Preview

Medical Immunology (Russia)

Advanced search

THE ROLE OF VEGF SINGLE NUCLEOTIDE POLYMORPHISMS IN THE DEVELOPMENT OF CARDIOVASCULAR DISEASES

https://doi.org/10.15789/1563-0625-TRO-3320

Abstract

Cardiovascular diseases (CVD) are the main cause of mortality in the population. The pathophysiological processes underlying the development of CVD are inflammation, endothelial dysfunction, oxidative stress, atherosclerosis, fibrosis, dyslipidemia and thromboembolism. Endothelial dysfunction affects the balance of endothelium-dependent vasoconstriction and vasodilation by increasing cytokine levels, adhesion molecule expression, leukocyte and monocyte migration, and platelet activation.

The vascular endothelial growth factor (VEGF) family is an important component of angiogenesis involved in inducing migration and proliferation of endothelial cells by modulating vascular permeability and thrombogenicity. The VEGF family includes 5 proteins, of which VEGF-A, VEGF-B and PlGF (placental growth factor) regulate angiogenesis, and VEGF-C and VEGF-D (c-Fos-induced growth factor, FIGF) regulate lymphangiogenesis.

VEGF-A is a key factor in the angiogenesis and collateral circulation (arteriogenesis) mediated by the binding of VEGF-A to the VEGFR-1 (Flt-1) and VEGFR-2 (KDR) receptors. As a result of the research, data were obtained on an increased risk of coronary heart disease in the case of detection of VEGF-A single nucleotide polymorphisms (SNPs), particulary rs3025039, rs699947, rs2010963, rs1570360 and rs7667298.

VEGF-D is a secreted factor that regulates lymphangiogenesis, angiogenesis, and endothelial proliferation through interaction with VEGFR2 (KDR). Studies have demonstrated an increase in VEGF-D levels caused by rs192812042 and rs234500 polymorphisms in patients with acute and chronic coronary syndromes, which indicates the role of VEGF-D in the formation of CVR by involving lymphangiogenesis, as well as modulating angiogenesis.

Genotyping of patients with CVR with subsequent identification of VEGF SNP will allow timely identificate groups of patients with an initially increased risk of developing cardiovascular pathology and prescribe treatment and measures, prevent the development of acute cardiovascular pathology and reduce mortality caused by CVD.

About the Authors

Anife Sevrievna Gaffarova
Order of Labor Red Banner Medical Institute named after S.I. Georgievsky Federal State Autonomous Educational Institution of Higher Education "Vernadsky Crimean Federal University"
Russian Federation

Assistant of the Department of Internal Medicine No.2 

Establishment: The Order of the Red Banner of Labor of the S.I. Georgievsky Medical Institute Federal State Autonomous Educational Institution of Higher Education "V.I. Vernadsky Crimean Federal University"



Igor Anatolievich Yatskov
Order of Labor Red Banner Medical Institute named after S.I. Georgievsky Federal State Autonomous Educational Institution of Higher Education "Vernadsky Crimean Federal University"
Russian Federation

PhD, Аssociate professor of the Department of Internal Medicine No. 2 of the Order of the Red Banner of Labor of the S.I. Georgievsky Medical Institute Federal State Autonomous Educational Institution of Higher Education "V. I. Vernadsky Crimean Federal University"



Vladimir Alekseevich Beloglazov
Order of Labor Red Banner Medical Institute named after S.I. Georgievsky Federal State Autonomous Educational Institution of Higher Education "Vernadsky Crimean Federal University"
Russian Federation

Doctor of Medicine Sciences, Head of the Department of Internal Medicine No. 2 of the Order of the Red Banner of Labor of the S.I. Georgievsky Medical Institute Federal State Autonomous Educational Institution of Higher Education "V.I. Vernadsky Crimean Federal University"



Elizaveta Sergeevna Ageyeva
Order of Labor Red Banner Medical Institute named after S.I. Georgievsky Federal State Autonomous Educational Institution of Higher Education "Vernadsky Crimean Federal University"
Russian Federation

Doctor of Medical Sciences, Head of the Department of Biology of the Order of the Red Banner of Labor of the S.I. Georgievsky Medical Institute Federal State Autonomous Educational Institution of Higher Education "V.I. Vernadsky Crimean Federal University"



