«DELTA-VAC» SUBUNIT VACCINE INDUCES STRONG HUMORAL IMMUNE RESPONSE AGAINST SARS-COV-2
https://doi.org/10.15789/1563-0625-DVC-2901
Abstract
Abstract
Introduction: The COVID-19 pandemic has focused the attention of researchers around the world on the fight against this infection. A critical approach to combating COVID-19 has been the development of preventive vaccines based on a range of platforms, including DNA and RNA vaccines, vector and subunit vaccines. Subunit vaccines have become one of these platforms, primarily due to their unsurpassed safety profile. However, the safety of these vaccines is often associated with low effectiveness, so it is often necessary to use adjuvants, as well as use more complex immunization regimens. At the same time, an important advantage of subunit vaccines is scalability and relative ease of production, since there is no need to work with live virus or viral vectors during the production process. Our object of the work was to develop a candidate vaccine based on the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 spike S-protein of the Delta variant (B.1.617.2). Materials and Methods: The study used immunological methods and methods of genetic engineering and biotechnology. Results: In the course of work based on the mammalian cells CHO-K1 developed producer of recombinant RBD. To obtain a protein that meets the requirements of injectable drugs, a chromatographic purification scheme was developed, including affinity and ion exchange chromatography. A variant of the subunit vaccine «Delta-Vac» based on the obtained recombinant protein was proposed. Assessment of the immunogenicity of the Delta-Vac vaccine was carried out on the model of laboratory mice BALB/c. Animals were immunized twice with a dose of 50 μg of RBD in combination with Al(OH)3 at a two-week interval. The ability of the candidate vaccine to induce the production of specific IgG and neutralizing antibodies in BALB/c mice was demonstrated. The specific antibody titers of immunized animals ranged from 1/105 to 1/106. At the same time, blood serums had neutralizing activity against SARS-CoV-2 (variant B.1.617.2 (Delta)) with a titer of up to 1/2000. Conclusion: The vaccine "Delta-Vak» developed is highly immunogenic and induces the production of neutralizing antibodies against homologous Delta variant and heterologous Wuhan and Omicron SARS-CoV-2 variants. Thus, «Delta-Vac» can act as a vaccine candidate and serve as a prototype for the development of subunit vaccines against COVID-19.
About the Authors
Valentina Sergeevna NesmeyanovaRussian Federation
research assistant Bioengineering Department
Competing Interests:
Авторы заявляют об отсутствии конфликта интересов
Yuliya Aleksandrovna Merkulyeva
сandidate of Sciences in Biology, research assistant Bioengineering Department
Anastasiya Aleksandrovna Isaeva
сandidate of Sciences in Chemistry, research assistant Bioengineering Department
Natalya Vyacheslavovna Volkova
сandidate of Sciences in Biology, research officer Bioengineering Department
Svetlana Valeryena Belenkaya
сandidate of Sciences in Biology, research officer Bioengineering Department
Mariya Borisovna Borgoyakova
research assistant Bioengineering Department
Ekaterina Alexandrovna Volosnikova
сandidate of Sciences in Biology, senior research officer of the department of Technology Development and Pilot Production of Biologicals, Head of the Laboratory of Obtaining and Analizing Biosubstances
