Preview

Medical Immunology (Russia)

Advanced search

CYTOMETRIC FEATURES OF THE CELLULAR COMPARTMENT OF THE IMMUNE SYSTEM OF PARTICIPANTS IN MODERN MILITARY CONFLICTS

https://doi.org/10.15789/1563-0625-CFO-2952

Abstract

Abstract

Staying in a combat zone is associated with a high risk of developing mental disorders. A significant amount of knowledge has been accumulated about the mechanisms of immune-mediated reactions in the development of neuropsychiatric pathology, in particular post-traumatic stress disorder (PTSD). Activated T-regulatory cells play an important role in the development of neuroinflammation under stress.

Purpose of the study: to study the indicators of the blood system, cytometric features of the cellular compartment of the immune system in participants in modern military conflicts with the presence of adaptation disorders associated with stress.

Materials and methods. We examined 97 veterans - participants in modern military conflicts, males from 35 to 55 years old, of which 35 were veterans of a special military operation in Ukraine (SVO) - the main group, 42 veterans of the second Chechen military campaign (comparison group), 20 people - healthy military personnel (control group. All patients underwent pathopsychological examination in accordance with clinical recommendations. 12% of Northern Military District veterans were diagnosed with PTSD, 77% had various types of neurotic, stress-related and somatoform disorders. In the comparison group, 2% of combatants were diagnosed with chronic personality change. A complete blood count was performed using a standardized method on a hematology analyzer. Immunophenotyping of lymphocytes using a Navios flow cytometer (Beckman Coulter, USA).

Results and discussion. In the group of SVO veterans, a decrease in the degree of dispersion of erythrocytes in volume, an indicator of heterogeneity and the average volume of platelets, lymphopenia, and monocytosis was noted, which reflects the multidirectional effect of hematopoietic cell regulators on individual lines of differentiation of mononuclear cells. Cytometric analysis of the composition of lymphocytes showed a decrease in T-helper cells and mature NK cells in the group of SVO veterans, which explains the presence of lymphopenia and may indicate a deficiency of the adaptive and innate compartments of immune defense in conditions of a prolonged response to stress. An increase in the number of TNK and T-regulatory lymphocytes, which prevent the transition of the immune response to an autoimmune reaction, has been established. Under stress, the transcription factor Foxp3 is involved in the upregulation of the glucocorticoid-induced TNF receptor in the T-regulatory cell line, potentiating the proliferative activity of the latter. A decrease in the number of T-helpers and T-regulatory cells with markers of early and late positive activation has been shown, limiting the development of both autoimmune reactions and the development of stress-induced neuroinflammation. There were practically no differences between the control group and the indicators of the comparison group, which indicates that the severity of stress-induced neuroimmune reactions leveled out over time.

Conclusion. Hematopoiesis induced by stress mediators and changes in the quantitative spectrum of lymphocyte subpopulations mediated by neuroimmune influences are a consequence of a complex multi-level neuropsychodynamic process of the central nervous system associated with clinical forms of adaptation disorders.

About the Authors

S. L. Pashnin
Federal State Budgetary Educational Institution of Higher Education South Ural State Medical University of Russia, Chelyabinsk, Russian Federation; State Budgetary Healthcare Institution Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russian Federation
Russian Federation

neurosurgeon, Honored Physician of the Russian Federation, Head of the Department of Neurosurgery, Chelyabinsk Regional Clinical Hospital, Chelyabinsk



E. V. Davydova
Federal State Budgetary Educational Institution of Higher Education South Ural State Medical University of Russia, Chelyabinsk, Russian Federation; State Budgetary Healthcare Institution Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russian Federation
Russian Federation

D.Sc. MD, Associate Professor, Professor of the Department of Medical Rehabilitation and Sports Medicine of the South Ural State Medical University of the Ministry of Health of the Russian Federation, Head. Department of Early Medical rehabilitation of Chelyabinsk Regional Clinical Hospital, Chelyabinsk



D. Sh. Altman
State Budgetary Healthcare Institution Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russian Federation
Russian Federation