Elena Mikhailovna Dolya
Order of Labor Red Banner Medical Institute named after S.I. Georgievsky Federal State Autonomous Educational Institution of Higher Education "Vernadsky Crimean Federal University"

PhD, Аssociate professor of the Department of Internal Medicine No. 2 of the Order of the Red Banner of Labor of the S.I. Georgievsky Medical Institute Federal State Autonomous Educational Institution of Higher Education "V. I. Vernadsky Crimean Federal University"



References

1. McNamara K., Alzubaidi H., Jackson J.K. Cardiovascular disease as a leading cause of death: how are pharmacists getting involved? J. Integr. Pharm. Res. Pract., 2019, Vol. 8, pp. 1-11.

2. Libby P. Inflammation and cardiovascular disease mechanisms. Am. J. Clin. Nutr., 2006, Vol. 83, pp. 456-460.

3. Alfaddagh A., Martin S.S., Leucker T.M., Michos E.D., Blaha M.J.., Lowenstein C.J., Jones S.R., Toth P.P. Inflammation and cardiovascular disease: from mechanisms to therapeutics. Am. J. Prev. Cardiol., 2020, Vol. 4, pp. 100-130.

4. Sun H.J., Wu Z.Y., Nie X.W., Bian J.S. Role of endothelial dysfunction in cardiovascular diseases: the link between inflammation and hydrogen sulfide. Front. Pharmacol., 2020; Vol. 10, pp. 1568-1583.

5. Cervantes Gracia K., Llanas-Cornejo D., Husi H. CVD and oxidative stress. J. Clin. Med., 2017, Vol. 6, no. 2, no. 1-22.

6. Artiach G., Sarajlic P., Bäck M. Inflammation and its resolution in coronary artery disease: a tightrope walk between omega-6 and omega-3 polyunsaturated fatty acids. Kardiol. Pol., 2020, Vol. 78, no. 2, pp. 93-95.

7. Sarajlic P., Artiach G., Larsson S., Bäck M. Dose-dependent risk reduction for myocardial infarction with eicosapentaenoic acid: a meta-analysis and meta-regression including STRENGTH trial. Cardiovasc. Drugs Ther., 2021, Vol. 35, pp. 1079-1081.

8. Watson C.J., Webb N.J., Bottomley M.J., Brenchley P.E. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine, 2000, Vol. 12, no. 8, pp. 1232-1235. https://doi.org/10.1006/cyto.2000.0692.

9. Renner W., Kotschan S., Hoffmann C., Obermayer-Pietsch B., Pilger E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. Journal of vascular research, 2000, Vol. 37, no. 6, pp. 443-448. https://doi.org/10.1159/000054076.

10. Pare-Brunet L., Glubb D., Evans P., Berenguer-Llergo A., Etheridge A.S., Skol A.D., et al. Discovery and functional assessment of gene variants in the vascular endothelial growth factor pathway. Human mutation, 2014, Vol. 35, no. 2, pp. 227–235. https://doi.org/10.1002/humu.22475.

11. Choi S.H., Ruggiero D., Sorice R., Song C., Nutile T., Vernon Smith A., et al. Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies. PLoS Genet., 2016, Vol. 12, no. 2, e1005874. https://doi.org/10.1371/journal.pgen.1005874.

12. Ku D.D., Zaleski J.K., Liu S., Brock T.A. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. 1993, Vol. 265, no. 2, pp. 586-592.

13. Ghazizadeh H., Avan A., Fazilati M., Azimi-Nezhad M., Tayefi M., Ghasemi F, et al. Association of rs6921438 A<G with serum vascular endothelial growth factor concentrations in patients with metabolic syndrome. Gene, 2018, Vol. 667, pp.70–75. https://doi.org/10.1016/j.gene.2018.05.017.

14. Eaton C.B., Gramling R., Parker D.R., Roberts M.B., Lu B., Ridker P.M. Prospective association of vascular endothelial growth factor-A (VEGF-A) with coronary heart disease mortality in southeastern New England. Atherosclerosis, 2008, Vol. 200, no. 1, pp, 221-227. https://doi.org/10.1016/j.atherosclerosis.2007.12.027.

