Macrophage polarization in sarcoidosis
https://doi.org/10.15789/1563-0625-MPI-2083
Abstract
Sarcoidosis is a systemic inflammatory disease of unknown etiology, characterized by the formation of epithelioid cell granulomas, multisystem lesions with a certain frequency of involvement of various organs, mainly the lungs (up to 90% of cases). Over the past decade, significant progress has been made in understanding the pathogenesis of sarcoidosis, the important role of immunological, genetic and environmental factors in the development of this pathology has been established. It is believed that the leading mechanism in the pathogenesis of sarcoidosis is the aberrant activation of the innate and adaptive immune response to unidentified antigen(s), which leads to the development of granulomatous inflammation and the formation of granulomas. However, despite the huge number of studies that has been carried out, the mechanisms and signaling pathways that control the development of the inflammatory process during the formation of granulomas and the progression of pathology have not been fully determined.
This literature review examines the important role of various cytokines and T helper subpopulations in sarcoidosis. Particular attention is paid to the cells of innate immunity – macrophages in the pathogenesis of this disease. These cells play a key role in the formation of sarcoid granulomas and in the pathogenesis of sarcoidosis. The macrophage population is characterized by plasticity and functional heterogeneity. In response to various signals from the microenvironment, macrophages are able to acquire certain phenotypes. The review considers the issues of polarization of macrophages, changes in the phenotype of these cells to subpopulations M1 (M1 phenotype; classically activated; pro-inflammatory) and M2 (M2 phenotype; alternatively activated, anti-inflammatory). These two cell populations are characterized by the expression of different markers on their surface, which allow these cells to differentiate from each other. The analysis of literature data on the levels of key polarizing cytokines for macrophages and cells-producers of these cytokines that patients with sarcoidosis have, in acute and chronic course of the disease, was carried out.
Important aspects of the alternative activation of macrophages of the M2 phenotype and their division into subtypes: M2a, M2b, M2c, M2d are noted. The features of various subtypes’ activation of macrophages in this granulomatosis and their importance in the development and progression of pathology are considered. Studying the role of macrophages’ phenotypes, understanding the mechanisms by which the phenotypes of these cells are activated and modulated in various microenvironmental conditions, can contribute to the development and implementation into clinical practice of new therapeutic approaches for the treatment of sarcoidosis and many other forms of pathologies.
About the Authors
I. E. MalyshevaRussian Federation
Malysheva Irina E., PhD (Biology), Senior Research Associate, Laboratory of Genetics
185910, Petrozavodsk, Pushkinskaya str., 11
Competing Interests:
Авторы статьи не имеют финансовых или других взаимоотношений, которые могут привести к конфликту интересов.
E. L. Tikhonovich
Russian Federation
PhD (Medicine), Head, Department of Respiratory Therapy
Petrozavodsk
Competing Interests:
Авторы статьи не имеют финансовых или других взаимоотношений, которые могут привести к конфликту интересов.
E. K. Oleinik
Russian Federation
PhD, MD (Biology), Chief Research Associate, Head of the Immunology Group
Petrozavodsk
Competing Interests: Авторы статьи не имеют финансовых или других взаимоотношений, которые могут привести к конфликту интересов.
L. V. Topchieva
Russian Federation
PhD (Biology), Leading Research Associate, Laboratory of Genetics
Petrozavodsk
Competing Interests: Авторы статьи не имеют финансовых или других взаимоотношений, которые могут привести к конфликту интересов.
O. V. Balan
Russian Federation
PhD (Biology), Senior Research Associate, Laboratory of Genetics
Petrozavodsk
Competing Interests: Авторы статьи не имеют финансовых или других взаимоотношений, которые могут привести к конфликту интересов.
References
1. VizelA.A., VizelI.Yu. Sarcoidosis in talks and publications at the annual conference of the American Thoracic Society (ATS 2016). Russkiy meditsinskiy zhurnal = Medical Journal of the Russian Federation, 2017, no. 3, pp. 206-210. (In Russ.)