Tatiana Igorevna Esina
research assistant of the department of Technology Development and Pilot Production of Biologicals
Elena Dmitrievna Danilenko
сandidate of Sciences in Biology, director of the Institute of medical biotechnology, State Research Center of Virology and Biotechnology "Vector" of Rospotrebnadzor
Anna Vladimirovna Zaikovskaya
сandidate of Sciences in Biology, senior research officer department "Collection of microorganisms"
Sergey Evgenievich Olkin
senior research officer of the Department of Biophysics and Ecological Research
Oleg Viktorovich Pyankov
сandidate of Sciences in Biology, Head of the Department "Collection of Microorganisms"
Aleksandr Alekseevich Ilichev
Doctor of Science in Biological Sciences, head of Bioengineering Department, full Professor
Dmitriy Nikolaevich Shcherbakov
сandidate of Sciences in Biology, senior research officer of Bioengineering Department, head of the Laboratory of
References
1. Matveev A.L., Khlusevich Ya.A., Baykov I.K., Babkin I.V., Goncharova E.P., Morozova V.V., Tikunova N.V. Development of a stable eukaryotic strain producing fully human monoclonal antibody on the basis of the human antibody against ectromelia virus. Vavilov skii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(8):9931000. DOI 10.18699/VJ17.324 (in Russian) https://doi.org/10.18699/VJ17.324
2. Arora P., Zhang L., Rocha C., Graichen L., Nehlmeier I., Kempf A., Cossmann A.,Gema Morillas Ramos G. M., Baier E., Tampe B., Moerer O., Dickel S., Winkler M. S., Behrens G. M. N., Pöhlmann S., Hoffmann M. The SARS-CoV-2 Delta-Omicron Recombinant Lineage (XD) Exhibits Immune-Escape Properties Similar to the Omicron (BA. 1) Variant . International Journal of Molecular Sciences, 2022, Vol. 23, no. 22, pp. 14057. https://doi.org/10.3390/ijms232214057
3. Coria L. M., Saposnik L. M., Pueblas Castro C., Castro E. F., Bruno L. A., Stone W. B., Pérez P. S., Darriba M. L., Chemes L. B., Alcain J., Mazzitelli I., Varese A., Salvatori M., Auguste A. J., Álvarez D. E., Pasquevich K. A., Cassataro J. A Novel Bacterial Protease Inhibitor Adjuvant in RBD-Based COVID-19 Vaccine Formulations Containing Alum Increases Neutralizing Antibodies , Specific Germinal Center B Cells and Confers Protection Against SARS-CoV-2 Infection in Mice. Frontiers in Immunology, 2022, Vol. 13, no. 2, pp. 1-17. doi: 10.3389/fimmu.2022.844837
4. Dai L., Gao G. F. Viral targets for vaccines against COVID-19. Nature Reviews Immunology, 2021, Vol. 21, no. 2, pp. 73-82. doi: 10.1038/s41577-020-00480-0
5. Ghaemi A., Roshani P. Asl., Zargaran H., Ahmadi D., Hashimi A. A., Abdolalipour E., Bathaeian S., Miri S. M. Recombinant COVID-19 vaccine based on recombinant RBD/Nucleoprotein and saponin adjuvant induces long-lasting neutralizing antibodies and cellular immunity. Frontiers in Immunology, 2022, 13(September), pp. 1–16. doi: 10.3389/fimmu.2022.974364
6. Karthik K., Senthilkumar T. M. A., Udhayavel S., Raj G. D. Role of antibody-dependent enhancement (ADE) in the virulence of SARS-CoV-2 and its mitigation strategies for the development of vaccines and immunotherapies to counter COVID-19. Human Vaccines and Immunotherapeutics, 2020, Vol. 16, no. 12, pp. 3055-3060. doi: 10.1080/21645515.2020.1796425
7. Kleanthous H., Silverman J. M., Makar K. W., Yoon I. K., Jackson N., Vaughn D. W. Scientific rationale for developing potent RBD-based vaccines targeting COVID-19. Vaccines, 2021, Vol. 6, no. 1, pp. 1-10. doi: 10.1038/s41541-021-00393-6
