Neutrophils against pathogens of invasive mycoses: Conventional and nontraditional fighting tools
https://doi.org/10.15789/1563-0625-NAP-3135
Abstract
The aim of the present review is to analyze the behavioral strategies and mechanisms of antifungal activity of neutrophils against Candida and Aspergillus based on data published in open scientific sources. Invasive mycoses are systemic diseases caused by microscopic fungi, characterized by high morbidity and mortality in immunocompromised individuals, especially those with neutropeniA. Neutrophils have significant antifungal activity against Candida spp. and Aspergillus spp. C. albicans, the most common causative agent of invasive candidiasis, exhibits a pronounced morphological plasticity. When neutrophils are unable to phagocytize fungal hyphae, they choose another defense mechanism, forming NETs as a result of NETosis. The C. albicans biofilms cause active migration and adhesion of neutrophils, but, unlike planktonic forms, they suppress the release of NETs thus promoting survival of the pathogen. Clusters of C. albicans yeasts and A. fumigatus conidia induce neutrophil swarming, an LTB4-mediated, coordinated, and tightly controlled process characterized by accumulation of neutrophils at the site of infection and aimed at its isolation from healthy tissues. Intravascular neutrophil swarming occurs in the lungs during candidemia, which is a specific defense response to fungal pathogens. In systemic candidiasis, a subpopulation of neutrophils is transformed to PMN-DCs, which demonstrate effective killing and induce an antigen-specific immune response against fungal pathogens. A. fumigatus conidia induce human neutrophils to release extracellular vesicles with potential fungicidal activity. Spores of fast-growing A. fumigatus strains stimulate an influx of neutrophils, facilitating rapid clearance of the fungal pathogen; conidia of slower-growing strains are capable of long-term persistence due to lower neutrophil attraction and survival inside macrophages. Interaction of neutrophils with growing A. fumigatus hyphae results in swarming, NETosis, and ROS generation; the degree of hyphal branching affects their susceptibility to neutrophil-mediated killing: the most branched hyphae are more vulnerable and die first. A. fumigatus hyphae cause activation of NADPH-oxidase and myeloperoxidase in neutrophils with ROS generation which exert a cytotoxic effect and induce the formation of NETs with a predominantly fungistatic effect. Thus, the available data and further study of the mechanisms of neutrophil antifungal activity may provide the basis for development of new pathogenetic concepts, preventive, therapeutic and diagnostic approaches to the causative agents of invasive mycoses.
About the Authors
E. A. MezentsevaRussian Federation
Elena A. Mezentseva, PhD (Medicine), Associate Professor, Department of Microbiology, Virology and Immunology
64 Vorovsky St Chelyabinsk 454092
Phone: +7 (902) 892-28-43
I. I. Dolgushin
Russian Federation
PhD, MD (Medicine), Full Member, Russian Academy of Sciences, Honored Scientist of the Russian Federation, Department of Microbiology, Virology and Immunology
Chelyabinsk
References
1. Bagirowa N.S. Invasive fungal infections: revision of definitions, new in diagnostics according to EORTC/MSGERC datA. Zlokachestvennye opukholi = Malignant Tumours, 2020, Vol. 10, no. 3s1, pp. 39-48. (In Russ.)
2. Vorobjeva N.V. Neutrophils are atypical antigenpresenting cells. Vestnik Moskovskogo universitetа. Seriya 16: Biologiya = Moscow University Biological Sciences Bulletin. Series 16. Biology, 2023, Vol. 78, no. 2, pp. 55-63. (In Russ.)
3. Gaffarova A.S., Khaitovich A.B. Pathogenicity factors of Candida albicans and their PCR identification. Uspekhi meditsinskoy mikologii = Advances in Medical Mycology, 2017, Vol. 17, pp. 130-133. (In Russ.)
4. Dolgushin I.I., Mezentseva E.A. Neutrophil extracellular traps in the fight against biofilm-forming microorganisms: hunters or prey? Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2020, Vol. 97, no. 5, pp. 468-481. (In Russ.)
5. Dolgushin I.I., Mezentseva E.A. Neutrophil granulocytes: participation in homeostatic and reparative processes. Part I. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, Vol. 10, no. 4, pp. 609-624. (In Russ.) doi: 10.15789/2220-7619-NGP-1257.
