Preview

Medical Immunology (Russia)

Advanced search

VIRAL INFECTION AND LIPOPOLYSACCHARIDE: PATHOLOGICAL AXIS "LUNGS-JOINTS" AS A POTENTIAL CAUSE OF OSTEONECROSIS

https://doi.org/10.15789/1563-0625-VIA-3139

Abstract

AbstractThe article analyzes the effect of viral infections such as SARS-CoV-2 and lipopolysaccharide (LPS), a component of the cell wall of gram-negative bacteria, on the development of osteonecrosis through the pathological lung-joint axis. Viral infection causes damage to lung cells and vascular endothelium, which leads to inflammatory and coagulation disorders, increasing the risk of bone ischemia. LPS, interacting with TLR4 receptors, enhances the inflammatory response and disrupts the blood supply to bones, stimulating resorption and preventing bone formation. In addition, the article highlights the role of lung dysbiosis caused by viral infection, which increases inflammation and increases the permeability of barriers to endotoxins. Information was searched for the keywords "osteonecrosis and lipopolysaccharide", "Covid-19 virus and lipopolysaccharide-binding protein", "Viremia and osteonecrosis", "Lung microflora and LPS" in foreign and domestic scientometric databases such as e-Library and PubMed. The presented data suggest that the combination of imbalance of “lipopolysaccharide-binding systems”, impaired pulmonary barrier, viral aggression and LPS is an important aggravating pro-inflammatory factor. This combination forms a predisposition or full-fledged osteonecrosis, which makes the search for mechanisms of influence on these conditions, both individually and in combination, a promising scientific and clinical direction. This study focuses on the variety of mechanisms through which viral infections and bacterial lipopolysaccharides can affect bone tissue. Research shows that influencing these mechanisms can open up new avenues for the development of therapeutic strategies. The prospects of using targeted therapies to mitigate the negative effects of these interactions are also being considered. These data emphasize the importance of an integrated approach in the study and treatment of osteonecrosis, taking into account both infectious and inflammatory components of the process.

About the Authors

Constantin Viktorovich Bubley
https://vk.com/id176027611
V.I. Vernadsky Crimean Federal University Order of Labor Red Banner Medical Institute named after S.I. Georgievsky
Russian Federation

аssistant , Department of Internal Medicine No. 2, V.I. Vernadsky Crimean Federal University Order of Labor Red Banner Medical Institute named after S.I. Georgievsky, Simferopol, Russia



Vladimir Alexievich Beloglazov
V.I. Vernadsky Crimean Federal University Order of Labor Red Banner Medical Institute named after S.I. Georgievsky
Russian Federation

Doctor of Medical Sciences, Professor, Head of the Department of Internal Medicine No. 2 of V.I. Vernadsky Crimean Federal University Order of Labor Red Banner Medical Institute named after S.I. Georgievsky, Simferopol, Russia



Igor Anatolievich Yatskov
V.I. Vernadsky Crimean Federal University Order of Labor Red Banner Medical Institute named after S.I. Georgievsky
Russian Federation

PhD, Associate Professor, Department of Internal Medicine No. 2, V.I. Vernadsky Crimean Federal University Order of Labor Red Banner Medical Institute named after S.I. Georgievsky, Simferopol, Russia



Anna Anatolyevna Zayaeva
V.I. Vernadsky Crimean Federal University Order of Labor Red Banner Medical Institute named after S.I. Georgievsky
Russian Federation

PhD, Associate Professor, Department of Internal Medicine No. 2, V.I. Vernadsky Crimean Federal University Order of Labor Red Banner Medical Institute named after S.I. Georgievsky, Simferopol, Russia



References

1. Beloglazov V.A., Yatskov I.A., Kumelsky E.D., Polovinkina V.V. Metabolic endotoxinemia: possible causes and consequences // Obesity and metabolism. - 2021. - vol. 18, No. 3. Pp. 320-326

2. Panin M.A., Petrosyan A.S., Hadjicharalambous K.K., Boiko A.V. Avascular Necrosis of the Femoral Head After COVID-19: A Case Series // Traumatology and Orthopedics of Russia. - 2022. - Vol. 28. - No. 1. - Pp. 110-117

3. Pokusaeva D.P., Anikhovskaya I.A., Korobkova L.A., etc. Prognostic significance of indicators of systemic endotoxinemia in atherogenesis // Human Physiology. — 2019. — vol. 45. — No.5. — pp. 543-551.

