Influence of streptococcal arginine deiminase on the leukocyte infiltration in murine air pouch model
https://doi.org/10.15789/1563-0625-IOS-2075
Abstract
Numerous pathogens express arginine deiminase, an enzyme that catalyzes the hydrolysis of L-arginine in a chain of biochemical reactions aimed at the synthesis of ATP in bacterial cells. L-arginine is a semi-essential, proteinogenic amino acid that plays an important role in regulating the functions of the immune system cells in mammals. Depletion of L-arginine may cause a weakening of the immune reaction. In order to improve the conditions of dissemination, many pathogens use a strategy of L-arginine depletion in the microenvironment of host cells. Bacterial arginine deiminase can be a pathogenicity factor aimed for dysregulating the processes of inflammation and immune response. In general, the effect of arginine deiminase on immune cells may result into disturbed production of regulatory proinflammatory molecules, such as NO, and related substances, inhibition of activation, migration and differentiation of individual leukocyte subsets. The aim of this study was to investigate the effect of arginine deiminase on the formation of inflammatory infiltrate in murine air pouch model of streptococcal infection. Materials and methods: The study was performed using S. pyogenes M49-16 expressing arginine deiminase and its isogenic mutant S. pyogenes M49-16delArcA with inactivated arginine deiminase gene. The flow cytometry analysis of the inflammatory infiltrate leukocytes subpopulation in mice infected with the original strain of S. pyogenes M49-16 and its isogenic mutant S. pyogenes M49-16delArcA at different periods of infection was performed. It was shown that the inflammation reached its peak 6 hours after streptococcal inoculation, being more pronounced in mice infected with the mutant strain. Тhis finding was affirmed by a simultaneous and more pronounced increase in the absolute numbers of all leukocyte subsets in the focus of inflammation in this group of mice when compared to mice infected with original bacterial strain. Despite the decrease in the absolute number of all leukocyte types in the inflammatory infiltrate in both groups of mice for 24 hours, this trend was more pronounced in the group of mice infected with mutant microbial strain. Comparison of the inflammatory infiltrates developing in mice infected with original versus mutant strains showed that arginine deiminase may be a pathogenicity factor leading to dysregulation of protective immune response, due to impaired migration of white blood cells to the site of infection.
About the Authors
E. A. StarikovaStarikova Eleonora A., PhD (Biology), Senior Research Associate, Department of Immunology
197376, St. Petersburg, Acad. Pavlov str.,12
I. V. Kudryavtsev
Kudryavtsev Igor V., PhD (Biology), Head, Laboratory of Immunoregulation, Department of Immunology
St. Petersburg
L. A. Burova
Burova Larissa A., PhD, MD (Medicine), Leading Research Associate, Department of Molecular Microbiology
St. Petersburg
A. M. Lebedeva
Lebedeva Aleksandra M., PhD (Biology), Research Associate, Department of Immunology
St. Petersburg
J. T. Mammedova
Mammedova Jennet T., Research Associate, Department of Immunology
St. Petersburg
I. S. Freidlin
Freidlin Irina S., PhD, MD (Medicine), Corresponding Member, Russian Acdemy of Sciences, Main Research Associate, Department of Immunology
St. Petersburg
References
1. Freidlin I.S., Starikova E.A., Lebedeva A.M. Overcoming the protective functions of macrophages by Streptococcus pyogenes virulence factors. Byulleten sibirskoy meditsiny = Bulletin of Siberian Medicine, 2019, Vol. 18, no. 1, pp. 109-118. (In Russ.)
2. Amiel E., Everts B., Fritz D., Beauchamp S., Ge B., Pearce E.L., Pearce E.J. Mechanistic target of rapamycin inhibition extends cellular lifespan in dendritic cells by preserving mitochondrial function. J. Immunol., 2014, Vol. 193, pp. 2821-2830.
3. Badurdeen S., Mulongo M., Berkley J.A. Arginine depletion increases susceptibility to serious infections in preterm newborns. Pediatr. Res., 2015, Vol. 77, no. 2, pp. 290-297.
4. Barone M.C., Darley-Usmar V.M., Brookes P.S. Reversible inhibition of cytochrome c oxidase by peroxynitrite proceeds through ascorbate-dependent generation of nitric oxide. J. Biol. Chem., 2003, Vol. 278, pp. 27520-27524.
5. Barton G.M., Medzhitov R. Toll-like receptor signaling pathways. Science, 2003, Vol. 300, pp. 1524-1525.
6. Beutler B., Hoebe K., Du X., Ulevitch R.J. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol., 2003, Vol. 74, pp. 479-485.