6. Dolgushin I.I., Mezentseva E.A. Neutrophil granulocytes: participation in homeostatic and reparative processes. Part II. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2021, Vol. 11, no. 1, pp. 25-41. (In Russ.) doi: 10.15789/2220-7619-NGP-1258.
7. Dolgushin I.I., Mezentseva E.A., Savochkina A.Y., Kuznetsova E.K. Neutrophil as a multifunctional relay in immune system. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2019, Vol. 9, no. 1, pp. 9-38. (In Russ.) doi:10.15789/2220-7619-2019-1-9-38.
8. Ivanov A.A., Kulichenko T.V. Candida auris: Problems in Diagnostics and Management. Voprosy sovremennoy pediatrii = Current Pediatrics, 2020, Vol. 19, no. 1, pp. 20-25. (In Russ.)
9. Karaman Yu.K., Lobanova E.G. Endocannabinoids and eicosamoids: biosynthesis and interactions with immune response. Meditsinskaya immunologiya = Medical Immunology (Russia), 2013, Vol. 15, no. 2, pp. 119-130. (In Russ.) doi: 10.15789/1563-0625-2013-2-119-130.
10. Matosova E.V., Andryukov B.G. Antimicrobic mechanisms of neutrophiles as perspective targets for pharmacological modulation of non-specific protection of the organism. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2018, Vol. 95, no. 3, pp. 96-105. (In Russ.)
11. Mechnikov I.I. Immunity in infectious diseases. 3rd ed. Moscow: URSS, 2011. 708 p.
12. Popova M.O. Diagnostics and treatment of invasive mycoses in hematology and bone marrow transplantation [Electronic resource]. First St. Petersburg State I. Pavlov Medical University. 43 p. Available at: https://fdbmtspb.com/wp-content/uploads/2024/07/Kniga-diagnostika-i-lechenie-im-v-gematologii-i-tgsk-2024.pdf. (Date of access: November 7, 2024).
13. Sepsis (in adults): Clinical guidelines of the Ministry of Health of the Russian Federation. Moscow, 2024. 160 p.
14. Khostelidi S.N., Kozlova O.P., Shadrivova O.V., Shagdileeva E.V., Borzova Yu.V., Smirnov S.A. , Saturnov A.V., Uspenskaya O.S., Rysev A.V., Pichugina G.A, Gusev D.A., Zavrazhnov A.A., Kolbin A.S., Ruslyakova I.A., Rubinchik V.E., Sobol M.M., Tanilova L.I., Zhuravel S.V., Avdeenko Yu.L., Shurpitskaya O.A., Gordeeva S.A., Bogomolova T.S., Oganesyan E.G., Ignatieva S.M., Taraskina E.A., Vasilyeva N.V. Invasive mycoses in intensive care units (analysis of registry data and literature review). Problemy meditsinskoy mikologii = Problems in Medical Mycology, 2024, Vol. 26, no. 1, pp. 3-21. (In Russ.)
15. Akoumianaki T., Kyrmizi I., Valsecchi I., Gresnigt M.S., Samonis G., Drakos E., Boumpas D., Muszkieta L., Prevost M-C., Kontoyiannis D.P., Chavakis T., Netea M.G., van de Veerdonk F.L., Brakhage A.A., El-Benna J., Beauvais A., Latge J-P., Chamilos G. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe, 2016, Vol. 19, no. 1, pp. 79-90.
16. Arastehfar A., Carvalho A., Houbraken J., Lombardi L., Garcia-Rubio R., Jenks J.D., Rivero-Menendez O., Aljohani R., Jacobsen I.D., Berman J., Osherov N., Hedayati M.T., Ilkit M., Armstrong-James D., Gabaldón T., Meletiadis J., Kostrzewa M., Pan W., Lass-Flörl C., Perlin D.S., Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud. Mycol., 2021, Vol. 100, no. 1, 100115. doi: 10.1016/j.simyco.2021.100115.
17. Ascioglu S., Rex J.H., de Pauw B., Bennett J.E., Bille J., Crokaert F., Denning D.W., Donnelly J.P., Edwards J.E., Erjavec Z., Fiere D., Lortholary O., Maertens J., Meis J.F., Patterson T.F., Ritter J., Selleslag D., Shah P.M., Stevens D.A., Walsh T.J. Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: an international consensus. Clin. Infect. Dis., 2002, Vol. 34, no. 1, pp. 7-14.
