Preview

Медицинская иммунология

Расширенный поиск

Неспецифическая составляющая вакцинации BCG

https://doi.org/10.15789/1563-0625-2019-6-1015-1022

Полный текст:

Аннотация

Десятилетия исследования механизмов иммунологической защиты от возбудителя туберкулеза (ТБ), Mycobacterium tuberculosis, не позволяют сделать окончательный вывод об относительной значимости конкретных путей формирования протективной иммунологической памяти. Единственная на сегодняшний день разрешенная к применению противотуберкулезная вакцина BCG защищает детей от тяжелых форм туберкулезной инфекции. До сих пор непонятно, почему BCG не спасает от первичного инфицирования, реактивации ТБ и латентного носительства. В то же время продемонстрирована связь вакцинации BCG со сниженным риском немикобактериальных инфекций, аллергий, онкологических заболеваний и общей смертности. Подобные неспецифические эффекты вакцинации BCG опосредованы скорее клетками врожденной иммунной системы, а не специфическими Т-клетками памяти. Имеются данные, указывающие на адъювантный эффект вакцинации BCG в отношении гуморального иммунного ответа на разнообразные вакцины в детском возрасте. Данный обзор посвящен преимущественно анализу работ, направленных на изучение относительно недавно выявленного механизма генерации неспецифического эффекта вакцины BCG — развитие наведенного врожденного иммунитета. Наведенный врожденный иммунный ответ опосредован сигналами, поступающими в клетку через внутриклеточный связывающий бактериальный мурамилдипептид-ре-цептор NOD2, и эпигенетической модификацией макрофагов и выражается в усиленной в результате вакцинации BCG способности макрофагов секретировать такие цитокины, как TNFa и IL-6, в ответ на стимуляцию неродственными BCG микроорганизмами или лигандами TLR. Наведенный иммунитет заключается не только в перенастройке передачи иммунологических сигналов между клетками врожденной иммунной системы, но также в индукции глубоких изменений баланса метаболических путей, таких как гликолиз, окислительное фосфорилирование, метаболизм аминокислот и жирных кислот, и сопровождается увеличением способности клеток врожденной иммунной системы отвечать на вторичную стимуляцию. Понимание этих внутриклеточных процессов открывает новые возможности терапевтического вмешательства в регуляцию иммунных процессов, сопровождающих инфекционные и воспалительные заболевания. В целом углубленное изучение неспецифического компонента вакцинации BCG должно привести к формированию новых представлений о механизмах ее защитного действия, а также повлиять на дизайн новой противотуберкулезной вакцины. Полученные при этом знания способны стимулировать изменения глобальной политики вакцинации с целью оптимизации преимуществ вакцинации для снижения детской заболеваемости и смертности и уменьшения риска развития поствакцинальных осложнений.

Об авторах

В. В. Еремеев
ФГБНУ Центральный научно-исследовательский институт туберкулеза
Россия

Еремеев Владимир Витальевич — доктор медицинских наук, заместитель директора по научной работе ФГБНУЦНИИТ.

107564, Москва, Яузская аллея, 2, Teл.: 8 (499) 785-91-59



Г. С. Шепелькова
ФГБНУ Центральный научно-исследовательский институт туберкулеза
Россия

Шепелькова Галина Сергеевна — кандидат биологических наук, старший научный сотрудник лаборатории клинической иммуногенетики и клеточных технологий ФГБНУ ЦНИИТ.

Москва


А. Э. Эргешов
ФГБНУ Центральный научно-исследовательский институт туберкулеза
Россия

Эргешов Атаджан Эргешович — доктор медицинских наук, профессор, директор ФГБНУ ЦНИИТ.

Москва


Список литературы

1. Abubakar I., Pimpin L., Ariti C., Beynon R., Mangtani P, Sterne J.A., Fine PE., Smith P.G., Lipman M., Elliman D., Watson J.M., Drumright L.N., Whiting P.F., Vynnycky E., Rodrigues L.C. Systematic review and metaanalysis of the current evidence on the duration of protection by bacillus Calmette-Guerin vaccination against tuberculosis. Health Technol. Assess., 2013, Vol. 17, no. 37, pp. 1-372.