2. Vizel A.A., Sozinov A.S., Vizel E.A. Sarcoid granulomatous inflammation during antiviral therapy. Pulmonologiya = Pulmonology, 2009, Vol. 3, pp. 119-123. (In Russ.)
3. Ses’ T.P. Features of the inflammatory process in pulmonary sarcoidosis. Tsitokiny i vospalenie = Cytokines and Inflammation, 2002, no. 3, pp. 3-6. (In Russ.)
4. Lyamina S.V., Malyshev I.Yu. Macrophage polarization in the modern concept of immune response development. Meditsinskie nauki = Medical Sciences, 2014, no. 10, pp. 930-935. (In Russ.)
5. Monastyrskaya E.A., Lyamina S.V., Malyshev I.Yu. M l and М2 phenotypes of activated macrophages and their role in immune response and pathology. Patogenez = Pathogenesis, 2008, Vol. 6, no. 4, pp. 31-39. (In Russ.)
6. Freydlin I.S., Starikova E.A., Lebedeva A.M. Overcoming the protective functions of macrophages by Streptococcus pyogenes virulence factors. Byulleten sibirskoy meditsiny = Bulletin of Siberian Medicine, 2019, Vol. 18, no. 1, pp. 109- 118. (In Russ.)
7. Frolova T.I., Doroshenkova A.E., Shapovalova T.V., Stavitskaya N.V. Significance of immunopathogenetic investigations for early diagnosis of respiratory sarcoidosis and tuberculosis. Permskiy meditsinskiy zhurnal = Perm Medical Journal, 2012, Vol. 29, no. 4, pp. 78-84. (In Russ.)
8. Schwartz Ya.Sh., Svistelnik A.V. Functional phenotypes of macrophages and the M1-M2 polarization concept. PartI. Proinflammatory phenotype. Biokhimiya = Biochemistry, 2012, Vol. 77, no. 3, pp. 312-329. (In Russ.)
9. Yakushenko E.V., Lopatnikova J.A., Sennikov S.V. IL-18 and immunity. Meditsinskaya immunologiya = Medical Immunolology (Russia), 2005, Vol. 7, no. 4, pp 355-364. (In Russ.) doi: 10.15789/1563-0625-2005-4-355-364.
10. Abedini A., Naderi Z., Kiani A., Marjani M., Mortaz E., Ghorbani F. The evaluation of interleukin-4 and interleukin-13 in the serum of pulmonary sarcoidosis and tuberculosis patients. J. Res. Med. Sci. 2020, Vol. 25, 24. doi: 10.4103/jrms.JRMS_74_19.
11. Agostini C., Basso U., Semenzato G. Cells and molecules involved in the development of sarcoid granuloma. J. Clin. Immunol., 1998, no. 18, pp. 184-192.
12. Agostini C., Meneghin A., Semenzato G. T-lymphocytes and cytokines in sarcoidosis. Curr. Opin. Pulm. Med., 2002, Vol. 8, no. 5, pp. 435-440.
13. Akimoto J., Nagai K., Ogasawara D., Tanaka Y., Izawa H., Kohno M., Uchida K., Eishi Y. Solitary Tentorial Sarcoid Granuloma Associated With Propionibacterium Acnes Infection: Case Report. J. Neurosurg., 2017, Vol. 127, no. 3, pp. 687-690.
14. Antoniou K., Tzouvelekis A., Alexandrakis M., Tsiligianni I., Tzanakis N., Sfiridaki K., Rachiotis G., Bouros D., Siafakas N. Upregulation of Th1 cytokine profile (IL-12, IL-18) in bronchoalveolar lavage fluid in patients with pulmonarysarcoidosis. J. Interferon Cytokine Res., 2006, Vol. 26, no. 6, pp. 400-405.
15. Bennett D., Bargagli E., Refini R., Rottoli P. New concepts in the pathogenesis of sarcoidosis. Expert Rev. Respir. Med., 2019, Vol. 13, no. 10, pp. 981-991.