MD, Professor, Honored Physician of the Russian Federation, Chief Physician of the Chelyabinsk Regional Clinical Hospital, Chelyabinsk



V. A. Zurochka
Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia; South Ural State University (National Research University), Chelyabinsk, Russia

D.Sc. MD, senior researcher, laboratory of immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Ekaterinburg; senior researcher, laboratory of immunobiotechnology, Russian-Chinese Center, South Ural State University (NRU),Chelyabinsk, Russia



I. Yu. Zhuravlev
State Budgetary Healthcare Institution Chelyabinsk Regional Clinical Hospital, Chelyabinsk, Russian Federation

Neurosurgeon at the Department of Neurosurgery of the Chelyabinsk Regional Clinical Hospital, Chelyabinsk



Ya. T. Zhakupova
Federal State Budgetary Educational Institution of Higher Education South Ural State Medical University of Russia, Chelyabinsk, Russian Federation; Chelyabinsk Clinical Therapeutic Hospital for War Veterans, Chelyabinsk, Russia

Candidate of Psychological Sciences, Associate Professor, Associate Professor of the Department of Psychology of the South Ural State Medical University of the Ministry of Health of the Russian Federation; clinical psychologist of the Chelyabinsk Clinical Therapeutic Hospital of War Veterans, Chelyabinsk



References

1. Vasilyeva A.V., Karavaeva T. A., Lukoshkina E. P. Diagnosis and therapy of post-traumatic stress disorder in the clinic of borderline disorders and somatic medicine. St. Petersburg: Diagnosis and treatment of mental and narcological disorders: modern approaches. Collection of methodological recommendations / comp. N. V. Semenova, under the general editorship of N. G. Neznanov. Issue 2. Publishing and printing company "COSTA", 2019, pp. 300-324

2. Vasilyeva A.V., Karavaeva T.A., Neznanov N.G., Idrisov K.A., Kovlen D.V., Ponomarenko N.G., Radionov D.S., Starunskaya D.A., Shoigu Y.S. Post–traumatic stress disorder in the paradigm of evidence-based medicine: pathogenesis, clinic, diagnosis and therapy. St. Petersburg.: NMIC MON named after V.M. Bekhterev, 2022. – 33 p.

3. Verzakova Yu.A., Girshfeld V.A. Changes in the immune status under stress. International Student Scientific Bulletin. – 2019. – No. 3.

4. Zurochka A.V., Davydova E.V., Cytometric analysis of the spectrum subpopulation of T lymphocytes in the early forms of chronic brain ischemia veterans of modern wars. Medical Immunology (Russia)/Meditsinskaya Immunologiya, 2015, Vol. 17, no. 1, pp. 33-38.

5. Zurochka A.V., Khaidukov S.V., Kudryavtsev I.V., Chereshnev V.A. Flowcytometry in biomedical research. Ekaterinburg: RIO, Ural Branch of the Russian Academy of Sciences, 2018. 720 p.

6. Kiseleva N.M., Kuzmenko L.G., NkaneNzola M.M. Stress and lymphocytes. Pediatrics. The magazine named after G. N. Speransky, 2012. №1.

7. Kryukov E. V., Shamrey V. K. Military psychiatry in the XXI century: modern problems and prospects of development . St. Petersburg : SpetsLit, 2022. - 367 p.

8. Reznik A.M. Mental disorders in veterans of local wars who suffered a traumatic brain injury. Health, Food & Biotechnology. 2020; 2(1):11-23.

9. Smirnova A.V., Koryagina O.A. Stress and the physiological response of the body. Exam stress among students. International Student Scientific Bulletin. – 2019. – No. 2.