15. Leung D.W., Cachianes G., Kuang W.J., Goeddel D.V., Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 1989, Vol. 246, no. 4935, pp. 1306–1309. https://doi.org/10.1126/science.2479986.

16. Marks E.C.A., Wilkinson T.M., Frampton C.M., Skelton L., Pilbrow A.P., Yandle T.G., et al. Plasma levels of soluble VEGF receptor isoforms, circulating pterins and VEGF system SNPs as prognostic biomarkers in patients with acute coronary syndromes. BMC Cardiovasc. Disord., 2018, Vol. 18, no. 1, pp. 169. https://doi.org/10.1186/s12872-018-0894-1.

17. Matsumoto K., Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J. Biochem., 2014, Vol. 156, no. 1, pp. 1-10. https://doi.org/10.1093/jb/mvu031.

18. Yla-Herttuala S., Rissanen T.T., Vajanto I., Hartikainen J. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. Journal of the American College of Cardiology, 2007, Vol. 49, no. 10, pp. 1015-1026. https://doi.org/10.1016/j.jacc.2006.09.053.

19. Han X., Liu L., Niu J., Yang J., Zhang Z. Association between VEGF polymorphisms (936c/t, -460t/c and -634g/c) with haplotypes and coronary heart disease susceptibility. Int. J. Clin. Exp. Pathol., 2015, Vol. 8, no. 1, pp. 922-927.

20. Kalayi Nia S., Ziaee S., Boroumand M.A., Sotudeh Anvari M., Pourgholi L., Jalali A. The impact of vascular endothelial growth factor +405 C/G polymorphism on long-term outcome and severity of coronary artery disease. J. Clin. Lab. Anal., 2017, Vol. 31, no. 4, pp. 1-8. https://doi.org/10.1002/jcla.22066.

21. Matsumoto T., Mugishima H. Signal transduction via vascular endothelial growth factor (VEGF) receptors and their roles in atherogenesis. J. Atheroscler. Thromb., 2006, Vol. 13, no. 3, pp. 130-135. https://doi.org/10.5551/jat.13.130,16.

22. Inoue M., Itoh H., Ueda M., Naruko T., Kojima A., Komatsu R., et al. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation, 1998, Vol. 98, no. 20, pp. 2108-2116. https://doi.org/10.1161/01.cir.98.20.2108.

23. Howell W.M., Ali S., Rose-Zerilli M.J., Ye S. VEGF polymorphisms and severity of atherosclerosis. Journal of medical genetics, 2005, Vol. 42, no. 6, pp. 485-490. https://doi.org/10.1136/jmg.2004.025734.

24. ErZen B., Silar M., Sabovic M. Stable phase post-MI patients have elevated VEGF levels correlated with inflammation markers, but not with atherosclerotic burden. BMC Cardiovasc Disord. 2014, Vol. 14, p. 166. https://doi.org/10.1186/1471-2261-14-166.

25. Meier P., Gloekler S., Zbinden R., Beckh S., de Marchi S.F., Zbinden S., et al. Beneficial effect of recruitable collaterals: a 10-year follow-up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation, 2007, Vol. 116, no. 9, pp. 975-983. https://doi.org/10.1161/CIRCULATIONAHA.107.703959.

26. Ma W.Q., Wang Y., Han X.Q., Zhu Y, Liu N.F. Association of genetic polymorphisms in vascular endothelial growth factor with susceptibility to coronary artery disease: a meta-analysis. BMC medical genetics, 2018, Vol. 19, no. 1, p. 108. https://doi.org/10.1186/s12881-018-0628-3.

27. Zhao X., Meng L., Jiang J., Wu X. Vascular endothelial growth factor gene polymorphisms and coronary heart disease: a systematic review and meta-analysis. Growth Factors, 2018, Vol. 36, no. 3-4, pp. 153-63.

28. Matsumoto K., Ema M. Roles of VEGF-A signalling in development, regeneration, and tumours. J. Biochem., 2014, Vol. 156, no. 1, pp. 1-10. https://doi.org/10.1093/jb/mvu031.

