Иммуномодулирующий и регенеративный потенциалы грудного молока, недоношенность и детское сердце
https://doi.org/10.15789/1563-0625-IAR-2619
Аннотация
Расширение в современных условиях фундаментальных знаний по вопросам физиологии лактации, биологии стволовых клеток и экзосом грудного молока, нюансам взаимодействия организма матери и ребёнка, начиная от внутриутробного периода, заканчивая постнатальным развитием, требует от научного сообщества и практикующих врачей прогрессивного, динамичного взгляда при анализе известных, общепринятых клинических явлений и закономерностей (развитие иммунной системы младенцев и детей раннего возраста, естественное и искусственное вскармливание, особенности постнатального развития и роста органов и тканей детей, рождённых недоношенными). Компоненты триады «мать - грудное молоко - младенец» тесно связаны друг с другом и влияют на траекторию развития младенца. Грудное молоко кормящей женщины по современным представлениям является «живой, метаболической/эндокринной сигнальной системой», может рассматриваться как «иммунный орган», значимый для постнатального роста и программирования организма недоношенного ребёнка. Не меньшую ценность для постнатального развития в период новорождённости и раннего детства имеет активно обсуждаемое в специальной литературе явление - «микрохимеризм», вызванный грудным вскармливанием и играющий по современным представлениям ключевую роль в развитии иммунной системы и организма в целом Течение постнатального онтогенеза сердечно-сосудистой системы при отсутствии протективного (иммуномодулирующего и регенеративного) эффекта грудного молока кормящей женщины на спонтанное, некорректируемое воздействие неблагоприятных факторов недоношенности приводит, с высокой вероятностью, к ремоделированию и дисфункции сердца у рождённых недоношенными детей, а в отдалённой перспективе - и у взрослых. Поскольку молодые люди, родившиеся недоношенными, демонстрируют уникальный кардиальный фенотип, характеризующийся уменьшенным бивентрикулярным объемом, относительно более низкой систолической и диастолической функциями, непропорциональным увеличением мышечной массы, клинически проявляющийся повышенным риском сердечно-сосудистых заболеваний, гипертонией и снижением толерантности к физической нагрузке, то целесообразно считать преждевременные роды хроническим заболеванием. Следовательно, именно естественное вскармливание, реализующее эволюционно целесообразный защитный механизм для детского сердца, следует относить к фундаментальным факторам, выполняющим жизненно важную роль в профилактике сердечно-сосудистых заболеваний у рождённых недоношенными детей и взрослых
Об авторах
Е. Н. ПавлюковаРоссия
зав отделением атеросклероза и хронической ИБС
М. В. Колосова
Россия
доктор медицинский наук, профессор кафедры детских болезней
Г. В. Неклюдова
Россия
аспирант НИИ кардиологии Томского НИМЦ
Р. С. Карпов
Россия
академик РАН, научный руководитель НИИ кардиологии Томского НИМЦ
Список литературы
1. Владимирская Е.Б. Мезенхимальные стволовые клетки (МСК) в клеточной терапии // Онкогематология, 2007. № 1. С. 4-16.
2. Клиорин А.И. Некоторые возрастные особенности функций желудочно-кишечного тракта у детей. Справочник по детской диететике / Под ред. И.М. Воронцова, А.В. Мазурина. Л.: Медицина, 1977. С. 5-11.
3. Кулида Л.В., Марченко М.В., Перетятко Л.П. Патоморфология гипоксически-ишемических поражений миокарда у новорождённых 22-27 недель гестации // Архив патологии, 2021. Т. 83, № 4. С. 2.
4. Максимяк Л.А., Котлукова Н.П. Роль соединительной ткани сердца в обеспечении его структурных и функциональных свойств, ремоделирование на фоне патологии у детей // Педиатрия. Журнал им. Г.Н. Сперанского, 2016. Т. 95, № 3. С. 169-174.
5. Малышева М.В., Кулида Л.В. Иммуногистохимические и ультраструктурные параметры гипоксических повреждений миокарда у новорождённых с экстремально низкой массой тела // Детская медицина Северо-Запада, 2020. Т. 8, № 1. С. 217.
6. Павлюкова Е.Н., Колосова М.В., Неклюдова Г.В., Карпов Р.С. Механика левого желудочка у детей в возрасте от одного года до пяти лет, рождённых с очень низкой и экстремально низкой массой тела // Ультразвуковая и функциональная диагностика, 2020. № 3. С. 74-90.
7. Румянцев А.Г. Перспективы развития клинической иммунологии // Вопросы гематологии/онкологии и иммунопатологии в педиатрии, 2021. Т. 19, № 4. С. 14-17.
8. Самойлова Е.М., Кальсин В.А., Беспалова В.А., Девиченский В.М., Баклаушев В.П. Экзосомы: от биологии к клинике // Гены и клетки, 2017, № 4, С. 7-19.