8. Kuo T. Y., Lin M. Y., Coffman R. L., Campbell J. D., Traquina P., Lin Y. J., Liu L. T.-Ch., Cheng J., Wu Y.-Ch., Wu Ch.-Ch., Tang W.-H., Huang Ch.-G., Tsao K.-Ch., Chen C. Development of CpG-adjuvanted stable prefusion SARS-CoV-2 spike antigen as a subunit vaccine against COVID-19. Scientific Reports, 2020, Vol. 10, no. 1, pp. 1–10. doi: 10.1038/s41598-020-77077-z
9. Lee I. J., Sun C. P., Wu P. Y., Lan Y. H., Wang I. H., Liu W. C., Yuan J. P.-Y., Chang Y.-W., Tseng Sh.-Ch., Tsung S.-I., Chou Y.-Ch., Kumari M., Lin Y.-Sh., Chen H.-F., Chen T.-Y., Lin Ch.-Ch., Chiu Ch.-W., Hsieh Ch.-H., Chuang Ch.-Y., Cheng Ch.-M., Lin H.-T., Chen W.-Y., Hsu F.-F., Hong M.-H., Liao Ch.-Ch., Chang Ch.-Sh., Liang J.-J., Ma H.-H., Chiang M.-T., Liao H.-N., Ko H.-Y., Chen L.-Y., Ko Y.-A., Yu P.-Y., Yang T.-J., Chiang P.-Ch., Hsu Sh.-T., Lin Y.-L., Lee Ch.-Ch., Wu H.-Ch., Tao M. H. A booster dose of Delta × Omicron hybrid mRNA vaccine produced broadly neutralizing antibody against Omicron and other SARS-CoV-2 variants. Journal of Biomedical Science, 2022, Vol. 29, no. 1, pp. 1-13. doi: 10.1186/s12929-022-00830-1
10. Liao Y., Li Y., Pei R., Fang X., Zeng P., Fan R., Ou Zh., Deng J., Zhou J., Guan W., Min Y., Deng F., Peng H., Zhang Zh., Feng Ch., Xin B., He J., Hu Zh., Zhang J. Safety and immunogenicity of a recombinant interferon-armed RBD dimer vaccine (V-01) for COVID-19 in healthy adults: a randomized, double-blind, placebo-controlled, Phase I trial. Emerging Microbes and Infections, 2021, Vol. 10, no. 1, pp. 1589-1597. doi: 10.1080/22221751.2021.1951126
11. Lin T. W., Huang P. H., Liao B. H., Chao T. L., Tsai Y. M., Chang S. C., Chang S-Y., Chen, H. W. Tag-Free SARS-CoV-2 Receptor Binding Domain (RBD), but Not C-Terminal Tagged SARS-CoV-2 RBD, Induces a Rapid and Potent Neutralizing Antibody Response. Vaccines, 2022, Vol. 10 no. 11, pp. 1-11. doi: 10.3390/vaccines10111839
12. Liu Ch., Ginn H. M., Dejnirattisai W., Supasa P., Wang B., Tuekprakhon A., Nutalai R., Zhou D., Mentzer A. J., Zhao Y., Duyvesteyn H. M. E., López-Camacho C., Slon-Campos J., Walter Th. S., Skelly D., Johnson S. A., Ritter Th. G., Mason Ch., Clemens S. A. C., Naveca F. G., Nascimento V., Nascimento F., Fernandes da Costa C., Resende P. C., Pauvolid-Correa A., Siqueira M. M., Dold Ch., Temperton N., Dong T., Pollard A. J., Knight J. C., Crook D., Lambe T., Clutterbuck E., Bibi S., Flaxman A., Bittaye M., Belij-Rammerstorfer S., Gilbert S. C., Malik T., Carroll M. W., Klenerman P., Barnes E., Dunachie S. J., Baillie V., Serafin N., Ditse Z., Silva K. D., Paterson N. G., Williams M. A., Hall D. R., Madhi Sh., Nunes M. C., Goulder Ph., Fry E. E., Mongkolsapaya J., Ren J., Stuart D. I., Screaton G. R. Reduced neutralization of SARS-CoV-2 B. 1.617 by vaccine and convalescent serum. Cell, 2021, Vol. 184, no. 16, pp. 4220-4236. e13. https://doi.org/10.1016/j.cell.2021.06.020
13. Malladi S. K., Singh R., Pandey S., Gayathri S., Kanjo K., Ahmed S., Khan M. S., Kalita P., Girish N., Upadhyaya A., Reddy P., Pramanick I., Bhasin M., Mani Sh., Bhattacharyya S., Joseph J., Thankamani K., Raj V. S., Dutta S., Singh R., Nadig G., Varadarajan R. Design of a highly thermotolerant, immunogenic SARS-CoV-2 spike fragment. Journal of Biological Chemistry, 2021, Vol. 296, pp. 100025. doi: 10.1074/jbc.RA120.016284