18. Bianchi M., Hakkim A., Brinkmann V., Siler U., Seger R.A., Zychlinsky A., Reichenbach J. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood, 2009, Vol. 114, no. 13, pp. 2619-2622.
19. Bianchi M., Niemiec M.J., Siler U., Urban C.F., Reichenbach J. Restoration of anti-Aspergillus defense by neutrophil extracellular traps in human chronic granulomatous disease after gene therapy is calprotectin-dependent. J. Allergy Clin. Immunol., 2011, Vol. 127, no. 5, pp. 1243-1252.e7.
20. Brakhage A.A., Zimmermann A-K., Rivieccio F., Corissa Visser C., Blango M.G. Host-derived extracellular vesicles for antimicrobial defense. MicroLife, 2021, Vol. 2, uqab003. doi: 10.1093/femsml/uqab003.
21. Branzk N., Lubojemska A., Hardison S.E., Wang Q., Gutierrez M.G., Brown G.D., Papayannopoulos V. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat. Immunol., 2014, Vol. 15, no. 11, pp. 1017-1025.
22. Brown L., Yipp B.G. Neutrophil swarming: Is a good offense the best defense? iScience, 2023, Vol. 26, no. 9, 107655. doi: 10.1016/j.isci.2023.107655.
23. Burgener S.S., Schroder K. Neutrophil extracellular traps in host defense. Cold Spring Harb Perspect Biol., 2019, Vol. 12, no. 7, a037028. doi: 10.1101/cshperspect.a037028.
24. Carvalho A., Cunha C., Bistoni F., Romani L. Immunotherapy of aspergillosis. Clin. Microbiol. Infect., 2012, Vol. 18, no. 2, pp. 120-125.
25. Casadevall A. Immunity to invasive fungal diseases. Annu. Rev. Immunol., 2022, Vol. 40, pp. 121-141.
26. Casalini G., Giacomelli A., Antinori S. The WHO fungal priority pathogens list: a crucial reappraisal to review the prioritization. Lancet Microbe, 2024, Vol. 5, no. 7, pp. 717-724.
27. Chtanova T., Schaeffer M., Han S.J., van Dooren G.G., Nollmann M., Herzmark P., Chan S.W., Satija H., Camfield K., Aaron H., Striepen B., Robey E.A. Dynamics of neutrophil migration in lymph nodes during infection. Immunity, 2008, Vol. 29, no. 3, pp. 487-496.
28. Clark H.L., Abbondante S., Minns M.S., Greenberg E.N., Sun Y., Pearlman E. Protein deiminase 4 and CR3 regulate Aspergillus fumigatus and β-glucan-induced neutrophil extracellular trap formation, but hyphal killing is dependent only on CR3. Front. Immunol., 2018, Vol. 9, 1182. doi: 10.3389/fimmu.2018.01182.
29. Cortez K.J., Lyman C.A., Kottilil S., Kim H.S., Roilides E., Yang J., Fullmer B., Lempicki R., Walsh T.J. Functional genomics of innate host defense molecules in normal human monocytes in response to Aspergillus fumigatus. Infect. Immun., 2006, Vol. 74, no. 4, pp. 2353-2365.
30. Cottier F., Hall R.A. Face/Off: The Interchangeable Side of Candida albicans. Front. Cell. Infect. Microbiol., 2020, Vol. 9, 471. doi: 10.3389/fcimb.2019.00471.
31. De Pauw B., Walsh T.J., Donnelly J.P., Stevens D.A., Edwards J.E., Calandra T., Pappas P.G., Maertens J., Lortholary O., Kauffman C.A., Denning D.W., Patterson T.F., Maschmeyer G., Bille J., Dismukes W.E., Herbrecht R., Hope W.W., Kibbler C.C., Kullberg B.J., Marr K.A., Muñoz P., Odds F.C., Perfect J.R., Restrepo A., Ruhnke M., Segal B.H., Sobel J.D., Sorrell T.C., Viscoli C., Wingard J.R., Zaoutis T., Bennett J.E. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/ MSG) Consensus Group. Clin. Infect. Dis., 2008, Vol. 46, no. 12, pp. 1813-1821.
32. Denning D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis., 2024, Vol. 24, no. 7, pp. E428-E438.
33. Desai J.V., Lionakis M.S. The role of neutrophils in host defense against invasive fungal infections. Curr. Clin. Microbiol. Rep., 2018, Vol. 5, no. 3, pp. 181-189.