2. Alm J.S., Sanjeevi C.B., Miller E.N., Dabadghao P, Lilja G., Pershagen G., Blackwell J.M., Scheynius A. Atopy in children in relation to BCG vaccination and genetic polymorphisms at SLC11A1 (formerly NRAMP1) and D2S1471. Genes Immun., 2002, Vol. 3, no. 2, pp. 71-77.

3. Arts R.J.W, Blok B.A., Aaby P, Joosten L.A., de Jong D., van der Meer J.W, Benn C.S., van Crevel R., Netea M.G. Long-term in vitro and in vivo effects of y-irradiated BCG on innate and adaptive immunity. J. Leukoc. Biol., 2015, Vol. 98, no. 6, pp. 995-1001.

4. Arts R.J.W., Carvalho A., la Rocca C., Palma C., Rodrigues F., Silvestre R., Kleinnijenhuis J., Lachmandas E., Gonqalves L.G., Belinha A., Cunha C., Oosting M., Joosten L.A.B., Matarese G., van Crevel R., Netea M.G. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep., 2016, Vol. 17, no. 10, pp. 2562-2571.

5. Arts R.J.W., Moorlag S.J.C.F.M., Novakovic B., Li Y., Wang S.Y., Oosting M., Kumar V., Xavier R.J., Wijmenga C., Joosten L.A.B., Reusken C.B.E.M., Benn C.S., Aaby P, Koopmans M.P, Stunnenberg H.G., van Crevel R., Netea M.G. BCG Vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe, 2018, Vol. 23, no. 1, pp. 89-100.e5.

6. Arts R.J.W., Novakovic B., ter Horst R., Carvalho A., Bekkering S., Lachmandas E., Rodrigues F., Silvestre R., Cheng S.C., Wang S.Y., Habibi E., Gonqalves L.G., Mesquita I., Cunha C., van Laarhoven A., van de Veerdonk F.L., Williams D.L., van der Meer J.W., Logie C., O’Neill L.A., Dinarello C.A., Riksen N.P, van Crevel R., Clish C., Notebaart R.A, Joosten L.A., Stunnenberg H.G., Xavier R.J., Netea M.G. Glutaminolysis and fumarate accumulation integrate immunometabolic and epigenetic programs in trained immunity. Cell Metab., 2016, Vol. 24, no. 6, pp. 807-819.

7. Auguste P, Tsertsvadze A., Pink J., Court R., McCarthy N., Sutcliffe P, Clarke A. Comparing interferon-gamma release assays with tuberculin skin test for identifying latent tuberculosis infection that progresses to active tuberculosis: systematic review and meta-analysis. BMC Infect. Dis., 2017, Vol. 17, no. 1, p. 200.

8. Barlan I.B., Tukenmez F., Bahqeciler N.N., Ba^aran M.M. The impact of in vivo Calmette-Guerin Bacillus administration on in vitro IgE secretion in atopic children. J. Asthma, 2002, Vol. 39, no. 3, pp. 239-246.

9. Bekkering S., Arts R.J.W., Novakovic B., Kourtzelis I., van der Heijden C.D.C.C., Li Y., Popa C.D., ter Horst R., van Tuijl J., Netea-Maier R.T., van de Veerdonk F.L., Chavakis T., Joosten L.A.B., van der Meer J.W.M., Stunnenberg H., Riksen N.P., Netea M.G. Metabolic induction of trained immunity through the mevalonate pathway. Cell, 2018, Vol. 172, no. 1-2, pp. 135-146.e9.

10. Blok B.A., Arts R.J.W., van Crevel R., Benn C.S., Netea M.G. Trained innate immunity as underlying mechanism for the long-term, nonspecific effects of vaccines. J. Leukoc. Biol., 2015, Vol. 98, no. 3, pp. 347-356.