9. Спирина Г.А. Морфология сердца и лёгких плодов человека в исследованиях на кафедре анатомии человека // Фундаментальные исследования, 2007. № 12. С. 173-174.
10. Татаринова О.С., Осипова Е.Ю., Румянцев С.А. Биологические свойства и возможности клинического использования мезенхимальных стволовых клеток // Онкогематология, 2009. № 4. С. 33-44.
11. Abbaszadeh H., Ghorbani F., Derakhshani M., Movassaghpour A., Yousefi M. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: A novel therapeutic paradigm. J. Cell. Physiol., 2020, Vol. 235, no. 2, pp. 706-717.
12. Abd Allah S.H., Shalaby S.M., El-Shal A.S., El Nabtety S.M., Khamis T., Abd El Rhman S.A., Kelani H.M. Breast milk MSCs: An explanation of tissue growth and maturation of offspring. IUBMB Life, 2016, Vol. 68, no. 12, pp. 935-942.
13. Ahmed W., Tariq S., Khan G. Tracking EBV-encoded RNAs (EBERs) from the nucleus to the excreted exosomes of B-lymphocytes. Sci. Rep., 2018, Vol. 8, no. 1, pp. 1-11.
14. Alsaweed M., Hartmann P.E., Geddes D.T., Kakulas F. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int. J. Environ. Res. Public Health, 2015, Vol. 12, no. 11, pp. 13981-14020.
15. Alsaweed M., Lai C.T., Hartmann P.E., Geddes D.T., Kakulas F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci. Rep., 2016, Vol. 6, no. 1, pp. 1-13.
16. Anel A., Gallego-Lleyda A., de Miguel D., Naval J., Martínez-Lostao L. Role of exosomes in the regulation of T-cell mediated immune responses and in autoimmune disease. Cells, 2019, Vol. 8, no. 2, 154. doi: 10.3390/cells8020154.
17. Angelini A., Thiene G., Frescura C., Baroldi G. Coronary arterial wall and atherosclerosis in youth (1-20 years): a histologic study in a northern Italian population. Int. J. Cardiol., 1990, Vol. 28, no. 3, pp. 361-370.
18. Aydın M.Ş., Yiğit E.N., Vatandaşlar E., Erdoğan E., Öztürk G. Transfer and Integration of Breast Milk Stem Cells to the Brain of Suckling Pups. Sci. Rep., 2018, no. 8, 14289. doi: 10.1038/s41598-018-32715-5.
19. Baban B., Malik A., Bhatia J., Jack C.Y. Presence and profile of innate lymphoid cells in human breast milk. JAMA Pediatr., 2018, Vol. 172, no. 6, pp. 594-596.
20. Balle C., Armistead B., Kiravu A., Song X., Happel A.U., Hoffmann A.A., Kanaan S.B., Nelson J.L., Gray C.M., Jaspan H.B., Harrington W.E. Factors influencing maternal microchimerism throughout infancy and its impact on infant T cell immunity. J. Clin. Invest., 2022 Vol. 132, no. 13, e148826. doi: 10.1172/JCI148826.
21. Bardanzellu F., Fanos V., Strigini F.A., Artini P.G., Peroni D.G. Human breast milk: exploring the linking ring among emerging components. Front. Pediatr., 2018, Vol. 6, 215. doi: 10.3389/fped.2018.00215.
22. Bensley J.G., Stacy V.K., de Matteo R. Cardiac remodelling as a result of pre-term birth: implications for future cardiovascular disease. Eur. Heart J.,2010, Vol. 31, no. 16, 2058. doi: 10.1093/eurheartj/ehq104.
23. Bertagnolli M., Xie L.F., Paquette K., He Y., Cloutier A., Fernandes R.O., Béland C., Sutherland M.R., Delfrate J., Curnier D., Bigras J.-L., Rivard A., Thébaud B., Luu T.M., Nuyt A.M. Endothelial colony-forming cells in young adults born preterm: a novel link between neonatal complications and adult risks for cardiovascular disease. J. Am. Heart Assoc., 2018, Vol. 7, no. 14, e009720. doi: 10.1161/JAHA.118.009720.
24. Bianchi D.W., Khosrotehrani K., Way S.S., MacKenzie T.C., Bajema I., O’Donoghue K. Forever connected: the lifelong biological consequences of fetomaternal and maternofetal microchimerism. Clin. Chem., 2021, Vol. 67, no. 2, pp. 351-362.
25. Boudry G., Charton E., le Huerou-Luron I., Ferret-Bernard S., le Gall S., Even S., Blat S. The relationship between breast milk components and the infant gut microbiota. Front. Nutr., 2021, Vol. 8, 629740. doi: 10.3389/fnut.2021.629740.
26. Bourlieu C., Michalski M.C. Structure–function relationship of the milk fat globule. Curr. Opin. Clin. Nutr. Metab. Care, 2015, Vol. 18, no. 2, pp. 118-127.