34. Donnelly J.P., Chen S.C., Kauffman C.A., Steinbach W.J., Baddley J.W., Verweij P.E., Clancy C.J., Wingard J.R., Lockhart S.R., Groll A.H., Sorrell T.C., Bassetti M., Akan H., Alexander B.D., Andes D., Azoulay E., Bialek R., Bradsher R.W., Bretagne S., Calandra T., Caliendo A.M., Castagnola E., Cruciani M., Cuenca-Estrella M., Decker C.F., Desai S.R., Fisher B., Harrison T., Heussel C.P., Jensen H.E., Kibbler C.C., Kontoyiannis D.P., Kullberg B-J., Lagrou K., Lamoth F., Lehrnbecher T., Loeffler J., Lortholary O., Maertens J., Marchetti O., Marr K.A., Masur H., Meis J.F., Morrisey C.O., Nucci M., Ostrosky-Zeichner L., Pagano L., Patterson T.F., Perfect J.R., Racil Z., Roilides E., Ruhnke M., Prokop C.S., Shoham S., Slavin M.A., Stevens D.A., Thompson G.R., Vazquez J.A., Viscoli C., Walsh T.J., Warris A., Wheat L.J., White P.L., Zaoutis T.E., Pappas P.G. Revision and update of the consensus definitions of invasive fungal disease from the european organization for research and treatment of cancer and the mycoses study group education and research consortium. Clin. Infect. Dis., 2020, Vol. 71, no. 6, pp. 1367-1376.
35. Du H., Bing J., Hu T., Ennis C.L. Nobile C.J., Huang G. Candida auris: Epidemiology, biology, antifungal resistance, and virulence. PLoS Pathog., 2020, Vol. 16, no. 10, e1008921. doi: 10.1371/journal.ppat.1008921.
36. Earle K., Valero C., Conn D.P., Vere G., Cook P.C., Bromley M.J., Bowyer P., Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence, 2023, Vol. 14, no. 1, 2172264. doi: 10.1080/21505594.2023.2172264.
37. Ellett F., Jorgensen J., Frydman G.H., Jones C.N., Irimia D. Neutrophil interactions stimulate evasive hyphal branching by Aspergillus fumigatus. PLoS Pathogens, 2017, Vol. 13, no. 1, e1006154. doi: 10.1371/journal. ppat.1006154.
38. Fang W., Junqi W., Mingrong C., Zhu X., Du M., Chen C., Liao W., Zhi K., Pan W. Diagnosis of invasive fungal infections: challenges and recent developments. J. Biomed. Sci., 2023, Vol. 30, no. 1, 42. doi: 10.1186/s12929-023-00926-2.
39. Fischer J., Gresnigt M.S., Werz O., Hube B., Garscha U. Candida albicans-induced leukotriene biosynthesis in neutrophils is restricted to the hyphal morphology. FASEB J., 2021, Vol. 35, no. 10, e21820. doi: org/10.1096/fj.202100516rr.
40. Fites J.S., Gui M., Kernien J.F., Negoro P., Dagher Z., Sykes D.B., Nett J.E., Mansour M.K., Klein B.S. An unappreciated role for neutrophil-DC hybrids in immunity to invasive fungal infections. PLoS Pathog., 2018, Vol. 14, no. 5, e1007073. doi: 10.1371/journal.ppat.1007073.
41. Ganesh K., Joshi M.B. Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation. Inflamm. Res., 2023, Vol. 72, pp. 1175-1192.
42. Gazendam R.P., van Hamme J.L., Tool A.T.J., Hoogenboezem M., van den Berg J.M., Prins J.M., Vitkov L., van de Veerdonk F.L., van den Berg T.K., Roos D., Kuijpers T.W. Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects. J. Immunol., 2016, Vol. 196, no. 3, pp. 1272-1283.
43. Gómez-Gaviria M., Martínez-Álvarez J.A., Chávez-Santiago J.O., Mora-Montes H.M. Candida haemulonii Complex and Candida auris: Biology, Virulence Factors, Immune Response, and Multidrug Resistance. Infect. Drug Resist., 2023, Vol. 16, pp. 1455-1470.
