Preview

Medical Immunology (Russia)

Advanced search

Septic shock: perspective methods of diagnostics and therapy based on immunopathogenesis

https://doi.org/10.15789/1563-0625-SSP-1862

Abstract

Based on the III International Consensus on the definition of Sepsis and Septic Shock (Sepsis-3), the modern definition of septic shock was proposed: “Septic shock is a type of sepsis that is accompanied by severe hemodynamic, metabolic and cellular disorders, and these disorders are associated with a higher risk fatal outcome”. Despite the classic idea of septic shock development (proinflammatory, immunosuppressive phases and, finally, multiple organ failure with distinct shock organs), the theory of activation of the caspase, endocannabioid system and system of protein of programmed death-1 in evolving septic shock are promising approaches to development of new diagnostic and therapeutic methods. Lymphopenia is already observed at an early stage of septic shock, which further leads to deep immunosuppression. Previous experimental studies have revealed some treatment methods to reduce the pro-inflammatory stage, which, however, did not show desired results in clinics. Now it is necessary to look for ways to inhibit apoptosis, depletion of lymphocytes, macrophages and other immune cells in the course of septic shock. It is known that caspases mediate innate detection of pathogenic microorganisms, cause pyroptosis, activation of monocytes. It has been proven that inhibition of caspase-8, caspase-11 leads to decreased monocyte functioning and cytokine release, which plays an important role in immunopathogenesis of septic shock. Associations of PD-1 and PD-2 expression on CD4+  lymphocytes and monocytes are also shown to be connected with immune dysfunctions, decrease in lymphocyte proliferation, and increased interleukin-10 concentration. Stimulation of the cannabinoid receptors is able to reduce inflammation by inhibiting cytopathic and immunosuppressive effects of pathogens. It has been shown that classic septic shock biomarkers (pro-inflammatory, anti-inflammatory cytokines; procalcitonin, lactate, etc.) do not have predictive power in relation to the outcome of the disease. Circulating and citrullated histones, determined by mass spectrometry, may serve as potential diagnostic markers of septic shock, but they require further study. Use of oxidized phospholipid oxPAPC (Oxidized 1-palmitoyl-2-arachidonoyl-snglycero-3-phosphocholine), hydrogen sulfide and Fasciola hepatica fatty acid binding proteins (hepatic fluke) prevents oxidative stress, synthesis of pro-inflammatory cytokines and provides maturation of macrophages and dendritic cells. Further study of immunological reactions during septic shock is of great importance for substantiation of new approaches to the diagnostics and therapy of septic shock.

About the Author

L. I. Gomanova
First Moscow State I. Sechenov Medical University (Sechenov University)
Russian Federation

Student, Institute of Public Health

119991, Russian Federation, Moscow, Trubetskaya str., 8
Phone: 7 (919) 109-95-90.


Competing Interests:


References

1. Ahmad A., Olah G., Szczesny B., Wood M.E., Whiteman M., Szabo C. AP39, a mitochondrially targeted hydrogen sulfide donor, exerts protective effects in renal epithelial cells subjected to oxidative stress in vitro and in acute renal injury in vivo. Shock, 2015, Vol. 45, no. 1, pp. 88-97.

2. Amalakuhan B., Habib S.A., Mangat M., Reyes L.F., Rodriguez A.H., Hinojosa C.A., Soni N.J., Gilley R.P., Bustamante C.A., Anzueto A., Levine S.M., Peters J.I., Aliberti S., Sibila O., Chalmers J.D., Torres A., Waterer G.W., Martin-Loeches I., Bordon J., Blanquer J., Sanz F., Marcos P.J., Rello J., Ramirez J., Solé-Violán J., Luna C.M., Feldman C., Witzenrath M., Wunderink R.G., Stolz D., Wiemken T.L., Shindo Y., Dela Cruz C.S., Orihuela C.J., Restrepo M.I. Endothelial adhesion molecules and multiple organ failure in patients with severe sepsis. Cytokine, 2016, no. 88, pp. 267-273.