7. Blander J.M., Medzhitov R. Regulation of phagosome maturation by signals from Toll-like receptors. Science, 2004, Vol. 304, pp. 1014-1018.
8. Bogoslowski A., Butcher E.C., Kubes P. Neutrophils recruited through high endothelial venules of the lymph nodes via PNAd intercept disseminating Staphylococcus aureus. PNAS, 2018, Vol. 115, no. 10, pp. 2449-2454.
9. Borelli V., Vita F., Shankar S., Soranzo M.R., Banfi E., Scialino G., Brochetta C., Zabucchi G. Human eosinophil peroxidase induces surface alteration, killing, and lysis of Mycobacterium tuberculosis. Infect. Immun., 2003, Vol. 71, pp. 605-613.
10. Brown G.C. Nitric oxide and mitochondrial respiration. Biochim. Biophys. Acta, 1999, Vol. 1411, pp. 351-369.
11. Canturk N.Z., Vural B., Canturk Z., Esen N., Vural S., Solakoglu S., Kirkal G. The role of L-arginine and neutrophils on incisional wound healing. Eur. J. Emerg. Med., 2001, Vol. 8, pp. 311-315.
12. Carroll B., Maetzel D., Maddocks O.D., Otten G., Ratcliff M., Smith G.R., Dunlop E.A., Passos J.F., Davies O.R., Jaenisch R., Tee A.R., Sarkar S., Korolchuk V.I. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. eLife Sci., 2016, Vol. 7, no. 5, e11058. doi: 10.7554/eLife.11058.
13. Casiano-Colon A., Marquis R.E. Role of the arginine deiminase system in protecting oral bacteria and an enzymatic basis for acid tolerance. Appl. Environ. Microbiol., 1988, Vol. 54, pp. 1318-1324.
14. Chantranupong L., Scaria S.M., Saxton R.A., Gygi M.P., Shen K., Wyant G.A., Wang T., Harper J.W., Gygi S.P., Sabatini D.M. The CASTOR proteins are arginine sensors for the mTORC1 pathway. Cell, 2016, Vol. 165, no. 1, pp. 153-164.
15. Chiappini N., Seubert A., Telford J.L., Grandi G., Serruto D., Margarit I., Janulczyk R. Streptococcus pyogenes SpyCEP influences host-pathogen interactions during infection in a murine air pouch model. PLoS ONE, 2012, Vol. 7, no. 7, e40411. doi: 10.1371/journal.pone.0040411.
16. Clementi E., Brown G.C., Feelisch M., Moncada S. Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. PNAS USA, 1998, Vol. 95, pp. 7631-7636.
17. Cortés G., Wessels M.R. Inhibition of dendritic cell maturation by group A Streptococcus. J. Infect. Dis., 2009, Vol. 200, no. 7, pp. 1152-1161.
18. Cusumano Z.T., Caparon M.G. Citrulline protects Streptococcus pyogenes from acid stress using the arginine deiminase pathway and the F1Fo-ATPase. J. Bacteriol., 2015, Vol. 197, pp. 1288-1296.
19. Dunn J.L.M., Kartchner L.B., Gast K., Sessions M., Hunter R.A., Thurlow L., Richardson A., Schoenfisch M., Cairns B.A., Maile R. Mammalian target of rapamycin regulates a hyper-responsive state in pulmonary neutrophils late after burn injury. J. Leukoc. Biol., 2018, Vol. 103, no. 5, pp. 909-918.
20. Everts B., Amiel E., van der Windt G.J., Freitas T.C., Chott R., Yarasheski K.E., Pearce E.L., Pearce E.J. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood, 2012, Vol. 120, pp. 1422-1431.
21. Everts B., Amiel E., Huang S.C., Smith A.M., Chang C.H., Lam W.Y., Redmann V., Freitas T.C., Blagih J., van der Windt G.J., Artyomov M.N., Jones R.G., Pearce E.L., Pearce E.J. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKvarepsilon supports the anabolic demands of dendritic cell activation. Nat. Immunol., 2014, Vol. 15, pp. 323-332.
22. Goldmann O., Rohde M., Chhatwal G.S., Medina E. Role of macrophages in host resistance to group A streptococci. Infect. Immun., 2004, Vol. 72, no. 5, pp. 2956-2963.
23. Gordon S. Alternative activation of macrophages. Immunity, 2003, Vol. 3, pp. 23-35.
24. Hibbs J.B. Jr., Taintor R.R., Vavrin Z., Rachlin E.M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem. Biophys. Res. Commun., 1988, Vol. 157, pp. 87-94.