16. Bettelli E., Korn T., Jukka M., Kuchroo V. Induction and effector functions of TH17 cells. Nature, 2008, Vol. 453, no. 7198, pp. 1051-1057.
17. Blauvelt A., Chiricozzi A. The immunologic role of IL-17 in psoriasis and psoriatic arthritis pathogenesis. Clin. Rev. Allergy Immunol., 2018, Vol. 55, no. 3, pp. 379-390.
18. Brownell I., Ramírez-Valle F., Sanchez M., Prystowsky S. Evidence for Mycobacteria in Sarcoidosis. Am. J. Respir. Cell Mol. Biol., 2011, Vol. 45, no. 5, pp. 899-905.
19. Chen E.S. Innate immunity in sarcoidosis pathobiology. Curr. Opin. Pulm. Med., 2016, Vol. 22, no. 5, pp. 469-475.
20. Colin S., Chinetti-Gbaguidi G., Staels B. Macrophage phenotypes in atherosclerosis. Immunol. Rev., 2014, Vol. 262, no. 1, pp. 153-166.
21. Facco M., Cabrelle A., Teramo A., Olivieri V., Gnoato M., Teolato S., Ave E., Gattazzo C., Fadini G., Calabrese F., Semenzato G., Agostini C. Sarcoidosis is a Th1/Th17 multisystem disorder. Thorax, 2011, Vol. 66, no. 2, pp. 144-150.
22. Furusawa H., Suzuki Y., Miyazaki Y., Inasea N., Eishi Y. Th1 and Th17 immune responses to viable Propionibacterium acnes in patients with sarcoidosis. Respir. Investig., 2012, Vol. 50, no. 3, pp. 104-109.
23. Grunewald J., Eklund A. Role of CD4+ T cells in sarcoidosis. Proc. Am. Thorac. Soc., 2007, Vol. 4, no. 5, pp. 461-464.
24. Gudmundsson G., Hunninghake G. Interferon-gamma is necessary for the expression of hypersensitivity pneumonitis. J. Clin. Invest., 1997, Vol. 99, no. 10, pp. 2386-2390.
25. Hauber H., Gholami D., Meyer A., Pforte A. Increased interleukin-13 expression in patients with sarcoidosis. Thorax, 2003, Vol. 58, no. 6, pp. 519-524.
26. Hill T., Lightman S., Pantelidis P., Abdallah A., Spagnolo P., du Bois. Intracellular cytokine profiles and T cell activation in pulmonary sarcoidosis. Cytokine, 2008, Vol. 42, no. 3, pp. 289-292.
27. Huang H., Lu Z., Jiang C., Liu J., Wang Y., Xu Z. Imbalance between Th17 and regulatory T-Cells in sarcoidosis. Int. J. Mol. Sci., 2013, Vol. 14, no. 11, pp. 21463-21473.
28. Judson M. The clinical features of sarcoidosis: a comprehensive review. Clin. Rev. Allergy Immunol., 2015., Vol. 49, no. 1, pp. 63-78.
29. Kantrow S., Meyer K., Kidd P., Raghu G. The CD4/CD8 ratio in BAL fluid is highly variable in sarcoidosis. Eur. Respir. J., 1997, Vol. 10, no. 12, pp. 2716-2721.
30. Kataria Y., Holter J. Immunology of sarcoidosis. Clin. Chest Med., 1997, Vol. 18, no. 4, pp. 719-739.
31. Kieszko R., Krawczyk P., Jankowska O., Chocholska S., Król A., Milanowski J.The clinical significance of interleukin 18 assessment in sarcoidosis patients. Respir. Med., 2007, Vol. 101, no. 4, pp. 722-728.
32. Kotake S., Yago T., Kobashigawa T., Nanke Y. The plasticity of Th17 cells in the pathogenesis of rheumatoid arthritis. J. Clin. Med., 2017, Vol. 6, no. 7, 67. doi: 10.3390/jcm6070067.