27. Briana D.D., Malamitsi-Puchner A. Coronary intimal thickening begins in fetuses: proof of concept for the “fetal origins of adult disease” hypothesis. Angiology, 2020, Vol. 71, no. 1, pp. 89-89.
28. Carr H., Cnattingius S., Granath F., Ludvigsson J.F., Bonamy A.K.E. Preterm birth and risk of heart failure up to early adulthood. J. Am. Coll. Cardiol., 2017, Vol. 69, no. 21, pp. 2634-2642.
29. Chehade H., Simeoni U., Guignard J.P., Boubred F. Preterm birth: long term cardiovascular and renal consequences. Curr. Pediatr. Rev., 2018, Vol. 14, no. 4, pp. 219-226.
30. Collins A., Weitkamp J.H., Wynn J.L. Why are preterm newborns at increased risk of infection? Arch. Dis. Child. Fetal Neonatal Ed., 2018, Vol. 103, no. 4, pp. F391-F394.
31. Cox D.J., Bai W., Price A.N., Edwards A.D., Rueckert D., Groves A.M. Ventricular remodeling in preterm infants: computational cardiac magnetic resonance atlasing shows significant early remodeling of the left ventricle. Pediatr. Res., 2019, Vol. 85, no. 6, pp. 807-815.
32. Cui J., Zhou B., Ross S.A., Zempleni J. Nutrition, microRNAs, and human health. Adv. Nutr., 2017, Vol. 8, no. 1, pp. 105-112.
33. Davies H. Atherogenesis and the coronary arteries of childhood. Int. J. Cardiol., 1990, no. 28, pp. 283-291.
34. de Weerth C., Aatsinki A.K., Azad M.B., Bartol F.F., Bode L., Collado M.C., Dettmer A.M., Field C.J., Guilfoyle M., Hinde K., Korosi A., Lustermans H., Shukri N.H.M., Moore S.E., Pundir S., Rodriguez J.M., Slupsky C.M., Turner S., van Goudoever J.B., Ziomkiewicz A., Beijers R. Human milk: From complex tailored nutrition to bioactive impact on child cognition and behavior. Crit. Rev. Food Sci. Nutr., 2022, pp. 1-38.
35. Duale A., Singh P., Al Khodor S. Breast milk: a meal worth having. Front. Nutr., 2022, Vol. 8, 800927. doi: 10.3389/fnut.2021.800927.
36. Dutta P., Burlingham W.J. Stem cell microchimerism and tolerance to non-inherited maternal antigens. Chimerism, 2010, Vol. 1, no. 1, pp. 2-10.
37. El-Khuffash A., Jain A., Lewandowski A.J., Levy P.T. Preventing disease in the 21st century: early breast milk exposure and later cardiovascular health in premature infants. Pediatr. Res., 2020, Vol. 87, no. 2, pp. 385-390.
38. Fernández-Domínguez I.J., Manzo-Merino J., Taja-Chayeb L., Dueñas-González A., Pérez-Cárdenas E., Trejo-Becerril C. The role of extracellular DNA (exDNA) in cellular processes. Cancer Biol. Ther., 2021, Vol. 22, no. 4, pp. 267-278.
39. Gallier S., Vocking K., Post J.A., van de Heijning B., Acton D., van Der Beek E.M., van Baalen T. A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids Surf. B Biointerfaces, 2015, no. 136, pp. 329-339.
40. Gleeson J.P., Chaudhary N., Fein K.C., Doerfler R., Hredzak-Showalter P., Whitehead, K. A. Profiling of mature-stage human breast milk cells identifies six unique lactocyte subpopulations. Sci. Adv., 2022, Vol. 8, no. 26, eabm6865. doi: 10.1126/sciadv.abm6865.
41. Golan Gerstl R., Elbaum Shiff Y., Moshayoff V., Schecter D., Leshkowitz D., Reif S. Characterization and biological function of milk-derived miRNAs. Mol. Nutr. Food Res., 2017, Vol. 61, no. 10, 1700009. doi: 10.1002/mnfr.201700009.
42. Gomzikova M.O., Zhuravleva M.N., Vorobev V.V., Salafutdinov I.I., Laikov A.V., Kletukhina S.K., Martynova E.V., Tazetdinova L.G., Ntekim A.I., Khaiboullina S.F., Rizvanov A.A. Angiogenic activity of cytochalasin B-induced membrane vesicles of human mesenchymal stem cells. Cells, 2020, Vol. 9, no. 1, 95. doi: 10.3390/cells9010095.
43. González A., López B., Ravassa S., San José G., Díez J. The complex dynamics of myocardial interstitial fibrosis in heart failure. Focus on collagen cross-linking. Biochim. Biophys. Acta Mol. Cell Res., 2019, Vol. 1866, no. 9, 1421. doi: 10.1016/j.bbamcr.2019.06.001.