11. Buffen K., Oosting M., Quintin J., Ng A., Kleinnijenhuis J., Kumar V., van de Vosse E., Wijmenga C., van Crevel R., Oosterwijk E., Grotenhuis A.J., Vermeulen S.H., Kiemeney L.A., van de Veerdonk F.L., Chamilos G., Xavier R., van der Meer J.W., Netea M.G., Joosten L.A. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. Deretic V, ed. PLoS Pathog., 2014, Vol. 10, no. 10, e1004485. doi: 10.1371/journal.ppat.1004485.

12. Byrne A.L., Marais B.J., Mitnick C.D., Garden F.L., Lecca L., Contreras C., Yauri Y., Garcia F., Marks G.B. Asthma and atopy prevalence are not reduced among former tuberculosis patients compared with controls in Lima, Peru. BMC Pulm. Med., 2019, Vol. 19, no. 1, p. 40.

13. Cavallo G.P., Elia M., Giordano D., Baldi C., Cammarota R. Decrease of specific and total IgE levels in allergic patients after BCG vaccination: preliminary report. Arch. Otolaryngol. Head Neck Surg., 2002, Vol. 128, no. 9, pp. 1058-1060.

14. Cheng S.-C., Quintin J., Cramer R.A., Shepardson K.M., Saeed S., Kumar V, Giamarellos-Bourboulis E.J., Martens J.H., Rao A., Aghajanirefah A., Manjeri G.R., Li Y., Ifrim D.C., Arts R.J., van der Veer B.M., Deen PM., Logie C., O’Neill L.A., Willems P, van de Veerdonk F.L., van der Meer J.W., Ng A., Joosten L.A., Wijmenga C., Stunnenberg H.G., Xavier R.J., Netea M.G. mTOR- and HIF-1a-mediated aerobic glycolysis as metabolic basis for trained immunity. Science, 2014, Vol. 345, no. 6204, 1250684. doi: 10.1126/science.1250684.

15. Coley W.B. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. 1893. Clin. Orthop. Relat. Res., 1991, Vol. 262, pp. 3-11.

16. Coley W.B. Treatment of inoperable malignant tumors with the toxines of erysipelas and the bacillus prodigiosus. Am. J. Med. Sci., 1894, Vol. 108, ed. 1. Accessed September 18, 2019. Available at: http://search.proquest.com/openview/2b4fb5bca8b11309314814797b826375/1?pq-origsite=gscholar&cbl=41361.

17. Deng Y., Li W., Luo Y., Wang L.J., Xie X.H., Luo J., Luo Z.X., Zhao X.D., Fu Z., Liu E.M. Inhibition of IFN-y promotes anti-asthma effect of Mycobacterium bovis Bacillus Calmette-Guerin neonatal vaccination: a murine asthma model. Vaccine, 2014, Vol. 32, no. 18, pp. 2070-2078.

18. Domlnguez-Andres J., Joosten L.A., Netea M.G. Induction of innate immune memory: the role of cellular metabolism. Curr. Opin. Immunol., 2019, Vol. 56, pp. 10-16.

19. Eifan A.O., Akkoc T., Ozdemir C., Bahceciler N.N., Barlan I.B. No association between tuberculin skin test and atopy in a bacillus Calmette-Guerin vaccinated birth cohort. Pediatr. Allergy Immunol., 2009, Vol. 20, no. 6, pp. 545-550.

20. El-Zein M., Conus F., Benedetti A., Menzies D., Parent M.-E., Rousseau M.-C. Association between bacillus Calmette-Guerin vaccination and childhood asthma in the Quebec birth cohort on immunity and health. Am. J. Epidemiol., 2017, Vol. 186, no. 3, pp. 344-355.

21. Freyne B., Donath S., Germano S., Gardiner K., Casalaz D., Robins-Browne R.M., Amenyogbe N., Messina N.L., Netea M.G., Flanagan K.L., Kollmann T., Curtis N. Neonatal BCG vaccination influences cytokine responses to toll-like receptor ligands and heterologous antigens. J. Infect. Dis., 2018, Vol. 217, no. 11, pp. 1798-1808.