3. Boisramé-Helms J., Delabranche X., Degirmenci S.E., Zobairi F., Berger A., Meyer G., Burban M., Mostefai H.A., Levy B., Toti F., Meziani F. Pharmacological modulation of procoagulant microparticles improves haemodynamic dysfunction during septic shock in rats. Thromb. Haemost., 2014, Vol. 111, no. 1, pp. 154-164.

4. Calfee C.S., Thompson B.T., Parsons P.E., Ware L.B., Matthay M.A., Wong H.R. Plasma IL-8 is not an effective risk stratification tool for adults with vasopressor-dependent septic shock. Crit. Care Med., 2010, Vol. 38, no. 6, pp. 1436-1441.

5. Chang K., Svabek C., Vazquez-Guillamet C., Sato B., Rasche D., Wilson S., Robbins P., Ulbrandt N., Suzich J., Green J., Patera A.C., Blair W., Krishnan S., Hotchkiss R. Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit. Care, 2014, Vol. 18, no. 1, R3. doi: 10.1186/cc13176.

6. Chen Y., Jin S., Teng X., Hu Z., Zhang Z., Qiu X., Tian D.,Wu Y. Hydrogen sulfide attenuates LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress. Oxid. Med. Cell. Longev., 2018, Vol. 2018, 6717212. doi: 10.1155/2018/6717212.

7. Cho H., Lee E.S., Lee Y.S., Kim Y.J., Sohn C.H., Ahn S., Seo D.W., Lee J.H., Kim W.Y., Lim K.S. Predictors of septic shock in initially stable patients with pyogenic liver abscess. Scand. J. Gastroenterol., 2017, Vol. 52, no. 5, pp. 589-594.

8. Chu L.H., Indramohan M., Ratsimandresy R.A., Gangopadhyay A., Morris E.P., Monack D.M., Dorfleutner A., Stehlik C. The oxidized phospholipid oxPAPC protects from septic shock by targeting the noncanonical inflammasome in macrophages. Nat. Commun., 2018, Vol. 9, no. 1, p. 996.

9. Clark A.E., Kaleta E.J., Arora A., Wolk D.M. Matrix-assisted laser desorption ionization – time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev., 2013, Vol. 26, no. 3, pp. 547-603.

10. Dellinger R.P., Levy M.M., Carlet J.M., Bion J., Parker M.M., Jaeschke R., Reinhart K., Angus D.C., BrunBuisson C., Beale R., Calandra T., Dhainaut J.F., Gerlach H., Harvey M., Marini J.J., Marshall J., Ranieri M., Ramsay G., Sevransky J., Thompson B.T., Townsend S., Vender J.S., Zimmerman J.L., Vincent J.L. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med., 2008, no. 36, pp. 296-327.

11. Dugas A.F., Mackenhauer J., Salciccioli J.D., Cocchi M.N., Gautam S., Donnino M.W. Prevalence and characteristics of nonlactate and lactate expressors in septic shock. J. Crit. Care, 2012, Vol. 27, no. 4, pp. 344-350.

12. Fan S.L., Miller N.S., Lee J., Remick D.G. Diagnosing sepsis – the role of laboratory medicine. Clin. Chim. Acta, 2016, no. 460, pp. 203-210.

13. Figueroa-Santiago O., Espino A.M. Fasciola hepatica fatty acid binding protein induces the alternative activation of human macrophages. Infect. Immun., 2014, Vol. 82, no. 12, pp. 5005-5012.

14. Fox B., Schantz J.T., Haigh R., Wood M.E., Moore P.K., Viner N., Spencer J.P., Winyard P.G., Whiteman M. Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2 S a novel cytoprotective mediator in the inflamed joint? J. Cell. Mol. Med., 2012, Vol. 16, no. 4, pp. 896-910.

15. García-Giménez J.L., Romá-Mateo C., Carbonell N., Palacios L., Peiró-Chova L., García-López E., GarcíaSimón M., Lahuerta R., Gimenez-Garzó C., Berenguer-Pascual E., Mora M.I., Valero M.L., Alpízar A., Corrales F.J., Blanquer J., Pallardó F.V. A new mass spectrometry-based method for the quantification of histones in plasma from septic shock patients. Sci. Rep., 2017, Vol. 7, no. 1, 10643. doi: 10.1038/s41598-017-10830-z.

