Preview

Medical Immunology (Russia)

Advanced search

Functional activity of anti-GD2 CAR-T cells with different antigen-recognition module

https://doi.org/10.15789/1563-0625-FAO-3161

Abstract

Neuroblastoma (NB) is the most common extracranial solid tumor in children comprising, 8 to 10% of all pediatric tumors, with incidence of about 1-1.3 cases per 100,000 children under 15 years of age. Despite the use of intensive treatment with surgery, high-dose chemotherapy and radiotherapy, the 5-year event-free survival rate is 25-50% and 10-40% after relapse. Over the past decade, a new type of cell therapy with chimeric antigen receptor (CAR) modification of lymphocytes has been rapidly developed. Among the main promising antigens for development of CAR-T therapy against NB is the disialoganglioside GD2, the expression of which is shown in 100% of NB cases. Most clinical variants of anti-GD2 CAR-T cells are based on scFv 14.G2, originating from chimeric antibody 14.18 (denutuximab). In 2020, the FDA approved a new anti-GD2 humanized antibody, 3F8 (naxitamab) with a better safety profile. Despite partial success, the results of anti-GD2 CAR-T therapy remain modest. One option to increase receptor specificity is based on targeting O-acetyl-GD2, a disialoganglioside derivative in which the external sialic acid residue is modified with an O-acetyl ester. Acetylation of GD2 occurs only in tumor cells, and it is not detected in peripheral nerves. An 8B6 antibody is known to target O-acetyl-GD2. Thus, at least 3 therapeutic antibodies, 14G2a, hu3F8 and 8B6, compete with each other for targeting GD2 with CAR-T cells. In all these cases, the anti-GD2 CAR contains insertion domains in extracellular portion of the molecule. Results of separate clinical trials have been published for CAR-T based on 14G2a and hu3F8. So far, however, there are no data on the usage of 8B6 antibody in CARs. The aim of the present study is to obtain 2nd generation chimeric antigenic receptors based on three antibodies with different lengths of extracellular domain, and to evaluate their functional activity against a number of cell lines to justify further clinical trials.

About the Authors

D. V. Lutskovich
Belarusian Research Center for Pediatric Oncology, Hematology and Immunology
Belarus

Lutskovich D.V., Researcher, Laboratory of Genetic Biotechnology 

43 Frunzenskaya St Borovlyany village, Minsk Region 223053



M. A. Keraz
Belarusian Research Center for Pediatric Oncology, Hematology and Immunology
Belarus

Keraz M.A., Junior Researcher, Laboratory of Genetic Biotechnology 

43 Frunzenskaya St Borovlyany village, Minsk Region 223053



H. V. Klych
Belarusian Research Center for Pediatric Oncology, Hematology and Immunology
Belarus

Klych H.V., Researcher, Laboratory of Genetic Biotechnology 

43 Frunzenskaya St Borovlyany village, Minsk Region 223053



E. S. Lutskovich
Belarusian Research Center for Pediatric Oncology, Hematology and Immunology
Belarus

Lutskovich E.S., Junior Researcher, Laboratory of Genetic Biotechnology 

43 Frunzenskaya St Borovlyany village, Minsk Region 223053



A. N. Meleshko
Belarusian Research Center for Pediatric Oncology, Hematology and Immunology
Belarus

Meleshko A.N., PhD (Biology), Leading Researcher, Laboratory of Genetic Biotechnology, Scientific Department 

43 Frunzenskaya St Borovlyany village, Minsk Region 223053



References

1. Proleskovskaya I.V., Konoplya N.E., Bydanov O.I. Treatment of relapse/progression of the disease in patients with neuroblastoma in the Republic of Belarus over a 20-year period: a cohort study. Rossiyskiy zhurnal detskoy gematologii i onkologii = Russian Journal of Pediatric Hematology аnd Oncology, 2019, Vol. 6, no. 4, pp. 40-47. (In Russ.)

2. Alvarez-Rueda N., Desselle A., Cochonneau D., Chaumette T., Clemenceau B., Leprieur S., Bougras G., Supiot S., Mussini J.-M., Barbet J., Saba J., Paris F., Aubry J., Birklé S. A monoclonal antibody to O-Acetyl-GD2 ganglioside and not to GD2 shows potent anti-tumor activity without peripheral nervous system cross-reactivity. PLoS One, 2011, Vol. 6, no. 9, e25220. doi: 10.1371/journal.pone.0025220.

3. Cavdarli S., Delannoy P., Groux-Degroote S. O-acetylated gangliosides as targets for cancer immunotherapy. Cells, 2020, Vol. 9, no. 3, 741. doi: 10.3390/cells9030741.

4. Del Bufalo F., De Angelis B., Caruana I., del Baldo G., De Ioris M.A., Serra A., Mastronuzzi A., Cefalo M.G., Pagliara D., Amicucci M., Pira G.L., Leone G., Bertaina V., Sinibaldi M., Di Cecca S., Guercio M., Abbaszadeh Z., Iaffaldano L., Gunetti M., Iacovelli S., Bugianesi R., Macchia S., Algeri M., Merli P., Galaverna F., Abbas R., Garganese M.C., Villani M.F., Colafati G.S., Bonetti F., Rabusin M., Perruccio K., Folsi V., Quintarelli C., Locatelli F.; Precision Medicine Team–IRCCS Ospedale Pediatrico Bambino Gesù. GD2-CART01 for Relapsed or Refractory High-Risk Neuroblastoma. N. Engl. J. Med., 2023, Vol. 388, no. 14, pp. 1284-1295.