10. Senyavskaya E.S. Frontline life of the Great Patriotic War: structure and features. Bulletin of Anthropology, 2021.No. 2. pp. 7-25. DOI: 10.33876/2311-0546/2021-54-2/7-25

11. Tokarev A. R. Neuro-cytokine mechanisms of acute stress (literature review). Journal of new medical technologies, eEdition. 2019. №3 DOI: 10.24411/2075-4094-2019-16469

12. Troitskiy M.S. Stress and psychopathology. Journal of new medical technologies, 2016, No.4, pp.343-352 DOI: 10.12737/22635

13. Tuchina O.P., Sidorova M.V., Turkin A.V., Shvayko D.A., Shalaginova I.G., Vakolyuk I.A. Molecular mechanisms of initiation and development of neuroinflammation in the model of posttraumatic stress disorder. Genes and cells. 2018. №2. DOI: 10.23868/201808019

14. Bam, M., Yang, X., Busbee, B. P., Aiello, A. E., Uddin, M., Ginsberg, J. P. (2020). Increased H3K4me3 methylation and decreased miR-7113-5p expression lead to enhanced Wnt/β-catenin signaling in immune cells from PTSD patients leading to inflammatory phenotype. Mol. Med. 26:110. DOI: 10.1186/s10020-020-00238-3

15. Bujko K., Kucia M., Ratajczak J., Ratajczak M.Z. Hematopoietic Stem and Progenitor Cells (HSPCs). Adv Exp Med Biol. 2019;1201: рр. 49-77. DOI: 10.1007/978-3-030-31206-0_3

16. Busbee, P. B., Bam, M., Yang, X., Abdulla, O. A., Zhou, J., Ginsberg, J. P. (2022). Dysregulated TP53 among PTSD patients leads to downregulation of miRNA let-7a and promotes an inflammatory Th17 phenotype. Front. Immunol. 12:815840. DOI: 10.3389/fimmu.2021.815840

17. Chen, Y., An, Q., Yang, S. T., Chen, Y. L., Tong, L., and Ji, L. L. (2022). MicroRNA-124 attenuates PTSD-like behaviors and reduces the level of inflammatory cytokines by downregulating the expression of TRAF6 in the hippocampus of rats following single-prolonged stress. Exp. Neurol. 356:114154. DOI: 10.1016/j.expneurol.2022.114154

18. Dantzer R. Role of the kynurenine metabolism pathway in inflammation-induced depression: preclinical approaches. Curr Top BehavNeurosci. 2017;31, рр. 117–138. DOI: 10.1007/7854_2016_6.

19. Freier E., Weber C.S., Nowottne U., Horn C., Bartels K., Meyer S., Hildebrandt Y., Luetkens T., Cao Y., Pabst C., Muzzulini J., Schnee B., Brunner-Weinzierl M.C., Marangolo M., Bokemeyer C., Deter H.C., Atanackovic D. Decrease of CD4(+)FOXP3(+) T regulatory cells in the peripheral blood of human subjects undergoing a mental stressor. Psychoneuroendocrinology. 2010 Jun;35(5), рр. 663-673. DOI: 10.1016/j.psyneuen.2009.10.005.

20. Gelernter J., Sun N., Polimanti R., Pietrzak R., Levey D.F., Bryois J., Lu Q., Hu Y., Li B., Radhakrishnan K., Aslan M., Cheung K.H., Li Y., Rajeevan N., Sayward F., Harrington K., Chen Q., Cho K., Pyarajan S., Sullivan P.F., Quaden R., Shi Y., Hunter-Zinck H., Gaziano J.M., Concato J., Zhao H., Stein M.B.; Department of Veterans Affairs Cooperative Studies Program (#575B) and Million Veteran Program. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nat Neurosci. 2019 Sep;22(9), рр. 1394-1401 DOI: 10.1038/s41593-019-0447-7. Epub 2019 Jul 29.

21. Gerondakis S., Fulford T.S., Messina N.L., Grumont R.J. Corrigendum: NF-κB control of T cell development.NatImmunol. 2017 Sep 19;18(10), р. 1173 DOI: 10.1038/ni1017-1173a.

22. Giotakos O. Neurobiology of emotional trauma. Psychiatriki, 2020 Apr-Jun;31(2), рр. 162-171 DOI: 10.22365/jpsych.2020.312.162 DOI: 10.22365/jpsych.2020.312.162

23. Iqbal J., Huang G.D., Xue Y.X., Yang M., Jia X.J. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. FrontNeurosci. 2023 Dec 5;17:1281401. DOI: 10.3389/fnins.2023.1281401.