44. Gravelat F.N., Beauvais A., Liu H., Lee M.J., Snarr B.D., Chen D., Xu W., Kravtsov I., Hoareau C.M.Q., Vanier G., Urb M., Campoli P., Al Abdallah Q., Lehoux M., Chabot J.C., Ouimet M-C., Baptista S.D., Fritz J.H., Nierman W.C., Latgé J.P., Mitchell A.P., Filler S.G., Fontaine T., Sheppard D.C Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog., 2013, Vol. 9, no. 8, e1003575. doi: 10.1371/journal.ppat.1003575.
45. Gravelat F.N., Ejzykowicz D.E., Chiang L.Y., Chabot J.C., Urb M., Macdonald K.D., Al-Bader N., Filler S.G., Sheppard D.C. Aspergillus fumigatus MedA governs adherence, host cell interactions and virulence. Cell. Microbiol., 2010, Vol. 12, no. 4, pp. 473-488.
46. Hind L.E., Giese M.A., Schoen T.J., Beebe D.J., Keller N., Huttenlocher A. Immune Cell Paracrine Signaling Drives the Neutrophil Response to A. fumigatus in an Infection-on-a-Chip Model. Cell. Mol. Bioeng., 2021, Vol. 14, pp. 133-145.
47. Hoenigl M., Arastehfar A., Arendrup M.C., Brüggemann R., Carvalho A., Chiller T., Chen S., Egger M., Feys S., Gangneux J-P., Gold J.A.W., Groll A.H., Heylen J., Jenks J.D., Krause R., Lagrou K., Lamoth F., Prattes J., Sedik S., Wauters J., Wiederhold N.P., Thompson G.R. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clin. Microbiol. Rev., 2024, Vol. 37, no. 2, e0007423. doi: 10.1128/cmr.00074-23.
48. Hoenigl M., Salmanton-García J., Egger M., Gangneux J-P., Bicanic T., Arikan-Akdagli S., AlastrueyIzquierdo A., Klimko N., Barac A., Özenci V., Meijer E.F.J., Khanna N., Bassetti M., Rautemaa-Richardson R., Lagrou K., Adam K-M., Akalin E.H., Akova M., Arsenijevic V.A., Aujayeb A., Blennow O., Bretagne S., Danion F., Denis B., de Jonge N.A., Desoubeaux G., Drgona L., Erben N., Gori A., Rodríguez J.G., Garcia-Vidal C., Giacobbe D.R., Goodman A.L., Hamal P., Hammarström H., Toscano C., Lanternier F., Lass-Flörl C., Lockhart D.E.A., Longval T., Loughlin L., Matos T., Mikulska M., Narayanan M., Martín-Pérez S., Prattes J., Rogers B., Rahimli L., Ruiz M., Roilides E., Samarkos M., Scharmann U., Sili U., Sipahi O.R., Sivakova A., Steinmann J., Trauth J., Turhan O., Praet J.V., Vena A., White L., Willinger B., Tortorano A.M., Arendrup M.C., Koehler P., Cornely O.A. Guideline adherence and survival of patients with сandidaemia in Europe: results from the ECMM Candida III multinational European observational cohort study. Lancet Infect. Dis., 2023, Vol. 23, no. 6, pp. 751-761.
49. Hopke A., Lin T., Scherer A.K., Shay A.E., Timmer K.D., Wilson-Mifsud B., Mansour M.K., Serhan C.N., Irimia D., Hurley B.P. Transcellular biosynthesis of leukotriene B4 orchestrates neutrophil swarming to fungi. iScience, 2022, Vol. 25, no. 10, 105226. doi: 10.1016/j.isci.2022.105226.
50. Hopke A., Scherer A., Kreuzburg S., Abers M.S., Zerbe C.S., Dinauer M.C., Mansour M.K., Irimia D. Neutrophil swarming delays the growth of clusters of pathogenic fungi. Nat. Commun., 2020, Vol. 11, no. 1, 2031. doi: 10.1038/s41467-020-15834-4.
51. Isles H.M., Loynes C.A., Alasmari S., Kon F.C., Henry K.M., Kadochnikova A., Hales J., Muir C.F., Keightley M-C., Kadirkamanathan V., Hamilton N., Lieschke G.J., Renshaw S.A., Elks P.M. Pioneer neutrophils release chromatin within in vivo swarms. eLife, 2021, Vol. 10, e68755. doi: 10.7554/eLife.68755.