4. Abeles M, Urman JD, Rothfield NF. Aseptic necrosis of bone in systemic lupus erythematosus. Relationship to corticosteroid therapy. Arch Intern Med, 1978, vol. 138, no. 5: pp. 750-754.

5. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. The New England Journal of Medicine. 2020, vol. 383, no. 2, pp. 120-128.

6. Bar-Shavit Z. Taking a toll on the bones: regulation of bone metabolism by innate immune regulators. Autoimmunity. 2008, vol. 41 no. 3, pp. 195-203.

7. Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014, vol. 157 no. 1, pp. 121-41. 

8. Beutler B, Rietschel ET. Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol. 2003, vol. 3, no. 2, pp. 169-176. 

9. Bhattacharya J, Westphalen K. Macrophage-epithelial interactions in pulmonary alveoli. Semin Immunopathol. 2016, vol. 38, no. 4, pp. 461-469

10. Bradley BT, Maioli H, Johnston R, Chaudhry I, Fink SL, Xu H, Najafian B, Deutsch G, Lacy JM, Williams T, Yarid N, Marshall DA. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020, vol 396, Issue 10247, pp. 320-332. 

11. Beutler B. Tlr4: central component of the sole mammalian LPS sensor. Curr Opin Immunol. 2000, vol. 12, no. 1, pp. 20-26

12. Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R, Guan K, Krebsbach PH, Wang CY. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med. 2009, vol. 15, no. 6, pp. 682-689. 

13. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, Bushman FD, Collman RG. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011, vol. 184, no. 8, pp. 957-963.

14. Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol. 2012, vol. 8, no. 3, pp. 133-43. 

15. Condon TV, Sawyer RT, Fenton MJ, Riches DWH. Lung Dendritic Cells at the Innate-Adaptive Immune Interface. Journal of Leukocyte Biology. 2011 vol. 90, no. 5, pp. 883–895.

16. Denker BM, Nigam SK. Molecular structure and assembly of the tight junction. Am J Physiol. 1998, vol. 274, no.1, pp. 1-9.

17. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB, Curtis JL. Bacterial Topography of the Healthy Human Lower Respiratory Tract. mBio. 2017, vol. 8, no. 1, pp. 1-12

18. Dickson RP, Erb-Downward JR, Falkowski NR, Hunter EM, Ashley SL, Huffnagle GB. The Lung Microbiota of Healthy Mice Are Highly Variable, Cluster by Environment, and Reflect Variation in Baseline Lung Innate Immunity. Am J Respir Crit Care Med. 2018, vol. 198, no. 4, pp. 497-508.

19. Disser NP, De Micheli AJ, Schonk MM, Konnaris MA, Piacentini AN, Edon DL, Toresdahl BG, Rodeo SA, Casey EK, Mendias CL. Musculoskeletal Consequences of COVID-19. J Bone Joint Surg Am. 2020, vol. 102, no. 14, pp. 1197-1204. 

20. Feldman GJ, Mullin JM, Ryan MP. Occludin: structure, function and regulation. Adv Drug Deliv Rev. 2005, vol. 57, no. 6, pp. 883-917.

21. Flynn AN, Itani OA, Moninger TO, Welsh MJ. Acute regulation of tight junction ion selectivity in human airway epithelia. Proc Natl Acad Sci U S A. 2009, vol. 106, no. 9, pp. 3591-3596.

22. Fong EL, Chan CK, Goodman SB. Stem cell homing in musculoskeletal injury. Biomaterials. 2011, vol. 32, no. 2, pp. 395-409. 

23. Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc. 2020, vol. 4, no. 2, pp. 1-15

24. Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R, McCoy KD, Nicod LP, Lloyd CM, Marsland BJ. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat Med. 2014, vol. 20, no. 6, pp.642-647.

25. Goodman SB, Pajarinen J, Yao Z, Lin T. Inflammation and Bone Repair: From Particle Disease to Tissue Regeneration. Front Bioeng Biotechnol. 2019, vol. 7, pp. 230.

26. Goodman SB, Maruyama M. Inflammation, Bone Healing and Osteonecrosis: From Bedside to Bench. J Inflamm Res. 2020, vol. 13, pp. 913-923.