44. Goss K.N., Haraldsdottir K., Beshish A.G., Barton G.P., Watson A.M., Palta M., Eldridge M.W. Association between preterm birth and arrested cardiac growth in adolescents and young adults. JAMA Сardiol., 2020, Vol. 5, no. 8, pp. 910-919.
45. Guerri-Guttenberg R., Castilla R., Cao G., Azzato F., Ambrosio G., Milei J. Coronary intimal thickening begins in fetuses and progresses in pediatric population and adolescents to atherosclerosis. Angiology, 2020, Vol. 71, no. 1, pp. 62-69.
46. Hård A.L., Nilsson A.K., Lund A.M., Hansen-Pupp I., Smith L.E., Hellström A. Review shows that donor milk does not promote the growth and development of preterm infants as well as maternal milk. Acta Paediatr., 2019, Vol. 108, no. 6, pp. 998-1007.
47. Harris S.L., Bray H., Troughton R., Elliott J., Frampton C., Horwood J., Darlow B.A. Cardiovascular outcomes in young adulthood in a population-based very low birth weight cohort. J. Pediatr., 2020, no. 225, pp. 74-79.
48. Hassiotou F., Geddes D.T. Immune cell-mediated protection of the mammary gland and the infant during breastfeeding. Adv. Nutr., 2015, Vol. 6, no. 3, pp. 267-275.
49. Hassiotou F., Geddes D.T., Hartmann P.E. Cells in human milk: state of the science. J. Hum. Lact., 2013, Vol. 29, no. 2, pp. 171-182.
50. Hatmal M.M.M., Al-Hatamleh M.A., Olaimat A.N., Alshaer W., Hasan H., Albakri K.A., Alkhafaji E., Issa N.N., Al-Holy M.A., Abderrahman S.M., Abdallah A.M., Mohamud R. Immunomodulatory properties of human breast milk: microrna contents and potential epigenetic effects. Biomedicines, 2022, Vol. 10, no. 6, 1219. doi: 10.3390/biomedicines10061219.
51. Humberg A., Fortmann I., Siller B., Kopp M.V., Herting E., Göpel W., Härtel C. Preterm birth and sustained inflammation: consequences for the neonate. Semin. Immunopathol., 2020, no. 42, 451. doi: 10.1007/s00281-02000803-2.
52. Jain N. The early life education of the immune system: Moms, microbes and (missed) opportunities. Gut Microbes, 2020, Vol. 12, no. 1, 1824564. doi: 10.1080/19490976.2020.1824564.
53. Jiang B., Godfrey K.M., Martyn C.N., Gale C.R. Birth weight and cardiac structure in children. Pediatrics, 2006, Vol. 117, no. 2, pp. e257-e261.
54. Joo H.S., Suh J.H., Lee H.J., Bang E.S., Lee J.M. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int. J. Mol. Sci., 2020, Vol. 21, no. 3, 727. doi: 10.3390/ ijms2103072.
55. Kahn S., Liao Y., Du X., Xu W., Li J., Lönnerdal B. Exosomal microRNAs in milk from mothers delivering preterm infants survive in vitro digestion and are taken up by human intestinal cells. Mol. Nutr. Food Res., 2018, Vol. 62, no. 11, 1701050. doi: 10.1002/mnfr.201701050.
56. Kakulas F. Breast milk: a source of stem cells and protective cells for the infant. Infant, 2015, Vol. 11, no. 6, pp. 187-191.
57. Kalluri R., LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science, 2020, Vol. 367, no. 6478, eaau6977. doi: 10.1126/science.aau6977.
58. Kara R.J., Bolli P., Karakikes I., Matsunaga I. Fetal cells traffic to injured maternal myocardium and undergo cardiac differentiation. Circ. Res., 2011, no. 111, 249037. doi: 10.1161/CIRCRESAHA.111.249037.
59. Kinder J.M., Stelzer I.A., Arck P.C., Way S.S. Immunological implications of pregnancy-induced microchimerism. Nat. Rev. Immunol., 2017, Vol. 17, no. 8, 483. doi: 10.1038/nri.2017.38.
60. Kuciel N., Mazurek J., Czosnykowska-Łukacka M., Królak-Olejnik B. Stem cells in breast milk. Pediatria Polska Polish J. Paediatr., 2018, Vol. 93, no. 3, pp. 260-263.
61. Lässer C., Alikhani V.S., Ekström K., Eldh M., Paredes P.T., Bossios A., Sjöstrand M., Gabrielsson S., Lötvall J., Valadi H. Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J. Transl. Med., 2011, Vol. 9, no. 1, 9. doi: 10.1186/1479-5876-9-9.
62. Lawrence R.M. Host-resistance factors and immunologic significance of human milk. Breastfeeding. Elsevier, 2022, рр. 145-192.