16. Gossez M., Rimmelé T., Andrieu T., Debord S., Bayle F., Malcus C., Poitevin-Later F., Monneret G., Venet F. Proof of concept study of mass cytometry in septic shock patients reveals novel immune alterations. Sci. Rep., 2018, no. 8, 17296. doi: 10.1038/s41598-018-35932-0.

17. Gui H., Sun Y., Luo Z.M., Su D.F., Dai S.M., Liu X. Cannabinoid receptor 2 protects against acute experimental sepsis in mice. Mediators Inflamm., 2013, Vol. 2013, 741303. doi: 10.1155/2013/741303.

18. Guignant C., Lepape A., Huang X., Kherouf H., Denis L., Poitevin F., Malcus C., Chéron A., Allaouchiche B., Gueyffier F., Ayala A., Monneret G., Venet F. Programmed death-1 levels correlate with increased mortality, nosocomial infection and immune dysfunctions in septic shock patients. Crit. Care, 2011, Vol. 15, no. 2, R99. doi: 10.1186/cc10112.

19. Hagar J.A., Powell D.A., Aachoui Y., Ernst R.K., Miao E.A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science, 2013, Vol. 341, no. 6151, pp. 1250-1253.

20. Hartemink K.J., Groeneveld A.B. Vasopressors and inotropes in the treatment of human septic shock: effect on innate immunity? Inflammation, 2012, Vol. 35, no. 1, pp. 206-213.

21. Huang X., Venet F., Wang Y.L., Lepape A., Yuan Z., Chen Y., Swan R., Kherouf H., Monneret G., Chung C.S., Ayala A. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc. Natl. Acad. Sci. USA., 2009, Vol. 106, no. 15, pp. 6303-6308.

22. Jung B., Molinari N., Nasri M., Hajjej Z., Chanques G., Jean-Pierre H., Panaro F., Jaber S. Procalcitonin biomarker kinetics fails to predict treatment response in perioperative abdominal infection with septic shock. Crit. Care, 2013, Vol. 17, no. 5, p. R255. doi: 10.1186/cc13082.

23. Kapellos T.S., Recio C., Greaves D.R., Iqbal A.J. Cannabinoid receptor 2 modulates neutrophil recruitment in a murine model of endotoxemia. Mediators Inflamm., 2017, Vol. 2017, 4315412. doi: 10.1155/2017/4315412.

24. Ke Y., Zebda N., Oskolkova O., Afonyushkin T., Berdyshev E., Tian Y., Meng F., Sarich N., Bochkov V.N., Wang J.M., Birukova A.A., Birukov K.G. Anti-Inflammatory effects of OxPAPC involve endothelial cell mediated generation of LXA4. Circ. Res., 2017, Vol. 121, no. 3, pp. 244-257.

25. Kuzmich N.N., Sivak K.V., Chubarev V.N., Porozov Y.B., Savateeva-Lyubimova T.N., Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation and sepsis. Vaccines (Basel), 2017, Vol. 5, no. 4, 34. doi: 10.3390/vaccines5040034

26. Lafreniere J.D., Lehmann C. Parameters of the endocannabinoid system as novel biomarkers in sepsis and septic shock. Metabolites, 2017, Vol. 7, no. 4, pii: E55. doi: 10.3390/metabo7040055.

27. Li Y., Liu B., Fukudome E.Y., Lu J., Chong W., Jin G., Liu Z., Velmahos G.C., Demoya M., King D.R., Alam H.B. Identification of Cit H3 as a potential serum protein biomarker in a lethal model of LPS-induced shock. Surgery, 2011, Vol. 150, no. 3, pp. 442-451.

28. Li Y., Liu Z., Liu B., Zhao T., Chong W., Wang Y., Alam H.B. Citrullinated gistone H3 – a novel target for treatment of sepsis. Surgery, 2014, Vol. 156, no. 2, pp. 229-234.