52. Johnson C.J., Cabezas-Olcoz J., Kernien J.F., Wang S.X., Beebe D.J., Huttenlocher A., Ansari H., Nett J.E. The extracellular matrix of Candida albicans biofilms impairs formation of neutrophil extracellular traps. PLoS Pathog., 2016, Vol. 12, no. 9, e1005884. doi: 10.1371/journal.ppat.1005884.
53. Johnson C.J., Davis J.M., Huttenlocher A., Kernien J.F., Nett J.E. Emerging fungal pathogen Candida auris evades neutrophil attack. mBio, 2018, Vol. 9, e01403-18. doi: 10.1128/mbio.01403-18.
54. Jones C.N., Ellett F., Robertson A.L., Forrest K.M., Judice K., Balkovec J.M., Springer M., Markmann J.F., Vyas J.M., Warren H.S., Irimia D. Bifunctional Small Molecules Enhance Neutrophil Activities Against Aspergillus fumigatus in vivo and in vitro. Front. Immunol., 2019, Vol. 10, 644. doi: 10.3389/fimmu.2019.00644.
55. Kasper L., Konig A., Koenig P.A., Gresnigt M.S., Westman J., Drummond R.A., Lionakis M.S., Groß O., Ruland J., Naglik J.R., Hube B. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun., 2018, Vol. 9, no. 1, 4260. doi: 10.1038/s41467-018-06607-1.
56. Kernien J.F., Johnson C.J., Nett J.E. Conserved inhibition of neutrophil extracellular trap release by clinical Candida albicans biofilms. J. Fungi (Basel), 2017, Vol. 3, no. 3, 49. doi: 10.3390/jof3030049.
57. Koch B.E.V., Hajdamowicz N.H., Lagendijk E., Ram A.F.J., Meijer A.H. Aspergillus fumigatus establishes infection in zebrafish by germination of phagocytized conidia, while Aspergillus niger relies on extracellular germination. Sci. Rep., 2019, Vol. 9, no. 1, 12791. doi: 10.1038/s41598-019-49284-w.
58. Lämmermann T., Afonso P., Angermann B., Wang J.M., Kastenmüller W., Parent C.A., Germain R.N. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature, 2013, Vol. 498, no. 7454, pp. 371-375.
59. Lee E.K.S., Gillrie M.R., Li L., Arnason J.W., Kim J.H., Babes L., Lou Y., Sanati-Nezhad A., Kyei S.K., Kelly M.M., Mody C.H., Ho M., Yipp B.G. Leukotriene B4-mediated neutrophil recruitment causes pulmonary capillaritis during lethal fungal sepsis. Cell Host Microbe, 2018, Vol. 23, no. 1, pp. 121-133.
60. Lee M.J., Liu H., Barker B.M., Snarr B.D., Gravelat F.N., Al Abdallah Q., Gavino C., Baistrocchi S.R., Ostapska H., Xiao T., Ralph B., Solis N.V., Lehoux M., Baptista S.D., Thammahong A., Cerone R.P., Kaminskyj S.G.W., Guiot M-C., Latgé J-P., Fontaine T., Vinh D.C., Filler S.G., Sheppard D.C. The Fungal Exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog., 2015, Vol. 11, no. 10, e1005187. doi: 10.1371/journal.ppat.1005187.
61. Li Z., Yuan T. Neutrophil extracellular traps in adult diseases and neonatal bacterial infectious diseases: A review. Heliyon, 2024, Vol. 10, no. 1, e23559. doi: 10.1016/j.heliyon.2023.e23559.
62. Matsushima H., Geng S., Lu R., Okamoto T., Yao Y., Mayuzumi N., Kotol P.F., Chojnacki B.J., Miyazaki T., Gallo R.L., Takashima A. Neutrophil differentiation into a unique hybrid population exhibiting dual phenotype and functionality of neutrophils and dendritic cells. Blood, 2013, Vol. 121, no. 10, pp. 1677-1689.
63. Mba I.E., Nweze E.I. Mechanism of Candida pathogenesis: revisiting the vital drivers. European Journal of Clin. Microbiol. Infect. Dis., 2020, Vol. 39, pp. 1797-1819.