27. Guillot L, Nathan N, Tabary O, Thouvenin G, Le Rouzic P, Corvol H, Amselem S, Clement A. Alveolar epithelial cells: master regulators of lung homeostasis. Int J Biochem Cell Biol. 2013, vol. 45, no. 11, pp. 2568-2573.

28. Günther J, Seyfert HM. The First Line of Defence: Insights Into Mechanisms and Relevance of Phagocytosis in Epithelial Cells. Semin Immunopathol. 2018, vol. 40, no. 6, pp. 555–565.

29. Han H, Yang L, Liu R, Liu F, Wu KL, Li J, Liu XH, Zhu CL. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection. Clin Chem Lab Med. 2020, vol. 58, no. 7, pp. 1116-1120.

30. Herbst T, Sichelstiel A, Schär C, Yadava K, Bürki K, Cahenzli J, McCoy K, Marsland BJ, Harris NL. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am J Respir Crit Care Med. 2011, vol. 184, no. 2, pp. 198-205.

31. Hippenstiel S, Opitz B, Schmeck B, Suttorp N. Lung epithelium as a sentinel and effector system in pneumonia--molecular mechanisms of pathogen recognition and signal transduction. Respir Res. 2006, vol. 7, no, 1, pp. 97.

32. Holt PG, Strickland DH, Wikström ME, Jahnsen FL. Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol. 2008, vol. 8, no. 2, pp. 142-152. 

33. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012, vol. 336 no. 6086, pp. 1268-1273. 

34. Horowitz MC, Coleman DL, Flood PM, Kupper TS, Jilka RL. Parathyroid hormone and lipopolysaccharide induce murine osteoblast-like cells to secrete a cytokine indistinguishable from granulocyte-macrophage colony-stimulating factor. J Clin Invest. 1989, vol. 83, no. 1,pp. 149-157.

35. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020, vol. 395, no. 10223, pp. 497-506.

36. Inada M, Matsumoto C, Uematsu S, Akira S, Miyaura C. Membrane-bound prostaglandin E synthase-1-mediated prostaglandin E2 production by osteoblast plays a critical role in lipopolysaccharide-induced bone loss associated with inflammation. J Immunol. 2006, vol. 177, no. 3, pp. 1879-1885.

37. Itoh K, Udagawa N, Kobayashi K, Suda K, Li X, Takami M, Okahashi N, Nishihara T, Takahashi N. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J Immunol. 2003, vol. 170, no. 7, pp. 3688-3695.

38. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009, vol. 139, no. 3, pp. 485-498.

39. Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv. 2010, vol. 23, no. 4, pp. 243-252. 

40. Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis. 2002, vol. 8, no. 3, pp. 147-159.

41. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011, vol. 34, no. 5, pp. 637-650.

42. Kong, Q.; Six, D.A.; Liu, Q.; Gu, L.; Wang, S.; Alamuri, P.; Raetz, C.R.H.; Curtiss, R., III. Phosphate groups of lipid A are essential for salmonella enterica serovar typhimurium virulence and affect innate and adaptive immunity. Infect. Immun. 2012, vol. 80, no. 9, pp. 3215–3224

43. Kong Q, Six DA, Roland KL, Liu Q, Gu L, Reynolds CM, Wang X, Raetz CR, Curtiss R 3rd. Salmonella synthesizing 1-dephosphorylated [corrected] lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. J Immunol. 2011, vol. 187, no. 1, pp. 412-423. 

44. Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol. 2011, vol. 51, pp. 267-288

45. Li N, Geng C, Hou S, Fan H, Gong Y. Damage-Associated Molecular Patterns and Their Signaling Pathways in Primary Blast Lung Injury: New Research Progress and Future Directions. Int J Mol Sci. 2020, vol. 21, no. 17, pp. 6303.

46. Lin T, Pajarinen J, Nabeshima A, Lu L, Nathan K, Jämsen E, Yao Z, Goodman SB. Preconditioning of murine mesenchymal stem cells synergistically enhanced immunomodulation and osteogenesis. Stem Cell Res Ther. 2017, vol. 8, no. 1, pp. 277.

47. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004, vol. 25, no. 12, pp. 677-686. 

48. Maruyama M, Rhee C, Utsunomiya T, Zhang N, Ueno M, Yao Z, Goodman SB. Modulation of the Inflammatory Response and Bone Healing. Front Endocrinol (Lausanne). 2020, vol. 11, pp. 386.