29. Maestraggi Q., Lebas B., Clere-Jehl R., Ludes P.O., Chamaraux-Tran T.N., Schneider F., Diemunsch P., Geny B., Pottecher J. Skeletal muscle and lymphocyte mitochondrial dysfunctions in septic shock trigger ICU-acquired weakness and sepsis-induced immunoparalysis. Biomed. Res. Int., 2017, Vol. 2017, 7897325. doi: 10.1155/2017/7897325.

30. Martin I., Cabán-Hernández K., Figueroa-Santiago O., Espino A.M. Fasciola hepatica fatty acid binding protein inhibits TLR4 activation and suppresses the inflammatory cytokines induced by LPS in vitro and in vivo. J. Immunol., 2015, Vol. 194, no. 8, pp. 3924-3936.

31. McKinley T.O., McCarroll T., Gaski G.E., Frantz T.L., Zarzaur B.L., Terry C., Steenburg S.D. Shock volume: a patient-specific index that predicts transfusion requirements and organ dysfunction in multiply injured patients. Shock, 2016, Vol. 45, no. 2, pp. 126-132.

32. Merz T.M., Pereira A.J., Schürch R., Schefold J.C., Jakob S.M., Takala J., Djafarzadeh S. Mitochondrial function of immune cells in septic shock: A prospective observational cohort study. PLoS ONE, 2017, Vol. 12, no. 6, 0178946. doi: 10.1371/journal.pone.0178946.

33. Midura E.F., Prakash P.S., Johnson B.L., Rice T.C., Kunz N., Caldwell C.C. Impact of Caspase-8 and PKA in regulating neutrophil-derived microparticle generation. Biochem. Biophys. Res. Commun., 2016, Vol. 469, no. 4, pp. 917-922.

34. Monserrat J., de Pablo R., Diaz-Martín D., Rodríguez-Zapata M., de la Hera A., Prieto A., Alvarez-Mon M. Early alterations of B cells in patients with septic shock. Crit. Care, 2013, Vol. 17, no. 3, R105. doi: 10.1186/cc12750.

35. Mootien Y., Lavigne T., Grunebaum L., Lanza F., Gachet C., Freyssinet J.M., Toti F., Meziani F. Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med., 2013, Vol. 39, no. 10, pp. 1695-1703.

36. Mukhopadhyay P., Rajesh M., Pan H., Patel V., Mukhopadhyay B., Bátkai S., Gao B., Haskó G., Pacher P. Cannabinoid-2 receptor limits inflammation, oxidative/nitrosative stress and cell death in nephropathy. Free Radic. Biol. Med., 2010, Vol. 48, no. 3, pp. 457-467.

37. Noya V., Brossard N., Rodríguez E., Dergan-Dylon L.S., Carmona C., Rabinovich G.A., Freire T. A mucinlike peptide from Fasciola hepatica instructs dendritic cells with parasite specific Th1-polarizing activity. Sci. Rep., 2017, no. 7, 40615. doi: 10.1038/srep40615.

38. Oliva-Martin M.J., Sanchez-Abarca L.I., Rodhe J., Carrillo-Jimenez A., Vlachos P., Herrera A.J., GarciaQuintanilla A., Caballero-Velazquez T., Perez-Simon J.A., Joseph B., Venero J.L. Caspase-8 inhibition represses initial human monocyte activation in septic shock model. Oncotarget, 2016, Vol. 7, no. 25, pp. 37456-37470.

39. Pavon A., Binquet C., Kara F., Martinet O., Ganster F., Navellou J.C., Castelain V., Barraud D., Cousson J., Louis G., Perez P., Kuteifan K., Noirot A., Badie J., Mezher C., Lessire H., Quantin C., Abrahamowicz M., Quenot J.P. Profile of the risk of death after septic shock in the present era: an epidemiologic study. Crit. Care Med., 2013, Vol. 41, no. 11, pp. 2600-2609.

40. Pertwee R.G. Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philos. Trans. R Soc. Lond. B Biol. Sci., 2012, Vol. 367, no. 1607, pp. 3353-3363.

41. Polat G., Ugan R.A., Cadirci E., Halici Z. Sepsis and septic shock: current treatment strategies and new approaches. Eurasian J. Med., 2017, Vol. 49, no. 1, pp. 53-58.