63. Leeson P., Lewandowski A.J. A new risk factor for early heart failure: preterm birth. J. Am. Coll. Cardiol., 2017, Vol. 69, no. 21, pp. 2643-2645.
64. Leiferman A., Shu J., Upadhyaya B., Cui J., Zempleni J. Storage of extracellular vesicles in human milk, and microRNA profiles in human milk exosomes and infant formulas. J. Pediatr. Gastroenterol. Nutr., 2019, Vol. 69, no. 2, 235. doi: 10.1097/MPG.0000000000002363.
65. Lewandowski A.J., Raman B., Bertagnolli M., Mohamed A., Williamson W., Pelado J.L., Leeson P. Association of preterm birth with myocardial fibrosis and diastolic dysfunction in young adulthood. J. Am. Coll. Cardiol., 2021, Vol. 78, no. 7, pp. 683-692.
66. Liao Y., Du X., Li J., Lönnerdal B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol. Nutr. Food Res., 2017, Vol. 61, no. 11, 1700082. doi: 10.1002/mnfr.201700082.
67. Lokossou G.A., Kouakanou L., Schumacher A., Zenclussen A.C. Human breast milk: from food to active immune response with disease protection in infants and mothers. Front. Immunol., 2022, Vol. 13, 849012. doi: 10.3389/fimmu.2022.849012.
68. Macia L., Nanan R., Hosseini-Beheshti E., Grau G.E. Host-and microbiota-derived extracellular vesicles, immune function, and disease development. Int. J. Mol. Sci., 2020, Vol. 21, no. 1, 107. doi: 10.3390/ijms21010107.
69. Manca S., Upadhyaya B., Mutai E., Desaulniers A.T., Cederberg R.A., White B.R. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci. Rep., 2018, no. 8, 11. doi: 10.1038/s41598-018-29780-1.
70. Martin C., Patel M., Williams S., Arora H., Sims B. Human breast milk-derived exosomes attenuate cell death in intestinal epithelial cells. Innate Immun., 2018, Vol. 24, pp. 278-284.
71. Massari C.H., Ferreira-Silva A., Riceti-Magalhães H.I., Souza-Silva D.R., Miglino M.A. Computed tomography examination of the os cordis in a lamb (Ovis aries Linnaeus, 1758). Rev. MVZ Cordoba, 2022, Vol. 27, no. 1, e2153.
72. Matturri L., Ottaviani G., Corti G., Lavezzi A.M. Pathogenesis of early atherosclerotic lesions in infants. Pathol. Res. Pract., 2004, Vol. 200, no. 5, pp. 403-410.
73. Melnik B.C., Stremmel W., Weiskirchen R., John S.M., Schmitz G. Exosome-derived microRNAs of human milk and their effects on infant health and development. Biomolecules, 2021, Vol. 11, no. 6, 851. doi: 10.3390/biom11060851.
74. Melville J.M., Moss T.J.M. The immune consequences of preterm birth. Front. Neurosci., 2013, Vol. 7, 79. doi: 10.3389/fnins.2013.00079.
75. Meyer W.W., Lind J., Yao A.C., Kauffman S.L. Early arterial lesions in infancy and childhood and ways of prevention. Paediatrician, 1982, no. 11, pp. 136-156.
76. Michalski M.C., Briard V., Michel F., Tasson F., Poulain P. Size distribution of fat globules in human colostrum, breast milk, and infant formula. J. Dairy Sci., 2005, Vol. 88, no. 6, pp. 1927-1940.
77. Milei J., Grana D.R., Navari C., Azzato F., Guerri-Guttenberg R.A., Ambrosio G. Coronary intimal thickening in newborn babies and ≤ 1-year-old infants. Angiology, 2010, Vol. 61, no. 4, pp. 350-356.
78. Mohamed A., Lamata P., Williamson W., Alsharqi M., Tan C.M.J., Burchert H., Huckstep O.J., Suriano K., Francis J.M., Pelado J.L., Monteiro C., Neubauer S., Levy P.T., Leeson P., Lewandowski A.J. Multimodality imaging demonstrates reduced right-ventricular function independent of pulmonary physiology in moderately pretermborn adults. JACC Cardiovasc. Imaging, 2020, Vol. 13, no. 9, pp. 2046-2048.
79. Molès J.P., Tuaillon E., Kankasa C., Bedin A.S., Nagot N., Marchant A., McDermid J.M., van de Perre P. Breastmilk cell trafficking induces microchimerism-mediated immune system maturation in the infant. Pediatr. Allergy Immunol., 2018, Vol. 29, no. 2, pp. 133-143.
80. Monguio-Tortajada M., Roura S., Galvez-Monton C., Pujal J. M., Aran G., Sanjurjo L. Nanosized UCMSCderived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine. Theranostics, 2017, Vol. 7, no. 2, pp. 270-284. doi: 10.7150/thno.16154.