29. Cui Q.T., Li Y., Duan C.H., Zhang W., Guo X.L. Further evidence for the contribution of the vascular endothelial growth factor gene in coronary artery disease susceptibility. Gene, 2013, Vol. 521, no. 2, pp. 217–221. https://doi.org/10.1016/j.gene.2013.03.091

30. Dong P.P. Association of vascular endothelial growth factor expression and polymorphisms with the risk of gestational diabetes mellitus. J. Clin. Lab. Anal., 2019, Vol. 33, no. 2, e22686. https://doi.org/10.1002/jcla.22686.

31. Al-Habboubi H.H., Sater M.S., Almawi A.W., Al-Khateeb G.M., Almawi W.Y. Contribution of VEGF polymorphisms to variation in VEGF serum levels in a healthy population. Eur. Cytokine Netw., 2011, Vol. 22, no. 3, pp. 154-158. https://doi.org/10.1684/ecn.2011.0289.

32. Osadnik T., Strzelczyk J.K., Regula R., Bujak K., Fronczek M., Gonera M., et al. The Relationships between Polymorphisms in Genes Encoding the Growth Factors TGF-beta1, PDGFB, EGF, bFGF and VEGF-A and the Restenosis Process in Patients with Stable Coronary Artery Disease Treated with Bare Metal Stent. PloS one, 2016, Vol. 11, no. 3, e0150500. https://doi.org/10.1371/journal.pone 0150500.

33. Yadav B.K., Yadav R., Chang H., Choi K., Kim J.T., Park M.S., et al. Genetic Polymorphisms rs699947, rs1570360, and rs3025039 on the VEGF Gene Are Correlated with Extracranial Internal Carotid ArteryStenosis and Ischemic Stroke. Ann. Clin. Lab. Sci., 2017; Vol. 47, no. 2, pp. 144-155.

34. Liu D., et al. Medicine, 2016, Vol. 95, p. 19, DOI: 10.1097/MD.0000000000003413.

35. Wang E., Wang Z., Liu S., et al. Polymorphisms of VEGF, TGFbeta1, TGFbetaR2 and conotruncal heart defects in a Chinese population. Mol. Biol. Rep., 2014, Vol. 41, pp. 1763-1770.

36. Griffin H.R., Hall D.H., Topf A., et al. Genetic variation in VEGF does not contribute significantly to the risk of congenital cardiovascular malformation. PLoSOne, 2009, Vol. 4, e4978.

37. Palmer B.R., Paterson M.A., Frampton C.M., Pilbrow A.P., Skelton L., Pemberton C.J., et al. (2021) Vascular endothelial growth factor-A promoter polymorphisms, circulating VEGF-A and survival in acute coronary syndromes. PLoS ONE, 2021, Vol. 16, no. 7, e0254206. https://doi.org/10.1371/journal.pone.0254206.

38. Li H., Kantoff P.W., Ma J., Stampfer M.J., George D.J. Prediagnostic plasma vascular endothelial growth factor levels and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev., 2005; Vol. 14, no. 6, pp. 1557-1561. https://doi.org/10.1158/1055-9965.EPI-04-0456.

39. Carilho R., de Carvalho M., Swash M., Pinto S., Pinto A., Costa J. Vascular endothelial growth factor and amyotrophic lateral sclerosis: the interplay with exercise and noninvasive ventilation. Muscle Nerve, 2014, Vol. 49, no. 4, pp. 545-550. https://doi.org/10.1002/mus.23955.

40. Eaton C.B., Gramling R., Parker D.R., Roberts M.B., Lu B., Ridker P.M. Prospective association of vascular endothelial growth factor-A (VEGF-A) with coronary heart disease mortality in southeastern New England. Atherosclerosis, 2008, Vol. 200, no. 1, pp. 221-227. https://doi.org/10.1016/j.atherosclerosis.2007.12.027.

41. Pia Davidsson, Susanna Eketjäll, Niclas Eriksson, Anna Walentinsson, Richard C. Becker, Anders Cavallin, Anna Bogstedt, Anna Collén, Claes Held, Stefan James, Agneta Siegbahn, Ralph Stewart, Robert F. Storey8, Harvey White, and Lars Wallentin. Vascular endothelial growth factor-D plasma levels and VEGFD genetic variants are independently associated with outcomes in patients with cardiovascular disease. Cardiovascular Research, 2023, Vol. 119, pp. 1596-1605. https://doi.org/10.1093/cvr/cvad039.