33. Lawrence E., Brousseau K., Berger M., Kurman C., Marcon L., Nelson D. Elevated concentrations of soluble interleukin-2 receptors in serum samples and bronchoalveolar lavage fluids in active sarcoidosis. Am. Rev. Respir. Dis., 1988, Vol. 137, no. 4, pp. 759-764.
34. Le V., Crouser E.D. Potential immunotherapies for sarcoidosis. Expert Opin. Biol. Ther., 2018, Vol. 18, no. 4, pp. 399-407.
35. Leipe J., Grunke M., Dechant C., Reindl C., Kerzendorf U., Schulze-Koops H., Skapenko A. Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum., 2010, Vol. 62, no. 10, pp. 2876-2885.
36. Lepzien R., Rankin G., Pourazar J., Muala A., Eklund A., Grunewald J., Blomberg A., Smed-Sörensen A. Mapping mononuclear phagocytes in blood, lungs, and lymph nodes of sarcoidosis patients. J. Leukoc. Biol., 2019., Vol. 105, no. 4, pp. 797-807.
37. Li Y., Cai L., Wang H., Wu P., Gu W., Chen Y., Hao H., Tang K., Yi P., Liu M., Miao S., Ye D. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. Oncogene, 2011, Vol. 30, no. 36, pp. 3887-3899.
38. Li L., Silveira L.J., Hamzeh N., Gillespie M., Mroz P.M., Mayer A.S., Fingerlin T.E., Maier L.A. Berylliuminduced lung disease exhibits expression profiles similar to sarcoidosis. Eur. Respir. J., 2016, Vol. 47, no. 6, pp. 1797-808.
39. Llanos O., Hamzeh N. Sarcoidosis. Med. Clin. North Am., 2019, Vol. 103, no. 3, pp. 527-534.
40. Locke L., Crouser E., White P., Julian M., Caceres E., Papp A., Le V., Sadee W., Schlesinger L. IL-13-regulated Macrophage Polarization during Granuloma Formation in an In Vitro Human Sarcoidosis Model. Am. J. Respir. Cell Mol. Biol., 2019, Vol. 60, no. 1, pp. 84-95.
41. Mantovani A. Macrophage diversity and polarization: in vivo veritas. Blood, 2006,Vol. 108, no. 2, pp. 408-409.
42. Mantovani A., F. Marchesi A., Malesci L., Laghi P. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol., 2017, Vol. 14, no. 7, pp. 399-416.
43. Mantovani A., Sica A., Sozzani S.,Allavena P., Vecchi A.,Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol., 2004, Vol. 25, pp. 677-686.
44. Martinez F., Sica A., Mantovani A., Locati M. Macrophage Activation and Polarization. Front. Biosci., 2008, Vol. 13, pp. 453-461.
45. Mills K. Induction, function and regulation of IL-17-producing T cells. Eur. J. Immunol., 2008, Vol. 38, no. 10, pp. 2636-2649.
46. Minshall E., Tsicopoulos A., Yasruel Z., Wallaert B., Akoum H., Vorng H., Tonnel A., Hamid Q. Cytokine mRNA gene expression in active and nonactive pulmonary sarcoidosis. Eur. Respir. J., 1997, Vol. 10, no. 9, pp. 2034-2039.
47. Möllers M., Aries S., Drömann D., Mascher B., Braun J., Dalhoff K. Intracellular cytokine repertoire in different T cell subsets from patients with sarcoidosis. Thorax, 2001, Vol. 56, no. 6, pp. 487-493.
48. Moller D., Forman J., Liu M., Noble P., Greenlee B., Vyas P., Holden D., Forrester J., Lazarus A., Wysocka M., Trinchieri G., Karp C. Enhanced expression of IL-12 associated with Th1 cytokine profiles in active pulmonary sarcoidosis. J. Immunol., 1996, Vol. 156, no. 12, pp. 4952-4960.
49. Moller D.R., Rybicki B.A., Hamzeh N.Y., Montgomery C.G., Chen E.S., Drake W., Fontenot A.P. Genetic, immunologic, and environmental basis of sarcoidosis. Ann. Am. Thorac. Soc., 2017., Vol. 14, Suppl. 6, pp. 429-436.