14. Merkuleva I. A., Shcherbakov D. N., Borgoyakova M. B., Isaeva A. A., Nesmeyanova V. S., Volkova N. V., Aripov V. S., Shanshin D. V., Karpenko L. I., Belenkaya S. V., Kazachinskaia E. I., Volosnikova E. A., Esina T. I., Sergeev A. A., Titova K. A., Konyakhina Y. V., Zaykovskaya A. V., Pyankov O. V., Kolosova E. A., Viktorina O. E., Shelemba A. A., Rudometov A. P., Ilyichev, A. A. Are Hamsters a Suitable Model for Evaluating the Immunogenicity of RBD-Based Anti-COVID-19 Subunit Vaccines?. Viruses, 2022, Vol. 14, no. 5, pp. 1060. doi: 10.3390/v14051060
15. Merkuleva I. A., Shcherbakov D. N., Borgoyakova M. B., Shanshin D. V., Rudometov A. P., Karpenko L. I., Belenkaya S. V., Isaeva A. A., Nesmeyanova V. S., Kazachinskaia E. I., Volosnikova E. A., Esina T. I., Zaykovskaya A. V., Pyankov O. V., Borisevich S. S., Shelemba A. A., Chikaev A. N., Ilyichev A. A. Comparative Immunogenicity of the Recombinant Receptor-Binding Domain of Protein S SARS-CoV-2 Obtained in Prokaryotic and Mammalian Expression Systems. Vaccines, 2022, Vol. 10 no. 1. doi: 10.3390/vaccines10010096
16. Premkumar L., Segovia-Chumbez B., Jadi R., Martinez D. R., Raut R., Markmann A. J., Cornaby C., Bartelt L., Weiss S., Park Y., Edwards C. E., Weimer E., Scherer E. M., Rouphael N., Edupugantih S., Weiskopf D., TSE L. V., HOU Y. J., Margolis D., Sette A., Collins M. H., Schmitz J., Baric R. S., De Silva A. M. The receptor-binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Science immunology, 2020, Vol. 5, no. 48, pp. eabc8413. doi: 10.1126/sciimmunol.abc8413
17. Shimizu J., Sasaki T., Koketsu R., Morita R., Yoshimura Y., Murakami A., Saito Y., Kusunoki T., Samune Y., Nakayama E. E., Miyazaki K., Shioda T. Reevaluation of antibody-dependent enhancement of infection in anti-SARS-CoV-2 therapeutic antibodies and mRNA-vaccine antisera using FcR- and ACE2-positive cells. Scientific Reports, 2022, Vol. 12, no. 1, pp. 1-9. doi: 10.1038/s41598-022-19993-w
18. Starr T. N., Czudnochowski N., Liu Z., Zatta F., Park Y. J., Addetia A., Pinto D., Beltramello M., Hernandez P., Greaney A. J., Marzi R., Glass W. G., Zhang I., Dingens A. S., Bowen J. E., Tortorici M. A., Walls A. C., Wojcechowskyj J. A., De Marco A., Rosen L. E., Zhou J., Montiel-Ruiz M., Kaiser H., Dillen J. R., Tucker H., Bassi J., Silacci-Fregni Ch., Housley M. P., Di Iulio J., Lombardo G., Agostini M., Sprugasci N., Culap K., Jaconi S., Meury M., Jr E. D., Abdelnabi R., Foo Sh.-Y. C., Cameroni E., Stumpf S., Croll T. I., Nix J. C., Havenar-Daughton C., Piccoli L., Benigni F., Neyts J., Telenti A., Lempp F.A., Pizzuto M. S., Chodera J. D., Hebner Ch. M., Virgin H. W., Whelan S. P. J., Veesler D., Corti D., Bloom J. D., Snell G. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature, 2021, Vol. 597, no. 7874, pp. 97-102. doi: 10.1038/s41586-021-03807-6
19. Wang J., Wen Y., Zhou S. H., Zhang H. W., Peng X. Q., Zhang R. Y., Yin X-G., Qiu H., Gong R., Yang G.-F., Guo J. Self-Adjuvanting Lipoprotein Conjugate αgalCer-RBD Induces Potent Immunity against SARS-CoV-2 and its Variants of Concern. Journal of Medicinal Chemistry, 2022, Vol. 65 no. 3, pp. 2558-2570. doi: 10.1021/acs.jmedchem.1c02000
20. Yang D. K., Kweon C. H., Kim B. H., Lim S. I., Kwon J. H., Kim S. H., Jae-Young S., Han H. R. Immunogenicity of baculovirus expressed recombinant proteins of Japanese encephalitis virus in mice. Journal of Veterinary Science, 2005, Vol. 6, no. 2, pp. 125-133. https://doi.org/10.4142/jvs.2005.6.2.125