42. Póvoa P., Salluh J.I., Martinez M.L., Guillamat-Prats R., Gallup D., Al-Khalidi H.R., Thompson B.T., Ranieri V.M., Artigas A. Clinical impact of stress dose steroids in patients with septic shock: insights from the PROWESS-Shock trial. Crit. Care, 2015, Vol. 19, 193. doi: 10.1186/s13054-015-0921-x.

43. Quenot J.P., Binquet C., Kara F., Martinet O., Ganster F., Navellou J.C., Castelain V., Barraud D., Cousson J., Louis G., Perez P., Kuteifan K., Noirot A., Badie J., Mezher C., Lessire H., Pavon A. The epidemiology of septic shock in French intensive care units: the prospective multicenter cohort EPISS study. Crit. Care, 2013, Vol. 17, no. 2, R65. doi: 10.1186/cc12598.

44. Ramos-Benitez M.J., Ruiz-Jimenez C., Rosado-Franco J.J., Ramos-Pérez W.D., Mendez L.B., Osuna A., Espino A.M. Fh15 Blocks the lipopolysaccharide-induced cytokine storm while modulating peritoneal macrophage migration and CD38 expression within spleen macrophages in a mouse model of septic shock. mSphere, 2018, Vol. 3, no. 6, pii: e00548-18. doi: 10.1128/mSphere.00548-18.

45. Raymond S.L., Holden D.C., Mira J.C., Stortz J.A., Loftus T.J., Mohr A.M., Moldawer L.L., Moore F.A., Larson S.D., Efron P.A. Microbial recognition and danger signals in sepsis and trauma. Biochim. Biophys. Acta, 2017, no. 1863, pp. 2564-2573.

46. Riché F., Chousterman B.G., Valleur P., Mebazaa A., Launay J.M., Gayat E. Protracted immune disorders at one year after ICU discharge in patients with septic shock. Crit. Care, 2018, Vol. 22, no. 1, 42. doi: 10.1186/s13054017-1934-4.

47. Rosa R.G., Goldani L.Z. Aetiology of bacteraemia as a risk factor for septic shock at the onset of febrile neutropaenia in adult cancer patients. Biomed. Res. Int., 2014, Vol. 2014, 561020. doi: 10.1155/2014/561020.

48. Sakr Y., Dubois M.J., de Backer D., Creteur J., Vincent J.L. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit. Care Med., 2004, Vol. 32, no. 9, pp. 1825-1831.

49. Sandquist M., Wong H.R. Biomarkers of sepsis and their potential value in diagnosis, prognosis and treatment. Expert Rev. Clin. Immunol., 2014, Vol. 10, no. 10, pp. 1349-1356.

50. Santos S.S., Carmo A.M., Brunialti M.K., Machado F.R., Azevedo L.C., Assunção M., Trevelin S.C., Cunha F.Q., Salomao R. Modulation of monocytes in septic patients: preserved phagocytic activity, increased ROS and NO generation, and decreased production of inflammatory cytokines. Intensive Care Med. Exp., 2016, Vol. 4, no. 1, 5. doi: 10.1186/s40635-016-0078-1.

51. Sardinha J., Kelly M.E., Zhou J., Lehmann C. Experimental cannabinoid 2 receptor-mediated immune modulation in sepsis. Mediators Inflamm., 2014, Vol. 2014, 978678. doi: 10.1155/2014/978678.

52. Shankar-Hari M., Phillips G.S., Levy M.L., Seymour C.W., Liu V.X., Deutschman C.S., Angus D.C., Rubenfeld G.D., Singer M. Sepsis definitions task force. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA, 2016, Vol. 315, no. 8, pp. 775-787.

53. Shin H.S., Xu F., Bagchi A., Herrup E., Prakash A., Valentine C., Kulkarni H., Wilhelmsen K., Warren S., Hellman J. Bacterial lipoprotein TLR2 agonists broadly modulate endothelial function and coagulation pathways in vitro and in vivo. J. Immunol., 2011, Vol. 186, no. 2, pp. 1119-1130.

54. Silk E., Zhao H., Weng H., Ma D. The role of extracellular histone in organ injury. Cell Death Dis., 2017, Vol. 8, no. 5, 2812. doi: 10.1038/cddis.2017.52.