5. Faraj S., Bahri M., Fougeray S., El Roz A., Fleurence J., Véziers J., Leclair M.D., Thébaud E., Paris F., Birklé S. Neuroblastoma chemotherapy can be augmented by immunotargeting O-acetyl-GD2 tumor-associated ganglioside. Oncoimmunology, 2018, 7, no. 1, e1373232. doi: 10.1080/2162402X.2017.1373232.

6. Furman W.L. Monoclonal antibody therapies for high risk neuroblastoma. Biologics, 2021, Vol. 15, pp. 205-219.

7. Fleurence J., Fougeray S., Bahri M., Cochonneau D., Clémenceau B., Paris F., Heczey A., Birklé S. Targeting O-Acetyl-GD2 ganglioside for cancer immunotherapy. J. Immunol. Res., 2017, Vol. 2017, 5604891. doi: 10.1155/2017/5604891.

8. Harush O., Asherie N., Kfir-Erenfeld S., Adler G., Barliya T., Assayag M., Gatt M.E., Stepensky P., Cohen C.J. Preclinical evaluation and structural optimization of anti-BCMA CAR to target multiple myeloma. Haematologica, 2022, Vol. 107, no. 10, pp. 2395-2407.

9. Hudecek M., Sommermeyer D., Kosasih P.L., Silva-Benedict A., Liu L., Rader C., Jensen M.C., Riddell S.R. The nonsignaling extracellular spacer domain of chimeric antigen receptors is decisive for in vivo antitumor activity. Cancer Immunol. Res., 2015, Vol. 3, no. 2, pp. 125-135.

10. Jonnalagadda M., Mardiros A., Urak R., Wang X., Hoffman L.J., Bernanke A., Chang W.-C., Bretzlaff W., Starr R., Priceman S., Ostberg J.R., Forman S.J., Brown C.E. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid Fc receptor binding and improve T cell persistence and antitumor efficacy. Mol. Ther., 2015, Vol. 23, no. 4, pp. 757-768.

11. June C.H., O’Connor R.S., Kawalekar O.U., Ghassemi S., Milone M.C. CAR T cell immunotherapy for human cancer. Science, 2018, Vol. 359, no. 6382, pp. 1361-1365.

12. Lutskovich D., Meleshko A., Katsin M. State of the art and perspectives of chimeric antigen receptor T cells cell therapy for neuroblastoma. Cytotherapy, 2024, Vol. 26, no. 10, pp. 1122-1131.

13. Mao R., Kong W., He Y. The affinity of antigen-binding domain on the antitumor efficacy of CAR T cells: Moderate is better. Front. Immunol., 2022, Vol. 13, 1032403. doi: 10.3389/fimmu.2022.1032403.

14. Nazha B., Inal C., Owonikoko T.K. Disialoganglioside GD2 Expression in Solid Tumors and Role as a Target for Cancer Therapy. Front. Oncol., 2020, Vol. 10, 1000. doi: 10.3389/fonc.2020.01000.

15. Peinemann F., van Dalen E.C., Enk H., Tytgat G.A.M. Anti-GD2 antibody-containing immunotherapy postconsolidation therapy for people with high-risk neuroblastoma treated with autologous haematopoietic stem cell transplantation. Cochrane Database Syst. Rev., 2019, Vol. 4, no. 4, CD012442. doi: 10.1002/14651858.CD012442.pub2.

16. Qian K., Li G., Zhang S., Fu W., Li T., Zhao J., Lei C., Wang Y., Hu S. CAR-T-cell products in solid tumors: Progress, challenges, and strategies. Interdiscip. Med., 2024, Vol. 2, e20230047. doi: 10.1002/INMD.20230047.

17. Thomas S., Straathof K., Himoudi N., Anderson J., Pule M. An optimized GD2-targeting retroviral cassette for more potent and safer cellular therapy of neuroblastoma and other cancers. PLoS One, 2016, Vol. 11, no. 3, e0152196. doi: 10.1371/journal.pone.0152196.

18. Terme M., Dorvillius M., Cochonneau D., Chaumette T., Xiao W., Diccianni M.B., Barbet J., Yu A.L., Paris F., Sorkin L.S., Birklé S. Chimeric antibody c.8B6 to O-acetyl-GD2 mediates the same efficient anti-neuroblastoma effects as therapeutic ch14.18 antibody to GD2 without antibody induced allodynia. PLoS One, 2014, Vol. 9, no. 2, e87210. doi: 10.1371/journal.pone.0087210.

19. Wang V., Gauthier M., Decot V., Reppel L., Bensoussan D. Systematic Review on CAR-T cell clinical trials up to 2022: academic center input. Cancers, 2023, Vol. 15, no. 4, 1003. doi: 10.3390/cancers15041003.

20. Wittibschlager V., Bacher U., Seipel K., Porret N., Wiedemann G., Haslebacher C., Hoffmann M., Daskalakis M., Akhoundova D., Pabst T. CAR T-cell persistence correlates with improved outcome in patients with B-cell lymphoma. Int. J. Mol. Sci., 2023, Vol. 24, no. 6, 5688. doi: 10.3390/ijms24065688.

21. Yan P., Qi F., Bian L., Xu Y., Zhou J., Hu J., Ren L., Li M., Tang W. Comparison of incidence and outcomes of neuroblastoma in children, adolescents, and adults in the united states: A Surveillance, Epidemiology, and End Results (SEER) program population study. Med. Sci. Monit., 2020, Vol. 26, e927218. doi: 10.12659/MSM.927218.


Supplementary files

Review

For citations:


Lutskovich D.V., Keraz M.A., Klych H.V., Lutskovich E.S., Meleshko A.N. Functional activity of anti-GD2 CAR-T cells with different antigen-recognition module. Medical Immunology (Russia). 2025;27(5):1001-1012. (In Russ.) https://doi.org/10.15789/1563-0625-FAO-3161

Views: 581


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)