24. Jenne C.N., Lee W-Y., Léger C., Kubes P. Functional Innervation of Hepatic iNKT Cells Is Immunosuppressive Following Stroke. Science (New

25. York, N.Y.) [Internet]. 2011 Sep 15 [cited 2011 Oct 7];101. DOI: 10.1126/science.1210301

26. Komarova О. N., Khavkin A. I. Correlation Between Stress, Immunity and Intestinal Microbiota. Pediatricheskaya farmakologiya — Pediatric pharmacology. 2020; 17 (1), рр. 18–24. DOI: 10.15690/pf.v17i1.2078)

27. Krabbe S., Grundemann J., and Luthi A. Amygdala inhibitory circuits regulate associative fear conditioning. Biol. Psychiatry, 2018 May 15;83(10), рр. 800-809 DOI: 10.1016/j.biopsych.2017.10.006

28. Li Y., Duan W., and Chen Z. Latent profiles of the comorbidity of the symptoms for posttraumatic stress disorder and generalized anxiety disorder among children and adolescents who are susceptible to COVID-19. Child Youth Serv Rev, 2020 Sep:116:105235. DOI: 10.1016/j.childyouth.2020.105235.

29. O'Farrell K, Harkin A. Stress-related regulation of the kynurenine pathway: Relevance to neuropsychiatric and degenerative disorders. Neuropharmacology. 2017 Jan;112(Pt B), рр. 307-323. DOI: 10.1016/j.neuropharm.2015.12.004. Epub 2015 Dec 12.

30. Pasciuto E. , Burton O.T. , Roca C.P. , Lagou V. , Rajan W.D. , Theys T. , Mancuso R. , Tito R.Y. , Kouser L. , Callaerts-Vegh Z., De La Fuente A.G. , Prezzemolo T., Mascali L.G. , Brajic A. , Whyte C.E. , Yshii L. , MartinezMuriana A. , Naughton M. , Young A. , Moudra A. , Lemaitre P. , Poovathingal S. , Raes J. , De Strooper B. , Fitzgerald D.C. , Dooley J. , Liston A. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell, 182 (2020), pp. 625-640, e24 DOI: 10.1016/j.cell.2020.06.026

31. Rosen V., and Ayers G. An update on the complexity and importance of accurately diagnosing post-traumatic stress disorder and comorbid traumatic brain injury. Neurosci Insights, 2020, 15:2633105520907895. DOI: 10.1177/2633105520907895

32. Satoh M., Iwabuchi K. Immunomodulatory Functions of α-GalCer and a Derivative, α-Carba-GalCer. Methods Mol Biol. 2023;2613, рр. 1-11. DOI: 10.1007/978-1-0716-2910-9_1.

33. Stein M.B., Levey D.F., Cheng Z., Wendt F.R., Harrington K., Pathak G.A., Cho K., Quaden R., Radhakrishnan K., Girgenti M.J., Ho Y.A., Posner D., Aslan M., Duman R.S., Zhao H. Department of Veterans Affairs Cooperative Studies Program (no. 575B); VA Million Veteran Program; Polimanti R., Concato J., Gelernter J.. Genome-wide association analyses of post-traumatic stress disorder and its symptom subdomains in the Million Veteran Program. Nat Genet. 2021 Feb;53(2), рр.174-184. DOI:10.1038/s41588-020-00767-x. Epub 2021 Jan 28.