42. Gudjonsson A., Gudmundsdottir V., Axelsson G.T., Gudmundsson E.F., Jonsson B.G., Launer L.J., Lamb J.R., Jennings L.L., Aspelund T., Emilsson V., Gudnason V. A genome-wide association study of serum proteins reveals shared loci with common diseases. Nat. Commun., 2022, Vol. 13, no. 1, p. 480.

43. Meng F., Jing X., Song G., Jie L., Shen F. Prox1 induces new lymphatic vessel formation and promotes nerve reconstruction in a mouse model of sciatic nerve crush injury. J. Anat., 2020, Vol. 237, pp. 933-940.

44. Ahmed S., Ahmed A., Säleby J., Bouzina H., Lundgren J., Rådegran G. Elevated plasma tyrosine kinases VEGF-D and HER4 in heart failure patients decrease after heart transplantation in association with improved haemodynamics. Heart Vessels, 2020, Vol. 35, no. 6, pp. 786-799.

45. Mountain D.J., Singh M., Singh K. Downregulation of VEGF-D expression by interleukin-1beta in cardiac microvascular endothelial cells is mediated by MAPKs and PKCalpha/beta1. J. Cell. Physiol., 2008, Vol. 215, pp. 337-343.

46. Zhao T., Zhao W., Meng W., Liu C., Chen Y., Bhattacharya S.K., Sun Y. Vascular endothelial growth factor-D mediates fibrogenic response in myofibroblasts. Mol. Cell. Biochem. 2016, Vol. 413, pp. 127-135.

47. Borné Y., Gränsbo K., Nilsson J., Melander O., Orho-Melander M., Smith J.G., Engström G. Vascular endothelial growth factor D, pulmonary congestion, and incidence of heart failure. J. Am. Coll. Cardiol., 2018, Vol. 71, pp. 580-582.

48. Berntsson J., Smith J.G., Johnson L.S.B., Söderholm M., Borné Y., Melander O., Orho-Melander M., Nilsson J., Engström G. Increased vascular endothelial growth factor D is associated with atrial fibrillation and ischaemic stroke. Heart, 2019, Vol. 105, pp. 553-558.

49. Säleby J., Bouzina H., Lundgren J., Rådegran G. Angiogenic and inflammatory biomarkers in the differentiation of pulmonary hypertension. Scand. Cardiovasc. J., 2017, Vol. 51, pp. 261-270.

50. Säleby J., Bouzina H., Ahmed S., Lundgren J., Rådegran G. Plasma receptor tyrosine kinase RET in pulmonary arterial hypertension diagnosis and differentiation. ERJ Open. Res., 2019, Vol. 5, e00037–02019.

51. Seyama K., Kumasaka T., Souma S., Sato T., Kurihara M., Mitani K., Tominaga S., Fukuchi Y. Vascular endothelial growth factor-D is increased in serum of patients with lymphangioleiomyomatosis. Lymphat. Res. Biol., 2006, Vol. 4, no. 3, pp. 143-152.


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (16KB)    
Indexing metadata ▾
2. Неозаглавлен
Subject
Type Other
Download (357KB)    
Indexing metadata ▾
3. Неозаглавлен
Subject
Type Other
Download (19KB)    
Indexing metadata ▾
4. Неозаглавлен
Subject
Type Other
Download (30KB)    
Indexing metadata ▾
5. Неозаглавлен
Subject
Type Other
Download (16KB)    
Indexing metadata ▾
6. Неозаглавлен
Subject
Type Other
Download (15KB)    
Indexing metadata ▾
7. 3320
Subject
Type Other
Download (17KB)    
Indexing metadata ▾

Review

For citations:


Gaffarova A.S., Yatskov I.A., Beloglazov V.A., Ageyeva E.S., Dolya E.M. THE ROLE OF VEGF SINGLE NUCLEOTIDE POLYMORPHISMS IN THE DEVELOPMENT OF CARDIOVASCULAR DISEASES. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-TRO-3320

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)