22. Gruenbacher G., Thurnher M. Mevalonate metabolism in cancer stemness and trained immunity. Front. Oncol., 2018, Vol. 8, p. 394.

23. Guerra-Maupome M., Vang D.X., McGill J.L. Aerosol vaccination with Bacille Calmette-Guerin induces a trained innate immune phenotype in calves. PLoS ONE, 2019, Vol. 14, no. 2, e0212751. doi:10.1371/journal.pone.0212751.

24. Higgins J.P.T., Soares-Weiser K., Lopez-Lopez J.A., Kakourou A., Chaplin K., Christensen H., Martin N.K., Sterne J.A., Reingold A.L. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ, 2016, Vol. 355, 15170. doi:10.1136/bmj.i5170.

25. Hirve S., Bavdekar A., Juvekar S., Benn C.S., Nielsen J., Aaby P. Non-specific and sex-differential effects of vaccinations on child survival in rural western India. Vaccine, 2012, Vol. 30, no. 50, pp. 7300-7308.

26. Jensen K.J., Larsen N., Biering-Sorensen S., Andersen A., Eriksen H.B., Monteiro I., Hougaard D., Aaby P, Netea M.G., Flanagan K.L., Benn C.S. Heterologous immunological effects of early BCG vaccination in low-birth-weight infants in Guinea-Bissau: a randomized-controlled trial. J. Infect. Dis., 2015, Vol. 211, no. 6, pp. 956-967.

27. Kaufmann E., Sanz J., Dunn J.L., Khan N., Mendoni^a L.E., Pacis A., Tzelepis F., Pernet E., Dumaine A., Grenier J.C., Mailhot-Leonard F., Ahmed E., Belle J., Besla R., Mazer B., King I.L., Nijnik A., Robbins C.S., Barreiro L.B., Divangahi M. BCG educates hematopoietic stem cells to generate protective innate immunity against tuberculosis. Cell, 2018, Vol. 172, no. 1-2, pp. 176-190.e19.

28. Kleinnijenhuis J., Quintin J., Preijers F., Joosten L.A., Jacobs C., Xavier R.J., van der Meer J.W., van Crevel R., Netea M.G. BCG-induced trained immunity in NK cells: Role for non-specific protection to infection. Clin. Immunol., 2014, Vol. 155, no. 2, pp. 213-219.

29. Kleinnijenhuis J., Quintin J., Preijers F., Joosten L.A., Ifrim D.C., Saeed S., Jacobs C., van Loenhout J., de Jong D., Stunnenberg H.G., Xavier R.J., van der Meer J.W., van Crevel R., Netea M.G. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc. Natl. Acad. Sci. USA, 2012, Vol. 109, no. 43, pp. 17537-17542.

30. Kleinnijenhuis J., Quintin J., Preijers F., Benn C.S., Joosten L.A., Jacobs C., van Loenhout J., Xavier R.J., Aaby P, van der Meer J.W., van Crevel R., Netea M.G. Long-lasting effects of BCG vaccination on both heterologous Th1/Th17 responses and innate trained immunity. J. Innate Immun., 2014, Vol. 6, no. 2, pp. 152-158.

31. Koeken V.A.C.M., Verrall A.J., Netea M.G., Hill PC., van Crevel R. Trained innate immunity and resistance to Mycobacterium tuberculosis infection. Clin. Microbiol. Infect., 2019, Vol. 25, no. 12, pp. 1468-1472.

32. Kawai K., Miyazaki J., Joraku A., Nishiyama H., Akaza H. Bacillus Calmette-Guerin (BCG) immunotherapy for bladder cancer: Current understanding and perspectives on engineered BCG vaccine. Cancer Sci., 2013, Vol. 104, no. 1, pp. 22-27.

33. Ke X., Huang J., Chen Q., Hong S., Zhu D. Protective effects of combined Mycobacterium bovis BCG and interleukin-12 vaccination on airway inflammation in a murine model of allergic asthma. Clin. Invest. Med., 2010, Vol. 33, no. 3, pp. E196-202.

34. Levy O., Wynn J.L. A prime time for trained immunity: innate immune memory in newborns and infants. Neonatology, 2014, Vol. 105, no. 2, pp. 136-141.

