CYTOKINE GENE EXPRESSION IN BONE MARROW CELL FRACTIONS ISOLATED BY COUNTERFLOW CENTRIFUGAL ELUTRIATION
https://doi.org/10.15789/1563-0625-CGE-3211
Abstract
Abstract
The cellular composition of red bone marrow is composed of an extremely heterogeneous cell population, including stem cells, reticulum cells and cells of the five hematopoietic lineages. The current task for cell therapy and experimental studies is to obtain cell fractions of bone marrow enriched with a certain type of cells. In this paper we investigated the level of cytokine mRNA expression in bone marrow cell fractions isolated by counterflow centrifugation in an elutriator rotor. Cell fractionations were isolated at a rotor speed of 2500 rpm. Six cell fractions (F) were collected: F-1 at a buffer flow rate of 12 ml/min, F-2 – 15 ml/min, F-3 – 19 ml/min, F-4 – 23 ml/min, F-5 – 50 ml/min, F-6 – collected after stopping the rotor rotating. Cytomorphological analysis of the fractions showed that erythrocytes (80%) and lymphocytes (40%) are collected in the “light” fraction F-1, lymphocytes (44%), polychromatophilic (50%) and oxyphilic (51%) normocytes – in F-2, neutrophils (70%) and eosinophilic granulocytes (40%) – in F-3 and F-4, macrophages (64%), megakaryocytes (95%), reticular (35%) and mast cells (62%) – in F-6. Blast cells of different hematopoietic lineages were detected mainly in F-5. Using RT-PCR, the maximum gene expression of the stem cell factor (Scf) and granulocyte-macrophage colony-stimulating factor (Gm-csf) was detected in the “heavy” fraction F-6, gene expression of tumor necrosis factor-α (Tnf-α) and erythropoietin (Epo) – in F-4, F-5 and F-6, and gene expression of macrophage colony-stimulating factor (M-csf) – in F-3 and F-4. Thus, this method allow to separate the "light" fractions of lymphocytes and erythrocytes from the bulk of bone marrow cells, which can be used in allogeneic bone marrow cell transplantation to reduce the risk of acute graft-versus-host disease. Another important advantage of the method is the ability to obtain fractions of "heavy" cells with high regenerative potential in order to use them in cell therapy to stimulate regenerative processes in organs and tissues.
About the Authors
Alexey DudarevRussian Federation
PhD,MD (Biology) Senior Research Associate, Laboratoty of Mechanisms of Intercellular Communication
Tatjana Nepsha
Russian Federation
Research Associate, Laboratoty of Mechanisms of Intercellular Communication
Anna Gorodetskaya
Russian Federation
Research Associate, Laboratoty of Mechanisms of Intercellular Communication
Ivan Usynin
Federal Research Center for Fundamental and Translational Medicine, Institute of Biochemistry, Novosibirsk, Russia
Russian Federation
D.Sc (Biology), Head of the Laboratoty of Mechanisms of Intercellular Communication
References
1. Владимирская Е.Б. Нормальное кроветворение и его регуляция // Клиническая онкогематология, 2015. Т. 8, № 2. С. 109–119. doi: 10.21320/2500-2139-2015-8-2-109-119. [Vladimirsky E.B. Normal Hematopoiesis and Its Regulation. Clinical oncohematology, 2015, Vol.8, no. 2, pp. 109–119. (In Russ.)]
2. Гольдберг Е.Д., Дыгай А.М., Шахов В.П. Методы культуры ткани в гематологии. Томск: ТГУ, 1992. 272 с. [Goldberg E. D., Dygai A. M., Shakhov V.P. Methods of tissue culture in hematology. Tomsk. Tomsk State University, 1992, 272 p.]
3. Кладова И.В., Кивва В.Н., Хрипун А.В., Черникова И.В., Страхова Н.Б., Антипова Н.В., Белобородова Т.П., Воробьев И.Ю. Нейропротективные эффекты эритропоэтина: возможности, перспективы и реальность // Медицинский Вестник Юга России. 2014. № 3. С. 28-35. doi: 10.21886/2219-8075-2014-3-28-35. [Kladova I., Kivva V., Khripoun A., Сhernikova I., Strahova N., Antipova N., Beloborodovа T., Vorobyov I. Neuroprotective effects of erythropoietin: opportunities, prospects and reality (review). Rostov: Medical Herald of the South of Russia. 2014, Vol.3, pp. 28-35. (In Russ.)]
4. Маслов Л.Н., Сазонова С.И. Использование цитокинов для стимуляции неоангиогенеза и регенерации сердца // Экспериментальная и клиническая фармакология, 2006. № 5. С.70-76. [Maslov L.N., Sazonova S.I. The use of cytokines to stimulate neoangiogenesis and regeneration of the heart. Experimental and Clinical Pharmacology, 2006, No. 5, pp. 70-76. (In Russ.)]
5. Bolliger АP. Cytologic evaluation of bone marrow in rats: indications, methods, and normal morphology. Vet. Clin. Pathol., 2004, Vol.33, no. 2, pp. 58-67. doi: 10.1111/j.1939-165x.2004.tb00351.x
6. Braza M. S., Conde P., Garcia M., Cortegano I., Brahmachary M., Pothula V. F., Fay F., Boros P., Werner S. A., Ginhoux F., Mulder W. J.M., Ochando J. Neutrophil derived CSF1 induces macrophage polarization and promotes transplantation tolerance. American journal of transplantation, 2018, Vol.18, no. 5, pp. 1247-1255. doi:10.1111/ajt.14645.