64. McCormick A., Heesemann L., Wagener J., Marcos V., Hartl D., Loeffler J., Heesemann J., Ebel F. NETs formed by human neutrophils inhibit growth of the pathogenic mold Aspergillus fumigatus. Microbes Infect., 2010, Vol. 12, pp. 928-936. doi: 10.1016/j.micinf.2010.06.009.
65. McKenna E., Mhaonaigh A.U., Wubben R., Dwivedi A., Hurley T., Kelly L.A., Stevenson N.J., Little M.A., Molloy E.J. Neutrophils: Need for Standardized Nomenclature. Front. Immunol., 2021, Vol. 12, 602963. doi: 10.3389/fimmu.2021.602963.
66. Mihlan M., Glaser K.M., Epple M.W., Lämmermann T. Neutrophils: amoeboid migration and swarming dynamics in tissues. Front. Cell. Dev. Biol., 2022, Vol. 10, 871789. doi: 10.3389/fcell.2022.871789.
67. Mircescu M.M., Lipuma L., van Rooijen N., Pamer E.G., Hohl T.M. Essential role for neutrophils but not alveolar macrophages at early time points following Aspergillus fumigatus infection. J. Infect. Dis., 2009, Vol. 200, no. 4, pp. 647-656.
68. Noble S.M., Gianetti B.A., Witchley J.N. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat. Rev. Microbiol., 2017, Vol. 15, no. 2, pp. 96-108.
69. Pfister H. Neutrophil Extracellular Traps and Neutrophil-Derived Extracellular Vesicles: Common Players in Neutrophil Effector Functions. Diagnostics, 2022, Vol. 12, no. 7, 1715. doi: 10.3390/diagnostics12071715. 70. Rafiq M., Rivieccio F., Zimmermann A., Visser C., Bruch A., Krüger T., Rojas K.G., Kniemeyer O., Blango M.G., Brakhage A.A. PLB-985 neutrophil-like cells as a model to study Aspergillus fumigatus pathogenesis. mSphere, 2022, Vol. 7, no. 1, e00940-21. doi: 10.1128/msphere.00940-21.
70. Ravindran M., Khan M.A., Palaniyar N. Neutrophil extracellular trap formation: physiology, pathology, and pharmacology. Biomolecules, 2019, Vol. 9, no. 8, 365. doi: 10.3390/biom9080365.
71. Reátegui E., Jalali F., Khankhel A.H., Wong E., Cho H., Lee J., Serhan C.N., Dalli J., Elliott H., Irimia D. Microscale arrays for the profiling of start and stop signals coordinating human-neutrophil swarming. Nat. Biomed. Eng., 2017, Vol. 1, 0094. doi: 10.1038/s41551-017-0094.
72. Reedy J.L., Jensen K.N., Crossen A.J., Basham K.J., Ward R.A., Reardon C.M., Harding H.B., Hepworth O.W., Simaku P., Kwaku G.N., Tone K., Willment J.A., Reid D.M., Stappers M.H.T., Brown G.D., Rajagopal J., Vyas J.M. Fungal melanin suppresses airway epithelial chemokine secretion through blockade of calcium fluxing. Nat. Commun., 2024, Vol. 15, no. 1, 5817. doi: 10.1038/s41467-024-50100-x.
73. Rosowski E.E., Knox B.P., Archambault L.S., Huttenlocher A., Keller N.P., Wheeler R.T., Davis J.M. The Zebrafish as a model host for invasive fungal infections. J. Fungi (Basel), 2018, Vol. 4, no. 4, 136. doi: 10.3390/ jof4040136.
74. Rosowski E.E., Raffa N., Knox B.P., Golenberg N., Keller N.P., Huttenlocher A. Macrophages inhibit Aspergillus fumigatus germination and neutrophil-mediated fungal killing. PLoS Pathog., 2018, Vol. 14, no. 8, e1007229. doi: 10.1371/journal.ppat.1007229.
75. Scherer A.K., Hopke A., Sykes D.B., Irimia D., Mansour M.K. Host defense against fungal pathogens: Adaptable neutrophil responses and the promise of therapeutic opportunities? PLoS Pathog., 2021, Vol. 17, no. 7, e1009691. doi: 10.1371/journal.ppat.1009691.
76. Schoen T.J., Calise D.G., Bok J.W., Giese M.A., Nwagwu C.D., Zarnowski R., Andes D., Huttenlocher A., Keller N.P. Aspergillus fumigatus transcription factor ZfpA regulates hyphal development and alters susceptibility to antifungals and neutrophil killing during infection. PLoS Pathog., 2023, Vol. 19, no. 5, e1011152. doi: 10.1371/journal.ppat.1011152.