21. Yang J., Wang W., Chen Z., Lu S., Yang F., Bi Z., Bao L., Mo F., Li X., Huang Y., Hong W., Yang Y., Zhao Y., Ye F., Lin Sh., Deng W., Chen H., Lei H., Zhang Z., Luo M., Gao H., Zheng Y., Gong Y., Jiang X., Xu Y., Lv Q., Li D., Wang M., Li F., Wang Sh., Wang G., Yu P., Qu Y., Yang L., Deng H., Tong A., Li J., Wang Zh., Yang J., Shen G., Zhao Zh., Li Y., Luo J., Liu H., Yu W., Yang M., Xu J., Wang J., Li H., Wang H., Kuang D., Lin P., Hu Zh., Guo W., Cheng W., He Y., Song X., Chen Ch., Xue Zh., Yao Sh., Chen L., Ma X., Chen S., Gou M., Huang W., Wang Y., Fan Ch., Tian Zh., Shi M., Wang F.-Sh., Dai L., Wu M., Li G., Wang G., Peng Y., Qian Zh., Huang C., Lau J. Y.-N., Yang Zh., Wei Y., Cen X., Peng X., Qin Ch., Zhang K., Lu G., Wei X. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, Vol. 586, no. 7830, pp. 572-577. doi: 10.1038/s41586-020-2599-8
22. Ye J., Meng S., Zhu X. Recent advances in the development of bispecific antibodies. Sheng wu Gong Cheng xue bao= Chinese Journal of Biotechnology, 2020, Vol. 36, no. 1, pp. 33-43. doi: 10.13345/j.cjb.190154
23. Zhang J., Zeng H., Gu J., Li H., Zheng L., Zou Q. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines, 2020, Vol. 8, no. 2, pp. 1–12. doi: 10.3390/vaccines8020153
24. Zang J., Gu C., Zhou B., Zhang C., Yang Y., Xu S., Bai L., Zhang R., Deng Q., Yuan Zh., Tang H., Qu D., Lavillette D., Xie Y., Huang Z. Immunization with the receptor-binding domain of SARS-CoV-2 elicits antibodies cross-neutralizing SARS-CoV-2 and SARS-CoV without antibody-dependent enhancement. Cell Discovery, 2020, Vol. 6, no. 1, pp. 4-7. doi: 10.1038/s41421-020-00199-1
25. Zhang J., Han Z. B., Liang Y., Zhang X. F., Jin Y. Q., Du L. F., Shao Sh., Wang H., Hou J. W., Xu K., Lei W., Lei Z. H., Liu Zh. M., Zhang J., Hou Y. N., Liu N., Shen F. J., Wu J. J., Zheng X., Li X. Y., Li X., Huang W. J., Wu G. Zh., Su J. G., Li, Q. M. A mosaic-type trimeric RBD-based COVID-19 vaccine candidate induces potent neutralization against Omicron and other SARS-CoV-2 variants. eLife, 2022, Vol. 11, pp. 1-23. doi: 10.7554/eLife.78633
Supplementary files
![]() |
1. metadata | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(17KB)
|
Indexing metadata ▾ |
![]() |
2. Title page | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(19KB)
|
Indexing metadata ▾ |
![]() |
3. Summary | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(14KB)
|
Indexing metadata ▾ |
![]() |
4. Figure 1 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(29KB)
|
Indexing metadata ▾ |
![]() |
5. Figure 2 | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(28KB)
|
Indexing metadata ▾ |
![]() |
6. Titles of figures and captions to them | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(12KB)
|
Indexing metadata ▾ |
|
7. Authors' signatures | |
Subject | ||
Type | Исследовательские инструменты | |
View
(564KB)
|
Indexing metadata ▾ |
![]() |
8. 2901 | |
Subject | ||
Type | Other | |
Download
(54KB)
|
Indexing metadata ▾ |
Review
For citations:
Nesmeyanova V.S., Merkulyeva Yu.A., Isaeva A.A., Volkova N.V., Belenkaya S.V., Borgoyakova M.B., Volosnikova E.A., Esina T.I., Danilenko E.D., Zaikovskaya A.V., Olkin S.E., Pyankov O.V., Ilichev A.A., Shcherbakov D.N. «DELTA-VAC» SUBUNIT VACCINE INDUCES STRONG HUMORAL IMMUNE RESPONSE AGAINST SARS-COV-2. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-DVC-2901