81. Mourtzi N., Siahanidou T., Tsifintaris M., Karamichali E., Tasiopoulou A., Sertedaki A., Pesmatzoglou M., Kapetanaki A., Liosis G., Baltatzis G., Vlachakis D., Chrousos G.P., Giannakakis A. 3lncRNA NORAD is consistently detected in breastmilk exosomes and its expression is downregulated in mothers of preterm infants. Int. J. Mol. Med., 2021, Vol. 48, no. 6, pp. 1-10.
82. Mulcahy L.A., Pink R.C., Carter D.R.F. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles, 2014, Vol. 3, no. 1, 24641. doi: 10.3402/jev.v3.24641.
83. Munir J., Lee M., Ryu S. Exosomes in food: Health benefits and clinical relevance in diseases. Adv. Nutr., 2020, Vol. 11, no. 3, pp. 687-696.
84. Mutai E., Ngu A.K.H., Zempleni J. Preliminary evidence that lectins in infant soy formula apparently bind bovine milk exosomes and prevent their absorption in healthy adults. BMC Nutr., 2022, Vol. 8, no. 1, pp. 1-6.
85. Nanou A., Crespo M., Flohr P., de Bono J.S., Terstappen L.W. Scanning electron microscopy of circulating tumorcellsandtumor-derivedextracellularvesicles. Cancers, 2018, Vol. 10, no. 11, 416. doi: 10.3390/cancers10110416.
86. Nanou A., Zeune L.L., Terstappen L.W.M.M. Leukocyte-derived extracellular vesicles in blood with and without EpCAM enrichment. Cells, 2019, Vol. 8, no. 8, 937. doi: 10.3390/cells8080937.
87. Ninkina N., Kukharsky M.S., Hewitt M.V., Lysikova E.A., Skuratovska L.N., Deykin A.V., Buchman V.L. Stem cells in human breast milk. Hum. Cell, 2019, рр. 1-8.
88. Noh S.K., Koo S.I. Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. J. Nutr., 2004, Vol. 134, no. 10, pp. 2611-2616.
89. Ortmann W., Kolaczkowska E. Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res., 2018, Vol. 371, no. 3, pp. 473-488.
90. Palmeira P., Carneiro-Sampaio M. Immunology of breast milk. Rev. Assoc. Med. Bras., 2016, Vol. 62, no. 6, pp. 584-593.
91. Panova N.A., Skopichev V.G. A role for cellular immunity in early postpartum period. Medical Immunology (Russia), 2021, Vol. 23, no. 4, pp. 853-858. doi: 10.15789/1563-0625-ARF-2275.
92. Peyman G., Shraddha R., Afsoon G., Hashem B.M., Nasibeh D. Biology, properties and clinical application of Mesenchymal stem cells. Russian Open Medical Journal, 2014, Vol. 3, no. 2. doi: 10.15275/rusomj.2014.0202.
93. Pisano C., Galley J., Elbahrawy M., Wang Y., Farrell A., Brigstock D., Besner G.E. Human breast milkderived extracellular vesicles in the protection against experimental necrotizing enterocolitis. J. Pediatr. Surg., 2020, Vol. 55, no. 1, pp. 54-58.
94. Ramadan M., Cooper B., Posnack N. G. Bisphenols and phthalates: Plastic chemical exposures can contribute to adverse cardiovascular health outcomes. Birth Defects Res., 2020, Vol. 112, no. 17, pp. 1362-1385.
95. Reif S., Shiff Y.E., Golan-Gerstl R. Milk-derived exosomes (MDEs) have a different biological effect on normal fetal colon epithelial cells compared to colon tumor cells in a miRNA-dependent manner. J. Transl. Med., 2019, Vol. 17, no. 1, 325. doi: 10.1186/s12967-019-2072-3.
96. Riskin A., Almog M., Peri R., Halasz K., Srugo I., Kessel A. Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr. Res., 2012, Vol. 71, no. 2, pp. 220-225.
97. Rodríguez J.M., Fernández L., Verhasselt V. The gut-breast axis: programming health for life. Nutrients, 2021, Vol. 13, no. 2. 606. doi: 10.3390/nu13020606.
98. Rubio M., Bustamante M., Hernandez-Ferrer C., Fernandez-Orth D., Pantano L., Sarria Y., Estivill X. Circulating miRNAs, isomiRs and small RNA clusters in human plasma and breast milk. PLoS One, 2018, Vol. 13, no. 3, e0193527. doi: 10.1371/journal.pone.0193527.
99. Rueda R. The role of complex lipids in attaining metabolic health. Curr. Cardiovasc. Risk Rep., 2014, no. 8, 371. doi: 10.1007/s12170-013-0371-4.
100. Samsonraj R.M., Raghunath M., Nurcombe V., Hui J.H., Cool S.M. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Сells Transl. Med., 2017, Vol. 6, no. 12, pp. 2173-2185.