50. Mortaz E., Rezayat F., Amani D., Kiani A., Garssen J., Adcock I., Velayati A. The roles of T helper 1, T helper 17 and regulatory T cells in the pathogenesis of sarcoidosis. Iran J. Allergy Asthma Immunol., 2016, Vol. 15, no. 4, pp. 334-339.
51. Newman L.S., Rose C.S., Maier L.A. Medical progress: sarcoidosis. N. Engl. J. Med., 1997, Vol. 336, pp. 1224-1234.
52. Noor A., Knox K. Immunopathogenesis of sarcoidosis. Clin. Dermatol., 2007, Vol. 25, no. 3, pp. 250-258.
53. Osińska I., Wołosz D., Domagała-Kulawik J. Association between M1 and M2 macrophages in bronchoalveolar lavage fluid and tobacco smoking in patients with sarcoidosis. Pol. Arch. Med. Wewn., 2014, Vol. 124, no. 7-8, pp. 359-364.
54. Ostadkarampour M., Eklund A., Moller D., Glader P., OlgartHöglund C., Lindén A., Grunewald J., Wahlström J. Higher levels of interleukin IL-17 and antigen-specific IL-17 responses in pulmonary sarcoidosis patients with Löfgren’s syndrome. Clin. Exp. Immunol., 2014, Vol. 178, no. 2, pp. 342-352.
55. Patterson K.C., Chen E.S. The pathogenesis of pulmonary sarcoidosis and implications for treatment. Recent advances in chest medicine. Chest, 2018, Vol. 153, no. 6, pp. 1432-1442.
56. Prasse A., Georges C., Biller H., Hamm H., Matthys H., Luttmann W., Virchow J. Th1 cytokine pattern in sarcoidosis is expressed by bronchoalveolar CD4+ and CD8+ T cells. Clin. Exp. Immunol., 2000., Vol. 122, no. 2, pp. 241-248.
57. Prasse A., Pechkovsky D.V., Toews G.B., Schäfer M., Eggeling S., Ludwig C., Germann M., Kollert F., Zissel G., Müller-Quernheim J. CCL18 as an indicator of pulmonary fibrotic activity in idiopathic interstitial pneumonias and systemic sclerosis. Arthritis Rheum., 2007, Vol. 56, no. 5, pp. 1685-1693.
58. Prokop S., Heppner F.L., Goebel H.H., Stenzel W. M2 polarized macrophagesand giant cells contribute to myofibrosis in neuromuscular sarcoidosis. Am. J. Pathol., 2011, Vol. 178, pp. 1279-1286.
59. Ramos-Casals M., Mañá J., Nardi N., Brito-Zerón P., Xaubet A., Sánchez-Tapias J.M., Cervera R., Font J.; HISPAMEC Study Group. Sarcoidosis in patients with chronic hepatitis C virus infection: analysis of 68 cases. Medicine (Baltimore), 2005, Vol. 84, pp. 69-80
60. Rappl G., Pabst S., Riemann D., Schmidt A., Wickenhauser C., Schütte W., Hombach A., Seliger B., Grohé C., Abken H. Regulatory T cells with reduced repressor capacities are extensively amplified in pulmonary sarcoid lesions and sustain granuloma formation. Clin. Immunol., 2011, Vol. 140, no. 1, pp. 71-83.
61. Ringkowski S., Paul S., Thomas., Herbert C. Interleukin-12 family cytokines and sarcoidosis. Front. Pharmacol., 2014, no. 5, 233. doi: 10.3389/fphar.2014.00233
62. Rivera N., Hagemann-Jensen M., Ferreira M., Kullberg S., Eklund A., Martin N., Padyukov L., Grunewald J. Common variants of T-cells contribute differently to phenotypic variation in sarcoidosis. Sci. Rep., 2017, Vol. 7, no. 1, 5623. doi: 10.1038/s41598-017-05754-7
63. Salah S., Abad S., Monnet D., Brézin A.P. Sarcoidosis. J. Fr. Ophtalmol., 2018, Vol. 41, no. 10, pp. 451-467.
64. Sakthivel P., Bruder D. Mechanism of granuloma formation in sarcoidosis. Curr. Opin. Hematol., 2017, Vol. 24, no. 1, pp. 59-65.