7. Chakraborty P., Wang Y., Wei J.H., van Deursen J. Yu H., Malureanu L., Dasso M., Forbes D.J., Levy D.E., Seemann J., Fontoura B.M. Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Developmental cell, 2008, Vol. 15, pp. 657–667. doi; 10.1016 /j. devcel. 2008. 08. 020.
8. De Witte T, Plas A, Koekman E, Blankenborg G, Salden M, Wessels J, Haanen C. Separation of human bone marrow by counterflow centrifugation monitored by DNA-flowcytometry. Br. J. Haematol., 1984, Vol. 58, no. 2, pp. 249-258. doi: 10.1111/j.1365-2141.1984.tb06083.x.
9. De Witte T, Hoogenhout J, de Pauw B, Holdrinet R, Janssen J, Wessels J, van Daal W, Hustinx T, Haanen C. Depletion of donor lymphocytes by counterflow centrifugation successfully prevents acute graft-versus-host disease in matched allogeneic marrow transplantation. Blood, 1986, Vol. 67, no. 5, pp. 1302-1308.
10. Gengozian N, Legendre AM. Separation of feline bone marrow cells by counterflow centrifugal elutriation. Identification and isolation of presumptive early and late myeloid/erythroid progenitors. Transplantation, 1995, Vol. 60, no. 8, pp. 836-841.
11. Goldenberg-Cohen N, Iskovich S, Askenasy N. Bone Marrow Homing Enriches Stem Cells Responsible for Neogenesis of Insulin-Producing Cells, While Radiation Decreases Homing Efficiency. Stem Cells. Dev., 2015, Vol. 24, no. 19, pp. 2297-2306. doi: 10.1089/scd.2014.0524.
12. Khansari N, Beauclair K, Gustad T. Separation of bovine lymphocytes and granulocytes from blood by use of elutriation. Am. J. Vet. Res., 1989, Vol. 50, no. 8, pp. 1263-1265.
13. Lindahl, P.E. Principle of a Counter-Streaming Centrifuge for the Separation of Particles of Different Sizes. Nature, 1948, Vol. 161, pp. 648–650. doi: 10.1038/161648a0.
14. Michalopoulos G.K. Principles of liver regeneration and growth homeostasis. Compr. Physiol., 2013, Vol. 3, no. 1, pp. 485-513. doi: 10.1002/cphy.c120014.
15. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci., U S A, 2001, Vol. 98, no. 18, pp. 10344-10349. doi: 10.1073/pnas.181177898.
16. Schirrmacher, V. Bone Marrow: The Central Immune System. Immuno, 2023, Vol. 3, pp. 289–329. doi:10.3390/immuno3030019.
17. Sharpe P.T. Methods of Cell Separation. Laboratory Techniques in Biochemistry and Molecular Biology, Chapter 5. Centrifugal elutriation. Elsevier, 1988, pp. 91-106. https://doi.org/10.1016/S0075-7535(08)70630-2.
18. Stroncek D.F, Fellowes V, Pham C, Khuu H, Fowler D.H, Wood L.V, Sabatino M. Counter-flow elutriation of clinical peripheral blood mononuclear cell concentrates for the production of dendritic and T cell therapies. J. Transl. Med, 2014, Vol. 12, pp. 41. doi: 10.1186/s12967-014-0241-y.
19. Usynin I., Frevert U, Klotz C. Malaria circumsporozoite protein inhibits respiratory burst in Kupffer cells. Cell Microbiol. 2007, Vol. 9, no. 11, pp. 2610-2628. doi:10.1111/j.1462-5822.2007.00982.x.
20. Zahorchak A.F, DeRiggi M.L, Muzzio J.L, Sutherland V, Humar A, Lakkis F.G, Hsu Y.S, Thomson A.W. Manufacturing and validation of Good Manufacturing Practice-compliant regulatory dendritic cells for infusion into organ transplant recipients. Cytotherapy. 2023, Vol. 25, no. 4, pp. 432-441. doi: 10.1016/j.jcyt.2022.11.005.
Supplementary files
![]() |
1. Подписи авторов | |
Subject | ||
Type | Other | |
Download
(1MB)
|
Indexing metadata ▾ |
![]() |
2. Резюме (рус. яз) | |
Subject | ||
Type | Other | |
Download
(37KB)
|
Indexing metadata ▾ |
![]() |
3. Литература | |
Subject | ||
Type | Other | |
Download
(27KB)
|
Indexing metadata ▾ |
![]() |
4. Резюме (англ.яз) | |
Subject | ||
Type | Other | |
Download
(53KB)
|
Indexing metadata ▾ |
![]() |
5. 3211 | |
Subject | ||
Type | Other | |
Download
(47KB)
|
Indexing metadata ▾ |
Review
For citations:
Dudarev A., Nepsha T., Gorodetskaya A., Usynin I. CYTOKINE GENE EXPRESSION IN BONE MARROW CELL FRACTIONS ISOLATED BY COUNTERFLOW CENTRIFUGAL ELUTRIATION. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-CGE-3211