77. Schoen T.J., Rosowski E.E., Knox B.P., Bennin D., Keller N.P., Huttenlocher A. Neutrophil phagocyte oxidase activity controls invasive fungal growth and inflammation in zebrafish. J. Cell Sci., 2019, Vol. 133, no. 5, jcs236539. doi: 10.1242/jcs.236539.
78. Schultz B.M., Acevedo O.A., Kalergis A.M., Bueno S.M. Role of extracellular trap release during bacterial and viral infection. Front. Microbiol., 2022, Vol. 13, 798853. doi: 10.3389/fmicb.2022.798853.
79. Shopova I.A., Belyaev I., Dasari P., Jahreis S., Stroe M.C., Cseresnyés Z., Zimmermann A-K., Medyukhina A., Svensson C-M., Krüger T., Szeifert V., Nietzsche S., Conrad T., Blango M.G., Kniemeyer O., von Lilienfeld-Toal M., Zipfel P.F., Ligeti E., Figge M.T., Brakhage A.A. Human neutrophils produce antifungal extracellular vesicles against Aspergillus fumigatus. mBio, 2020, Vol. 11, no. 2, e00596-20. doi: 10.1128/mbio.00596-20.
80. Song Z., Bhattacharya S., Clemens R.A, Dinauer M.C. Molecular regulation of neutrophil swarming in health and disease: Lessons from the phagocyte oxidase. iScience, 2023, Vol. 26, no. 10, 108034. doi: 10.1016/j. isci.2023.108034. 82. Song Z., Huang G., Chiquetto Paracatu L., Grimes D., Gu J., Luke C.J., Clemens R.A., Dinauer M.C. NADPH oxidase controls pulmonary neutrophil infiltration in the response to fungal cell walls by limiting LTB4. Blood, 2020, Vol. 135, no. 12, pp. 891-903.
81. Sykes D.B., Martinelli M.M., Negoro P., Xu S., Maxcy K., Timmer K., Viens A.L., Alexander N.J., Atallah J., Snarr B.D., Baistrocchi S.R., Atallah N.J., Hopke A., Scherer A., Rosales I., Irimia D., Sheppard D.C., Mansour M.K. Transfusable neutrophil progenitors as cellular therapy for the prevention of invasive fungal infections. J. LeukoC. Biol., 2022, Vol. 111, no. 6, pp. 1133-1145.
82. Thywißen A., Heinekamp T., Dahse H-M., Schmaler-Ripcke J., Nietzsche S., Zipfel P.F., Brakhage A.A. Conidial dihydroxynaphthalene melanin of the human pathogenic fungus Aspergillus fumigatus interferes with the host endocytosis pathway. Front. Microbiol., 2011, Vol. 2, 96. doi: 10.3389/fmicb.2011.00096.
83. Timar C.I., Lorincz A.M., Csepanyi-Komi R., Valyi-Nagy A., Nagy G., Buzas E.I., Iványi Z., Kittel A., Powell D.W., McLeish K.R., Ligeti E. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood, 2013, Vol. 121, no. 3, pp. 510-518.
84. Urban C.F., Nett J.E. Neutrophil extracellular traps in fungal infection. Semin. Cell Dev. Biol., 2019, Vol. 89, pp. 47-57.
85. Uwamahoro N., Verma-Gaur J., Shen H., Qu Y., Lewis R., Lu J., et al. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. mBio, 2014, Vol. 5, no. 2, e00003-14. doi: 10.1128/mbio.00003-14.
86. WHO fungal priority pathogens list to guide research, development and public health action. Geneva: World Health Organization, 2022. 48 p.
87. Zhong H., Lu R-Y., Wang Y. Neutrophil extracellular traps in fungal infections: A seesaw battle in hosts. Front. Immunol., 2022, Vol. 13, 977493. doi: 10.3389/fimmu.2022.977493.
Review
For citations:
Mezentseva E.A., Dolgushin I.I. Neutrophils against pathogens of invasive mycoses: Conventional and nontraditional fighting tools. Medical Immunology (Russia). 2025;27(3):501-518. (In Russ.) https://doi.org/10.15789/1563-0625-NAP-3135