35. Mangtani P, Nguipdop-Djomo P, Keogh R.H., Trinder L., Smith P.G., Fine PE., Sterne J., Abubakar I., Vynnycky E., Watson J., Elliman D., Lipman M., Rodrigues L.C. Observational study to estimate the changes in the effectiveness of bacillus Calmette-Guerin (BCG) vaccination with time since vaccination for preventing tuberculosis in the UK. Health Technol. Assess., 2017, Vol. 21, no. 39, pp. 1-54.

36. Mitroulis I., Ruppova K., Wang B., Chen L.S., Grzybek M., Grinenko T., Eugster A., Troullinaki M., Palladini A., Kourtzelis I., Chatzigeorgiou A., Schlitzer A., Beyer M., Joosten L.A.B., Isermann B., Lesche M., Petzold A., Simons K., Henry I., Dahl A., Schultze J.L., Wielockx B., Zamboni N., Mirtschink P, Coskun U., Hajishengallis G., Netea M.G., Chavakis T. Modulation of myelopoiesis progenitors is an integral component of trained immunity. Cell, 2018, Vol. 172, no. 1-2, pp. 147-161.e12.

37. Moliva J.I., Turner J., Torrelles J.B. Immune responses to bacillus Calmette-Guerin vaccination: why do they fail to protect against Mycobacterium tuberculosis? Front. Immunol., 2017, Vol. 8, p. 407.

38. Moulton L.H., Rahmathullah L., Halsey N.A., Thulasiraj R.D., Katz J., Tielsch J.M. Evaluation of non-specific effects of infant immunizations on early infant mortality in a southern Indian population. Trop. Med. Int. Health, 2005, Vol. 10, no. 10, pp. 947-955.

39. Nemes E., Geldenhuys H., Rozot V, Rutkowski K.T., Ratangee F., Bilek N., Mabwe S., Makhethe L., Erasmus M., Toefy A., Mulenga H., Hanekom W.A., Self S.G., Bekker L.G., Ryall R., Gurunathan S., DiazGranados C.A., Andersen P, Kromann I., Evans T., Ellis R.D., Landry B., Hokey D.A., Hopkins R., Ginsberg A.M., Scriba T.J., Hatherill M.; C-040-404 Study Team. Prevention of M. tuberculosis infection with H4:IC31 vaccine or BCG revaccination. N. Engl. J. Med., 2018, Vol. 379, no. 2, pp. 138-149.

40. Nicolle D., Fremond C., Pichon X., Bouchot A., Maillet I., Ryffel B., Quesniaux VJ. Long-term control of Mycobacterium bovis BCG infection in the absence of Toll-like receptors (TLRs): Investigation of TLR2-, TLR6-, or TLR2-TLR4-deficient mice. Infect. Immun., 2004, Vol. 72, no. 12, pp. 6994-7004.

41. Omenaas E., Jentoft H.F., Vollmer W.M., Buist A.S., Gulsvik A. Absence of relationship between tuberculin reactivity and atopy in BCG vaccinated young adults. Thorax, 2000, Vol. 55, no. 6, pp. 454-458.

42. Ota M.O.C., Vekemans J., Schlegel-Haueter S.E., Fielding K., Sanneh M., Kidd M., Newport M.J., Aaby P, Whittle H., Lambert PH., McAdam K.P, Siegrist C.A., Marchant A. Influence of Mycobacterium bovis bacillus Calmette-Guerin on antibody and cytokine responses to human neonatal vaccination. J. Immunol., 2002, Vol. 168, no. 2, pp. 919-925.

43. Pieraerts C., Martin V., Jichlinski P., Nardelli-Haefliger D., Derre L. Detection of functional antigen-specific T cells from urine of non-muscle invasive bladder cancer patients. Oncoimmunology, 2012, Vol. 1, no. 5, pp. 694-698.

44. Ritz N., Mui M., Balloch A., Curtis N. Non-specific effect of Bacille Calmette-Guerin vaccine on the immune response to routine immunisations. Vaccine, 2013, Vol. 31, no. 30, pp. 3098-3103.