49. Mont MA, Jones LC, Hungerford DS. Nontraumatic osteonecrosis of the femoral head: ten years later. J Bone Joint Surg Am. 2006, vol. 88 no. 5, pp. 1117-1132.

50. Moreira AP, Texeira TF, Ferreira AB, Peluzio Mdo C, Alfenas Rde C. Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. Br J Nutr. 2012, vol. 108, no. 5, pp. 801-809.

51. Goro Motomura, Takuaki Yamamoto, Keita Miyanishi, Akihisa Yamashita, Katsuo Sueishi, Yukihide Iwamoto. Bone marrow fat-cell enlargement in early steroid-induced osteonecrosis—a histomorphometric study of autopsy cases. Pathology - Research and Practice. 2005, vol. 200, no. 11-12, pp. 807-811

52. Nakamura H, Fukusaki Y, Yoshimura A, Shiraishi C, Kishimoto M, Kaneko T, Hara Y. Lack of Toll-like receptor 4 decreases lipopolysaccharide-induced bone resorption in C3H/HeJ mice in vivo. Oral Microbiol Immunol. 2008, vol. 23, no. 3, pp. 190-195.

53. Nicod LP. Lung Defences: An Overview. Eur Respir Rev . 2005, vol. 14, no. 95, pp. 45–50.

54. Pajarinen J, Lin T, Gibon E, Kohno Y, Maruyama M, Nathan K, Lu L, Yao Z, Goodman SB. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials. 2019, vol. 196, pp. 80-89

55. Phipps MC, Huang Y, Yamaguchi R, Kamiya N, Adapala NS, Tang L, Kim HK. In vivo monitoring of activated macrophages and neutrophils in response to ischemic osteonecrosis in a mouse model. J Orthop Res. 2016, vol. 34, no. 2, pp. 307-313.

56. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem. 2002, vol. 71, pp. 635-700. 

57. Ren L, Zhang R, Rao J, Xiao Y, Zhang Z, Yang B, Cao D, Zhong H, Ning P, Shang Y, Li M, Gao Z, Wang J. Transcriptionally Active Lung Microbiome and Its Association with Bacterial Biomass and Host Inflammatory Status. 2018, vol. 3, no. 5.

58. Rezaee F, Georas SN. Breaking barriers. New insights into airway epithelial barrier function in health and disease. Am J Respir Cell Mol Biol. 2014, vol. 50, no. 5, pp. 857-869.

59. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova F, et al. Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J. 1994, vol. 8, no. 2, pp. 217-225.

60. Roth M. Grundlagen von Asthma und COPD [Fundamentals of chronic inflammatory lung diseases (asthma, COPD, fibrosis)]. Ther Umsch. 2014, vol. 71, no. 5, pp. 258-261.

61. Rylance J, Kankwatira A, Nelson DE, Toh E, Day RB, Lin H, Gao X, Dong Q, Sodergren E, Weinstock GM, Heyderman RS, Twigg HL 3rd, Gordon SB. Household air pollution and the lung microbiome of healthy adults in Malawi: a cross-sectional study. BMC Microbiol. 2016, vol. 16, no. 1, pp. 182

62. Whiteside SA, McGinniss JE, Collman RG. The lung microbiome: progress and promise. J Clin Invest. 2021, vol. 131, no. 15,

63. Sato N, Takahashi N, Suda K, Nakamura M, Yamaki M, Ninomiya T, Kobayashi Y, Takada H, Shibata K, Yamamoto M, Takeda K, Akira S, Noguchi T, Udagawa N. MyD88 but not TRIF is essential for osteoclastogenesis induced by lipopolysaccharide, diacyl lipopeptide, and IL-1alpha. J Exp Med. 2004, vol. 200, no. 5, pp. 601-611.

64. Schippers M, Post E, Eichhorn I, Langeland J, Beljaars L, Malo MS, Hodin RA, Millán JL, Popov Y, Schuppan D, Poelstra K. Phosphate Groups in the Lipid A Moiety Determine the Effects of LPS on Hepatic Stellate Cells: A Role for LPS-Dephosphorylating Activity in Liver Fibrosis. Cells. 2020, vol. 9, no. 12, pp. 2708.

65. Seamon, Jesse, Keller, Thomas, Saleh, Jamal, Cui, Quanjun, The Pathogenesis of Nontraumatic Osteonecrosis, Arthritis, 2012, pp. 11.