101. Sani M., Hosseini S.M., Salmannejad M., Aleahmad F., Ebrahimi S., Jahanshahi S., Talaei-Khozani T. Origins of the breast milk‐derived cells; an endeavor to find the cell sources. Cell Biol. Int., 2015, Vol. 39, no. 5, pp. 611-618.
102. Sedykh S.E., Burkova E.E., Purvinsh L.V., Klemeshova D.A., Ryabchikova E.I., Nevinsky G.A. Milk exosomes: Isolation, biochemistry, morphology and perspectives of use. Extracellular Vesicles and Their Importance in Human Health, 2020, pp. 1-28.
103. Sicco C.L., Reverberi D., Balbi C., Ulivi V., Principi E., Pascucci L., Becherini P., Bosco M.C., Varesio L., Franzin C., Pozzobon M., Cancedda R., Tasso R. Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells Transl. Med., 2017, Vol. 6, no. 3, pp. 1018-1028.
104. Singh H. Symposium review: Fat globules in milk and their structural modifications during gastrointestinal digestion. J. Dairy Sci., 2019, Vol. 102, no. 3, pp. 2749-2759.
105. Sluijter J.P.G., Davidson S.M., Boulanger C.M., Buzas E.I., de Kleijn D.P.V., Engel F.B., Giricz Z., Hausenloy D.J., Kishore R., Lecour S., Leor J., Madonna R., Perrino C., Prunier F., Sahoo S., Schiffelers R.M., Schulz R., van Laake L.W., Ytrehus K., Ferdinandy P. Extracellular vesicles in diagnostics and therapy of the ischaemic heart: Position Paper from the Working Group on Cellular Biology of the Heart of the European Society of Cardiology. Cardiovasc. Res., 2018, Vol. 114, no. 1, pp. 19-34.
106. Sokolova V., Ludwig A.K., Hornung S., Rotan O., Horn P.A., Epple M., Giebel B. Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf. B Biointerfaces, 2011, Vol. 87, no. 1, pp. 146-150.
107. Stary H.C. Macrophages, macrophage foam cells, and eccentric intimal thickening in the coronary arteries of young children. Atherosclerosis, 1987, Vol. 64, no. 2-3, pp. 91-108.
108. Stevens A.M., Hermes H.M., Rutledge J.C., Buyon J.P., Nelson J.L. Myocardial-tissue-specific phenotype of maternal microchimerism in neonatal lupus congenital heart block. Lancet, 2003, Vol. 362, no. 9396, pp. 1617-1623.
109. Szabo G., Momen-Heravi F. Extracellular vesicles and exosomes: biology and pathobiology. The Liver. Biology and Pathobiology, 2020, pp. 1022-1027.
110. Tachibana A., Santoso M.R., Mahmoudi M., Shukla P., Wang L., Bennett M., Goldstone A.B., Wang M., Fukushi M., Ebert A.D., Woo Y.J., Rulifson E., Yang P.C. Paracrine effects of the pluripotent stem cellderived cardiac myocytes salvage the injured myocardium. Circ. Res., 2017, Vol. 121, no. 6, e22. doi: 10.1161/CIRCRESAHA.117.310803.
111. Tian T., Wang Y., Wang H., Zhu Z., Xiao Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell. Biochem., 2010, Vol. 111, no. 2, pp. 488-496.
112. Tingö L., Ahlberg E., Johansson L., Pedersen S.A., Chawla K., Sætrom P., Cione E., Simpson M.R. Noncoding RNAs in human breast milk: a systematic review. Front. Immunol., 2021, Vol. 12, 725323. doi: 10.3389/fimmu.2021.725323.
113. Tomé-Carneiro J., Fernández-Alonso N., Tomás-Zapico C., Visioli F., Iglesias-Gutierrez E., Dávalos A. Breast milk microRNAs harsh journey towards potential effects in infant development and maturation. Lipid encapsulation can help. Pharmacol. Res., 2018, no. 32, pp. 21-32.
114. Torralba D., Baixauli F., Villarroya-Beltri C., Fernández-Delgado I., Latorre-Pellicer A., Acín-Pérez R., Martín-Cófreces N.B., Jaso-Tamame Á.L., Iborra S., Jorge I., González-Aseguinolaza G., Garaude J., VicenteManzanares M., Enríquez J.A., Mittelbrunn M., Sánchez-Madrid F. Priming of dendritic cells by DNA-containing extracellular vesicles from activated T cells through antigen-driven contacts. Nat. Commun., 2018, Vol. 9, no. 1, pp. 1-17.
115. Trainini J.C. Cardiac helical function. Fulcrum and torsion. Japan J. Clin. Med. Res., SRC/JJCMR-139, 2022, 136.
116. Trainini J., Beraudo M., Wernicke M. Physiology of the helical heart. Int. J. Anat. Appl. Physiol., 2021, Vol. 7, no. 5, 195.