45. Rodrigues A., Fischer T.K., Valentiner-Branth P., Nielsen J., Steinsland H., Perch M., Garly M.L., Molbak K., Aaby P. Community cohort study of rotavirus and other enteropathogens: are routine vaccinations associated with sex-differential incidence rates? Vaccine, 2006, Vol. 24, no. 22, pp. 4737-4746.

46. Rousseau M.-C., Parent M.-E., St-Pierre Y. Potential health effects from non-specific stimulation of the immune function in early age: the example of BCG vaccination. Pediatr. Allergy Immunol., 2008, Vol. 19, no. 5, pp. 438-448.

47. Shirakawa T., Enomoto T., Shimazu S., Hopkin J.M. The inverse association between tuberculin responses and atopic disorder. Science, 1997, Vol. 275, no. 5296, pp. 77-79.

48. Smith S.G., Kleinnijenhuis J., Netea M.G., Dockrell H.M. Whole blood profiling of bacillus Calmette-Guerin-induced trained innate immunity in infants identifies epidermal growth factor, IL-6, platelet-derived growth factor-AB/BB, and natural killer cell activation. Front. Immunol., 2017, Vol. 8, p. 644.

49. Strachan D.P. Family size, infection and atopy: the first decade of the “hygiene hypothesis” Thorax., 2000, Vol. 55, Suppl. 1, pp. S2-10.

50. Sylvester R.J., van der Meijden A.P.M., Lamm D.L. Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J. Urol., 2002, Vol. 168, no. 5, pp. 1964-1970.

51. Trunz B.B., Fine P., Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet, 2006, Vol. 367, no. 9517, pp. 1173-1180.

52. Verma D., Parasa V.R., Raffetseder J., Martis M., Mehta R.B., Netea M., Lerm M. Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects. Sci. Rep., 2017, Vol. 7, no. 1, 12305. doi: 10.1038/s41598-017-12110-2.

53. Walk J., de Bree L.C.J., Graumans W., Stoter R., van Gemert G.J., van de Vegte-Bolmer M., Teelen K., Hermsen C.C., Arts R.J.W., Behet M.C., Keramati F., Moorlag S.J.C.F.M., Yang A.S.P., van Crevel R., Aaby P., de Mast Q., van der Ven A.J.A.M., Stabell Benn C., Netea M.G., Sauerwein R.W. Outcomes of controlled human malaria infection after BCG vaccination. Nat. Commun., 2019, Vol. 10, no. 1, p. 874.

54. World Health Organization. BCG vaccine: WHO position paper, February 2018 - Recommendations. Vaccine, 2018, Vol. 36, no. 24, pp. 3408-3410.

55. Yoneyama H., Suzuki M., Fujii K., Odajima Y. The effect of DPT and BCG vaccinations on atopic disorders. Arerugi, 2000, Vol. 49, no. 7, pp. 585-592.


Дополнительные файлы

1. Метаданные
Тема метаданные
Тип Прочее
Скачать (13KB)    
Метаданные
2. подписи
Тема подписи
Тип Прочее
Скачать (45KB)    
Метаданные
3. Титульный лист
Тема титульный лист
Тип Прочее
Скачать (13KB)    
Метаданные
4. Резюме
Тема
Тип Прочее
Скачать (13KB)    
Метаданные
5. литература
Тема
Тип Прочее
Скачать (31KB)    
Метаданные

Для цитирования:


Еремеев В.В., Шепелькова Г.С., Эргешов А.Э. Неспецифическая составляющая вакцинации BCG. Медицинская иммунология. 2019;21(6):1015-1022. https://doi.org/10.15789/1563-0625-2019-6-1015-1022

For citation:


Yeremeev V.V., Shepelkova G.S., Ergeshov A.E. A nonspecific component of BCG vaccination. Medical Immunology (Russia). 2019;21(6):1015-1022. (In Russ.) https://doi.org/10.15789/1563-0625-2019-6-1015-1022

Просмотров: 510


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)