66. Segal LN, Clemente JC, Tsay JC, Koralov SB, Keller BC, Wu BG, Li Y, Shen N, Ghedin E, Morris A, Diaz P, Huang L, Wikoff WR, Ubeda C, Artacho A, Rom WN, Sterman DH, Collman RG, Blaser MJ, Weiden MD. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol. 2016, vol 1.

67. Simon-Soro A, Sohn MB, McGinniss JE, Imai I, Brown MC, Knecht VR, Bailey A, Clarke EL, Cantu E, Li H, Bittinger K, Diamond JM, Christie JD, Bushman FD, Collman RG. Upper Respiratory Dysbiosis with a Facultative-dominated Ecotype in Advanced Lung Disease and Dynamic Change after Lung Transplant. Ann Am Thorac Soc. 2019, vol. 16, no. 11, pp.1383-1391.

68. Suda K, Woo JT, Takami M, Sexton PM, and Nagai K. Lipopolysaccharide supports survival and fusion of preosteoclasts independent of TNF-alpha, IL-1, and RANKL.. J Cell Physiol. 2002 vol. 190, no. 1, pp. 101-108.

69. Sulaiman I, Wu BG, Li Y, Tsay JC, Sauthoff M, Scott AS, Ji K, Koralov SB, Weiden M, Clemente JC, Jones D, Huang YJ, Stringer KA, Zhang L, Geber A, Banakis S, Tipton L, Ghedin E, Segal LN. Functional lower airways genomic profiling of the microbiome to capture active microbial metabolism. Eur Respir J. 2021, vol. 58, no. 1.

70. Tian L, Wen Q, Dang X, You W, Fan L, Wang K. Immune response associated with Toll-like receptor 4 signaling pathway leads to steroid-induced femoral head osteonecrosis. BMC Musculoskelet Disord. 2014, vol. 15, no. 18.

71. Tobioka, H., Y. Tokunaga, H. Isomura, Y. Kokai, J. Yamaguchi, and N. Sawada.. Expression of occludin, a tight-junction-associated protein, in human lung carcinomas. Virchows Archiv . 2004, vol. 445, no. 5, pp. 472–476.

72. van der Vaart H, Postma DS, Timens W, Hylkema MN, Willemse BW, Boezen HM, Vonk JM, de Reus DM, Kauffman HF, ten Hacken NH. Acute effects of cigarette smoking on inflammation in healthy intermittent smokers. Respir Res. 2005, vol. 6, no. 1, pp. 22.

73. Verdecchia P, Cavallini C, Spanevello A, Angeli F. COVID-19: ACE2centric Infective Disease? Hypertension. 2020, vol. 76, no. 2, pp. 294-299. 

74. Weir EC, Insogna KL, Horowitz MC. Osteoblast-like cells secrete granulocyte-macrophage colony-stimulating factor in response to parathyroid hormone and lipopolysaccharide. Endocrinology. 1989, vol. 124, no. 2, pp. 899-904. 

75. Yu K, Ma Y, Li X, Wu X, Liu W, Li X, Shen J, Wang H. Lipopolysaccharide increases IL-6 secretion via activation of the ERK1/2 signaling pathway to up-regulate RANKL gene expression in MLO-Y4 cells. Cell Biol Int. 2017, vol. 41, no. 1, pp. 84-92.

76. Zhang R, Chen L, Cao L, Li KJ, Huang Y, Luan XQ, Li G. Effects of smoking on the lower respiratory tract microbiome in mice. Respir Res. 2018, vol. 19, no. 1, pp. 253.

77. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W; China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020, vol. 382, no. 8, pp. 727-733.


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (12KB)    
Indexing metadata ▾
2. Неозаглавлен
Subject
Type Other
Download (88KB)    
Indexing metadata ▾
3. Неозаглавлен
Subject
Type Other
Download (44KB)    
Indexing metadata ▾
4. Неозаглавлен
Subject
Type Other
Download (664KB)    
Indexing metadata ▾
5. Неозаглавлен
Subject
Type Other
Download (14KB)    
Indexing metadata ▾

Review

For citations:


Bubley C.V., Beloglazov V.A., Yatskov I.A., Zayaeva A.A. VIRAL INFECTION AND LIPOPOLYSACCHARIDE: PATHOLOGICAL AXIS "LUNGS-JOINTS" AS A POTENTIAL CAUSE OF OSTEONECROSIS. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-VIA-3139

Views: 3


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)