34. Tang W., Wang Y., Lu L., Lu Y., and Xu J. Post-traumatic growth among 5195 adolescents at 8.5 years after exposure to the Wenchuan earthquake: roles of post-traumatic stress disorder and self-esteem. J. Health Psychol., 2021, 26, рр. 2450–2459. DOI: 10.1177/1359105320913947

35. Xu Z. , Zhang X. , Chang H., Kong Y., Ni Y., Liu R., Zhang X., Hu Y., Yang Z., Hou M., Mao R., Liu W.T., Du Y., Yu S., Wang Z., Ji M., Zhou Z. Rescue of maternal immune activation-induced behavioral abnormalities in adult mouse offspring by pathogen-activated maternal Treg cells Nat. Neurosci., 24 (2021), pp. 818-830 DOI: 10.1038/s41593-021-00837-1

36. Yan Y., Ramanan D., Rozenberg M., McGovern K., Rastelli D., Vijaykumar B., Yaghi O., Voisin T., Mosaheb M., Chiu I., Itzkovitz S., Rao M., Mathis D., Benoist C. Interleukin-6 produced by enteric neurons regulates the number and phenotype of microbe-responsive regulatory T cells in the gute5 Immunity, 54 (2021), pp. 499-513 DOI: 10.1016/j.immuni.2021.02.002

37. Yuan M., Liu B., Yang B., Dang W., Xie H., Lui S., et al. Dysfunction of default mode network characterizes generalized anxiety disorder relative to social anxiety disorder and post-traumatic stress disorder. J AffectDisord, 2023, 334, рр. 35–42. DOI: 10.1016/j.jad.2023.04.099. Epub 2023 Apr 29.

38. Yshii L. , Pasciuto E. , Bielefeld P. , Mascali L. , Lemaitre P. , Marino M. , Dooley J. , Kouser L. , Verschoren S. , Lagou V. , Kemps H. , Gervois P. , deBoer A. , Burton O.T. , Wahis J. , Verhaert J. , Tareen S.H.K. , Roca C.P. , Singh K. , Whyte C.E. , Kerstens A. , CallaertsVegh Z. , Poovathingal S. , Prezzemolo T. , Wierda K. , Dashwood A. , Xie J. , VanWonterghem E. , Creemers E. , Aloulou M. , Gsell W. , Abiega O. , Munck S. , Vandenbroucke R.E. , Bronckaers A. , Lemmens R. , De Strooper B. , Van Den Bosch L. , Himmelreich U. , Fitzsimons C.P. , Holt M.G. , Liston A. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation Nat. Immunol., 23 (2022), pp. 878-891. DOI: 10.1038/s41590-022-01208-z

39. Zhao J.L., Baltimore D. Regulation of stress-induced hematopoiesis. Current Opinion in Hematology 22(4): рp 286-292, July 2015. DOI: 10.1097/MOH.0000000000000149

40. Zhao J.L., Ma C., O’Connell R.M., et al. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 2014; 14, рр.445–459. DOI: 10.1016/j.stem.2014.01.007. Epub 2014 Feb 20.


Supplementary files

1. Метаданные
Subject
Type Исследовательские инструменты
Download (41KB)    
Indexing metadata ▾
2. Литература
Subject
Type Исследовательские инструменты
Download (105KB)    
Indexing metadata ▾
3. Титульный лист
Subject
Type Исследовательские инструменты
Download (43KB)    
Indexing metadata ▾
4. Резюме
Subject
Type Исследовательские инструменты
Download (45KB)    
Indexing metadata ▾
5. Таблица 1
Subject
Type Исследовательские инструменты
Download (62KB)    
Indexing metadata ▾
6. Таблица 2
Subject
Type Исследовательские инструменты
Download (77KB)    
Indexing metadata ▾
7. Подписи авторов
Subject
Type Исследовательские инструменты
View (24MB)    
Indexing metadata ▾
8. Отчет проверки на плагиат
Subject
Type Исследовательские инструменты
Download (425KB)    
Indexing metadata ▾
9. 2952
Subject
Type Other
Download (29KB)    
Indexing metadata ▾

Review

For citations:


Pashnin S.L., Davydova E.V., Altman D.Sh., Zurochka V.A., Zhuravlev I.Yu., Zhakupova Ya.T. CYTOMETRIC FEATURES OF THE CELLULAR COMPARTMENT OF THE IMMUNE SYSTEM OF PARTICIPANTS IN MODERN MILITARY CONFLICTS. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-CFO-2952

Views: 5


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)