117. Trainini J., Lowenstein J., Beraudo M., Wernicke M., Trainini A., Llabata V. M., Carreras C.F. Myocardial torsion and cardiac fulcrum. Morphologie, 2021, Vol. 105, no. 348, pp. 15-23.
118. Tripathy S., Singh S., Das S.K. Potential of breastmilk in stem cell research. Cell Tissue Bank., 2019, Vol. 20, no. 4, pp. 467-488.
119. Turchinovich A., Drapkina O., Tonevitsky A. Transcriptome of extracellular vesicles: State-of-the-art. Front. Immunol., 2019, Vol. 10, 202. doi: 10.3389/fimmu.2019.00202.
120. van Gils F.A. The fibrous skeleton in the human heart: embryological and pathogenetic considerations. Virchows Arch. A Pathol. Anat. Histol., 1981, Vol. 393, no. 1, 61-73.
121. van Zyl B., Planas R., Ye Y., Foulis A., de Krijger R.R., Vives-Pi M., Gillespie K.M. Why are levels of maternal microchimerism higher in type 1 diabetes pancreas?. Chimerism, 2010, Vol. 1, no. 2, pp. 45-50.
122. Velican C., Velican D. Coronary arteries in children up to the age of ten years II. Intimal thickening and its role in atherosclerotic involvement. Med. Interne, 1976, Vol. 14, no. 1, pp. 17-24.
123. Vijayakumar M., Fall C.H., Osmond C., Barker D.J. Birth weight, weight at one year, and left ventricular mass in adult life. Heart, 1995, Vol. 73, no. 4, pp. 363-367.
124. Vrancken S.L., van Heijst A.F., de Boode W.P. Neonatal hemodynamics: from developmental physiology to comprehensive monitoring. Front. Pediatr., 2018, Vol. 6, 87. doi: 10.3389/fped.2018.00087.
125. Vrselja A., Pillow J.J., Bensley J.G., Ellery S.J., Ahmadi-Noorbakhsh S., Moss T.J., Black M.J. Intrauterine inflammation exacerbates maladaptive remodeling of the immature myocardium after preterm birth in lambs. Pediatr. Res., 2022, Vol. 92, no. 6, pp. 1555-1565.
126. Waldenstrom A., Genneback N., Hellman U. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One, 2012, Vol. 7, no. 4, e34653. doi: 10.1371/journal.pone.0034653.
127. Wang Z., Lon, D.W., Huan, Y., Che W.C., Ki K., Wang Y. Decellularized neonatal cardiac extracellular matrix prevents widespread ventricular remodeling in adult mammals after myocardial infarction. Acta Biomater., 2019, Vol. 87, pp. 140-151.
128. Witkowska-Zimny M., Kaminska-El-Hassan E. Cells of human breast milk. Cell. Mol. Biol. Lett., 2017, Vol. 22, 11. doi: 10.1186/s11658-017-0042-4.
129. Zempleni J., Aguilar-Lozano A., Sadri M., Sukreet S., Manca S., Wu D., Mutai E. Biological activities of extracellular vesicles and their cargos from bovine and human milk in humans and implications for infants. J. Nutr., 2017, Vol. 147, no. 1, pp. 3-10.
130. Zhou Y., Yu Z., Wang X., Chen W., Liu Y., Zhang Y., Han S. Exosomal circRNAs contribute to intestinal development via the VEGF signalling pathway in human term and preterm colostrum. Aging (Albany NY), 2021, Vol. 13, no. 8, pp. 11218-11233.
131. Zonneveld M.I., Brisson A.R., van Herwijnen M.J., Tan S., van de Lest C.H., Redegeld F.A., Garssen J., Wauben M.H., Nolte-’t Hoen E.N. Recovery of extracellular vesicles from human breast milk is influenced by sample collection and vesicle isolation procedures. J. Extracell. Vesicles, 2014, Vol. 3, 10.3402/jev.v3.24215. doi: 10.3402/jev.v3.24215.
Дополнительные файлы
![]() |
1. 2619 - доп. файлы | |
Тема | ||
Тип | Исследовательские инструменты | |
Скачать
(1MB)
|
Метаданные ▾ |
Рецензия
Для цитирования:
Павлюкова Е.Н., Колосова М.В., Неклюдова Г.В., Карпов Р.С. Иммуномодулирующий и регенеративный потенциалы грудного молока, недоношенность и детское сердце. Медицинская иммунология. 2024;26(1):37-56. https://doi.org/10.15789/1563-0625-IAR-2619
For citation:
Pavlyukova E.N., Kolosova M.V., Neklyudova G.V., Karpov R.S. Immunomodulatory and regenerative potentials of breast milk, prematurity and children’s heart. Medical Immunology (Russia). 2024;26(1):37-56. (In Russ.) https://doi.org/10.15789/1563-0625-IAR-2619