55. Soethoudt M., Grether U., Fingerle J., Grim T.W., Fezza F., de Petrocellis L., Ullmer C., Rothenhäusler B., Perret C., van Gils N., Finlay D., MacDonald C., Chicca A., Gens M.D., Stuart J., de Vries H., Mastrangelo N., Xia L., Alachouzos G., Baggelaar M.P., Martella A., Mock E.D., Deng H., Heitman L.H., Connor M., di Marzo V., Gertsch J., Lichtman A.H., Maccarrone M., Pacher P., Glass M., van der Stelt M. Cannabinoid CB 2 receptor ligand profiling reveals biased signalling and off-target activity. Nat. Commun., 2017, no. 8, 13958. doi: 10.1038/ncomms13958.

56. Starosta V., Wu T., Zimman A., Pham D., Tian X., Oskolkova O., Bochkov V., Berliner J.A., Birukova A.A., Birukov K.G. Differential regulation of endothelial cell permeability by high and low doses of oxidized 1-palmitoyl2-arachidonyl-sn-glycero-3-phosphocholine. Am. J. Respir. Cell Mol. Biol., 2012, Vol. 46, no. 3, pp. 331-341.

57. Stiel L., Delabranche X., Galoisy A.C., Severac F., Toti F., Mauvieux L., Meziani F., Boisramé-Helms J. Neutrophil Fluorescence: a new indicator of cell activation during septic shock-induced disseminated intravascular coagulation. Crit. Care Med., 2016, Vol. 44, no. 11, pp. 1132-1136.

58. Szatmary P., Huang W., Criddle D., Tepikin A., Sutton R. Biology, role and therapeutic potential of circulating histones in acute inflammatory disorders. J. Cell. Mol. Med., 2018, Vol. 22, no. 10, pp. 4617-4629.

59. Thooft A., Favory R., Salgado D.R., Taccone F.S., Donadello K., de Backer D., Creteur J., Vincent J.L. Effects of changes in arterial pressure on organ perfusion during septic shock. Crit. Care, 2011, Vol. 15, no. 5, R222. doi: 10.1186/cc10462.

60. Tschöp J., Kasten K.R., Nogueiras R., Goetzman H.S., Cave C.M., England L.G., Dattilo J., Lentsch A.B., Tschöp M.H., Caldwell C.C. The cannabinoid receptor 2 is critical for the host response to sepsis. J. Immunol., 2009, Vol. 183, no. 1, pp. 499-505.

61. Vallabhajosyula S., Jentzer J.C., Kotecha A.A., Murphree Jr., Barreto E.F., Khanna A.K., Iyer V.N. Development and performance of a novel vasopressor-driven mortality prediction model in septic shock. Ann. Intensive Care, 2018, Vol. 8, no. 1, 112. doi: 10.1186/s13613-018-0459-6.

62. Vaure C., Liu Y. A comparative review of Toll-like receptor 4 expression and functionality in different animal species. Front. Immunol., 2014, no. 5, 316. doi: 10.3389/fimmu.2014.00316.

63. Venkatesh B., Finfer S., Cohen J., Rajbhandari D., Arabi Y., Bellomo R., Billot L., Correa M., Glass P., Harward M., Joyce C., Li Q., McArthur C., Perner A., Rhodes A., Thompson K., Webb S., Myburgh J.; ADRENAL Trial Investigators and the Australian–New Zealand Intensive Care Society Clinical Trials Group. Adjunctive glucocorticoid therapy in patients with septic shock. N. Engl. J. Med., 2018, Vol. 378, no. 9, pp. 797-808.

64. Wilson J.K., Zhao Y., Singer M., Spencer J., Shankar-Hari M. Lymphocyte subset expression and serum concentrations of PD-1/PD-L1 in sepsis – pilot study. Crit. Care, 2018, no. 22, 95. doi: 10.1186/s13054-018-2020-2.

65. Wojewoda C. Pathology consultation on matrix-assisted laser desorption ionization-time of flight mass spectrometry for microbiology. Am. J. Clin. Pathol., 2013, Vol. 140, no. 2, pp. 143-148.

