol. 168, no. 2, pp. 919-925.

43. Pieraerts C., Martin V., Jichlinski P., Nardelli-Haefliger D., Derre L. Detection of functional antigen-specific T cells from urine of non-muscle invasive bladder cancer patients. Oncoimmunology, 2012, Vol. 1, no. 5, pp. 694-698.

44. Ritz N., Mui M., Balloch A., Curtis N. Non-specific effect of Bacille Calmette-Guerin vaccine on the immune response to routine immunisations. Vaccine, 2013, Vol. 31, no. 30, pp. 3098-3103.

45. Rodrigues A., Fischer T.K., Valentiner-Branth P., Nielsen J., Steinsland H., Perch M., Garly M.L., Molbak K., Aaby P. Community cohort study of rotavirus and other enteropathogens: are routine vaccinations associated with sex-differential incidence rates? Vaccine, 2006, Vol. 24, no. 22, pp. 4737-4746.

46. Rousseau M.-C., Parent M.-E., St-Pierre Y. Potential health effects from non-specific stimulation of the immune function in early age: the example of BCG vaccination. Pediatr. Allergy Immunol., 2008, Vol. 19, no. 5, pp. 438-448.

47. Shirakawa T., Enomoto T., Shimazu S., Hopkin J.M. The inverse association between tuberculin responses and atopic disorder. Science, 1997, Vol. 275, no. 5296, pp. 77-79.

48. Smith S.G., Kleinnijenhuis J., Netea M.G., Dockrell H.M. Whole blood profiling of bacillus Calmette-Guerin-induced trained innate immunity in infants identifies epidermal growth factor, IL-6, platelet-derived growth factor-AB/BB, and natural killer cell activation. Front. Immunol., 2017, Vol. 8, p. 644.

49. Strachan D.P. Family size, infection and atopy: the first decade of the “hygiene hypothesis” Thorax., 2000, Vol. 55, Suppl. 1, pp. S2-10.

50. Sylvester R.J., van der Meijden A.P.M., Lamm D.L. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J. Urol., 2002, Vol. 168, no. 5, pp. 1964-1970.

51. Trunz B.B., Fine P., Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet, 2006, Vol. 367, no. 9517, pp. 1173-1180.

52. Verma D., Parasa V.R., Raffetseder J., Martis M., Mehta R.B., Netea M., Lerm M. Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects. Sci. Rep., 2017, Vol. 7, no. 1, 12305. doi: 10.1038/s41598-017-12110-2.

53. Walk J., de Bree L.C.J., Graumans W., Stoter R., van Gemert G.J., van de Vegte-Bolmer M., Teelen K., Hermsen C.C., Arts R.J.W., Behet M.C., Keramati F., Moorlag S.J.C.F.M., Yang A.S.P., van Crevel R., Aaby P., de Mast Q., van der Ven A.J.A.M., Stabell Benn C., Netea M.G., Sauerwein R.W. Outcomes of controlled human malaria infection after BCG vaccination. Nat. Commun., 2019, Vol. 10, no. 1, p. 874.

54. World Health Organization. BCG vaccine: WHO position paper, February 2018 - Recommendations. Vaccine, 2018, Vol. 36, no. 24, pp. 3408-3410.

55. Yoneyama H., Suzuki M., Fujii K., Odajima Y. The effect of DPT and BCG vaccinations on atopic disorders. Arerugi, 2000, Vol. 49, no. 7, pp. 585-592.


Supplementary files

1. Метаданные
Subject метаданные
Type Other
Download (13KB)    
Indexing metadata ▾
2. подписи
Subject подписи
Type Other
Download (45KB)    
Indexing metadata ▾
3. Титульный лист
Subject титульный лист
Type Other
Download (13KB)    
Indexing metadata ▾
4. Резюме
Subject
Type Other
Download (13KB)    
Indexing metadata ▾
5. литература
Subject
Type Other
Download (31KB)    
Indexing metadata ▾

Review

For citations:


Yeremeev V.V., Shepelkova G.S., Ergeshov A.E. A nonspecific component of BCG vaccination. Medical Immunology (Russia). 2019;21(6):1015-1022. (In Russ.) https://doi.org/10.15789/1563-0625-2019-6-1015-1022

Views: 1400


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)