65. Schupp J.C., Vukmirovic M., Kaminski N., Prasse A. Transcriptome profiles in sarcoidosis and their potential role in disease prediction. Curr. Opin. Pulm. Med., 2017, Vol. 23, no. 5, pp. 487-492.
66. Schutyser E., Richmond A., van Damme J. Involvement of CC chemokine ligand 18 (CCL18) in normal and pathological processes. J. Leukoc. Biol., 2005, Vol. 78, pp. 14-26.
67. Shamaei M., Mortaz E., Pourabdollah M., Garssen J., Tabarsi P., Velayati A., Adcock I.M. Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis: a new aspect of macrophage heterogeneity. Hum. Immunol., 2018, Vol. 79, no. 1, pp. 63-69.
68. Shi T., Zhang T., Zhang L., Yang Y., Zhang H., Zhang F. The distribution and the fibrotic role of elevated inflammatory Th17 Cells in patients with primary biliary cirrhosis. Medicine (Baltimore), 2015, Vol. 94, no. 44, e1888. doi: 10.1097/MD.0000000000001888.
69. Shu U., Kiniwa M., Wu C., Maliszewski C., Vezzio N., Hakimi J., Gately M., Delespesse G. Activated T cells induce interleukin-12 production by monocytes via CD40-CD40 ligand interaction. Eur. J. Immunol., 1995, Vol. 25, no. 4, pp. 1125-1128.
70. Standiford T.J. Macrophage polarization in sarcoidosis: an unexpected accomplice? Am. J. Respir. Cell Mol. Biol., 2019, Vol. 60, no. 1, pp. 9-10.
71. Tanabe T., Yamaguchi N., Okuda M., Ishimaru Y., Takahashi H. Immune system reaction against environmental pollutants. Nihon Eiseigaku Zasshi, 2015, Vol. 70, no. 2, pp. 115-119.
72. Tøndell A., Moen T., Børset M., Salvesen Ø., Rø A.D., Sue-Chu M. Bronchoalveolar lavage fluid IFN-γ+ Th17 cells and regulatory T cells in pulmonary sarcoidosis. Mediators Inflamm., 2014, Vol. 2014, 438070. doi: 10.1155/2014/438070.
73. Wahlstrom J., Berlin M., Skold C., Wigzell H., Eklund A., Grunewald J. Phenotypic analysis of lymphocytes and monocytes/macrophages in peripheral blood and bronchoalveolar lavage fluid from patients with pulmonary sarcoidosis. Thorax, 1999, Vol. 54, no. 4, pp. 339-346.
74. Wikén M., Idali F., Al Hayja M.A., Grunewald J., Eklund A., Wahlström J. No evidence of altered alveolar macrophage polarization, but reduced expression of TLR2, in bronchoalveolar lavage cells in sarcoidosis. Respir. Res., 2010, Vol. 11, no. 1, 121121. doi: 10.1186/1465-9921-11-121.
75. Wojtan P., Mierzejewski M., Osińska I., Domagała-Kulawik J. Macrophage polarization in interstitial lung diseases. Cent. Eur. J. Immunol., 2016, Vol. 41, no. 2, pp. 159-164.
76. Ziegenhagen M., Müller-Quernheim J. The cytokine network in sarcoidosis and its clinical relevance. J. Intern. Med., 2003, Vol. 253, no. 1, pp. 18-30.
Supplementary files
Review
For citations:
Malysheva I.E., Tikhonovich E.L., Oleinik E.K., Topchieva L.V., Balan O.V. Macrophage polarization in sarcoidosis. Medical Immunology (Russia). 2021;23(1):7-16. (In Russ.) https://doi.org/10.15789/1563-0625-MPI-2083