66. Wong C.H.Y., Jenne C.N., Petri B., Chrobok N.L., Kubes P. Nucleation of platelets with bloodborne pathogens on Kupffer cell precedes other innate immunity and contributes to bacterial clearance. Nat. Immunol., 2013, Vol. 14, no. 8, pp. 785-792.

67. Wong H.R., Cvijanovich N.Z., Anas N., Allen G.L., Thomas N.J., Bigham M.T., Weiss S.L., Fitzgerald J., Checchia P.A., Meyer K., Quasney M., Hall M., Gedeit R., Freishtat R.J., Nowak J., Raj S.S., Gertz S., Howard K., Harmon K., Lahni P., Frank E., Hart K.W., Lindsell C.J. Prospective testing and redesign of a temporal biomarker based risk model for patients with septic shock: implications for septic shock biology. EBioMedicine, 2015, Vol. 2, no. 12, pp. 2087-2093.

68. Xu J., Zhang X., Monestier M., Esmon N.L., Esmon C.T. Extracellular histones are mediators of death through TLR2 and TLR4 in mouse fatal liver injury. J. Immunol., 2011, Vol. 187, no. 5, pp. 2626-2631.

69. Yealy D.M., Kellum J.A., Huang D.T., Barnato A.E., Weissfeld L.A., Pike F., Terndrup T., Wang H.E., Hou P.C., LoVecchio F., Filbin M.R., Shapiro N.I., Angus D.C. A randomized trial of protocol-based care for early septic shock. N. Engl. J. Med., 2014, Vol. 370, no. 18, pp. 1683-1693.

70. Yi Y.S. Regulatory Roles of the caspase-11 non-canonical inflammasome in inflammatory diseases. Immune Netw., 2018, Vol. 18, no. 6, e41. doi: 10.4110/in.2018.18.e41.

71. Zhang H.X., Liu S.J., Tang X.L. H2 S attenuates LPS-induced acute lung injury by reducing oxidative/nitrative stress and inflammation. Cell. Physiol. Biochem., 2016, Vol. 40, no. 6, pp. 1603-1612.

72. Zhao T., Pan B., Alam H.B., Liu B., Bronson R.T., Deng Q., Wu E., Li Y. Protective effect of Cl-amidine against CLP-induced lethal septic shock in mice. Sci. Rep., 2016, no. 6, 36696. doi: 10.1038/srep36696.

73. Zhou J., Burkovskiy I., Yang H., Sardinha J., Lehmann C. CB2 and GPR55 receptors as therapeutic targets for systemic immune dysregulation. Front. Pharmacol., 2016, Vol. 7, 264. doi: 10.3389/fphar.2016.00264.


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (11KB)    
Indexing metadata ▾
2. Неозаглавлен
Subject
Type Other
Download (198KB)    
Indexing metadata ▾
3. Неозаглавлен
Subject
Type Other
Download (12KB)    
Indexing metadata ▾
4. Неозаглавлен
Subject
Type Other
Download (17KB)    
Indexing metadata ▾
5. Неозаглавлен
Subject
Type Other
Download (79KB)    
Indexing metadata ▾
6. Метаданные
Subject Отредактированные
Type Other
Download (12KB)    
Indexing metadata ▾
7. Metadata
Subject
Type Other
Download (12KB)    
Indexing metadata ▾
8. authors signatures
Subject
Type Other
Download (201KB)    
Indexing metadata ▾
9. Septic shock: perspective methods of diagnostics and therapy based on immunopathogenesis
Subject New version of the article
Type Новая версия статьи
Download (141KB)    
Indexing metadata ▾
10. Septic shock: perspective methods of diagnosis and therapy based on immunopathogenesis
Subject
Type Other
Download (141KB)    
Indexing metadata ▾
11. Literature
Subject
Type Other
Download (74KB)    
Indexing metadata ▾

Review

For citations:


Gomanova L.I. Septic shock: perspective methods of diagnostics and therapy based on immunopathogenesis. Medical Immunology (Russia). 2020;22(3):459-472. (In Russ.) https://doi.org/10.15789/1563-0625-SSP-1862

Views: 2719


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)