25. Kobayashi Y. The regulatory role of nitric oxide in proinflammatory cytokine expression during the induction and resolution of inflammation. J. Leukoc. Biol., 2010, Vol. 88, pp. 1157-1162.
26. Linch S.N., Kelly A.M., Danielson E.T., Pero R., Lee J.J., Gold J.A. Mouse eosinophils possess potent antibacterial properties in vivo. Infect. Immun., 2009, Vol. 77, no. 11, pp. 4976-4982.
27. Linke M., Fritsch S.D., Sukhbaatar N., Hengstschlager M., Weichhart T. mTORC1 and mTORC2 as regulators of cell metabolism in immunity. FEBS Lett., 2017, Vol. 591, no. 19, pp. 3089-3103.
28. Loof T.G., Rohde M., Chhatwal G.S., Jung S., Medina E. The contribution of dendritic cells to host defenses against Streptococcus pyogenes. J. Infect. Dis., 2007, Vol. 196, no. 12, pp. 1794-1803.
29. Loof T.G., Goldmann O., Medina E. Immune recognition of Streptococcus pyogenes by dendritic cells. Infect. Immun., 2008, Vol. 76, no. 6, pp. 2785-2792.
30. Maneerat K., Yongkiettrakul S., Jiemsup S., Tongtawe P., Gottschalk M., Srimanote P. Expression and characterization of serotype 2 Streptococcus suis arginine deiminase. J. Mol. Microbiol. Biotechnol., 2017, Vol. 27, no. 3, p. 133-146.
31. Medina E., Goldmann O., Rohde M., Lengeling A., Chhatwal G.S. Genetic control of susceptibility to group A streptococcal infection in mice. J. Infect. Dis., 2001, Vol. 184, no. 7, pp. 846-852.
32. Morris C.R. Arginine therapy shows promise for treatment of sickle cell disease clinical subphenotypes of hemolysis and arginine deficiency. Anesth. Anal., 2017, Vol. 124, no. 4, pp. 1369-1370.
33. Mosser D.M. The many faces of macrophage activation. J. Leukoc. Biol., 2003, Vol. 73, pp. 209-212.
34. Mulligan M.S., Lentsch A.B., Ward P.A. In vivo recruitment of neutrophils: consistent requirements for L-arginine and variable requirements for complement and adhesion molecules. Inflammation, 1998, Vol. 22, no. 3, pp. 327-339.
35. Munder M. Arginase: an emerging key player in the mammalian immune system. Br. J. Pharmacol., 2009, Vol. 158, no. 3, pp. 638-651.
36. Nagase H., Okugawa S., Ota Y., Yamaguchi M., Tomizawa H., Matsushima K., Ohta K., Yamamoto K., Hirai K. Expression and function of Toll-like receptors in eosinophils: activation by Toll-like receptor 7 ligand. J. Immunol., 2003, Vol. 171, pp. 3977-3982.
37. Popovic P.J., Zeh H.J. 3rd, Ochoa J.B. Arginine and immunity. J. Nutr., 2007, Vol. 137, no. 6, pp. 1681S-1686S.
38. Ramirez G.A., Yacoub M.-R., Ripa M., Mannina D., Cariddi A., Saporiti N., Ciceri F., Castagna A., Colombo G., Dagna L. Eosinophils from physiology to disease: a comprehensive review. BioMed Res. Int., 2018, Vol. 2018, pp. 1-28.
39. Ravin K.A., Loy M. The eosinophil in infection. Clin. Rev. Allergy Immunol., 2016, Vol. 50, no. 2, pp. 214-227.
40. Reis e Sousa C. Dendritic cells as sensors of infection. Immunity, 2001, Vol. 14, no. 5, pp. 495-498.
41. Rodriguez P.C., Ochoa A.C., Al-Khami A.A. Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front. Immunol., 2017, Vol. 8, no. 93, pp. 1-12.
42. Serbina N.V., Pamer E.G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol., 2006, Vol. 7, pp. 311-317.
43. Shamri R., Xenakis J.J., Spencer L.A. Eosinophils in innate immunity: an evolving story. Cell Tissue Res., 2011, Vol. 343, no. 1, pp. 57-83.
44. Somasundaram V., Gilmore A.C., Basudhar D., Palmieri E.M., Scheiblin D.A., Heinz W.F., Cheng R.Y.S., Ridnour L.A., Altan-Bonnet G., Lockett S.J., McVicar D.W., Wink D.A. Inducible nitric oxide synthase-derived extracellular nitric oxide flux regulates proinflammatory responses at the single cell level. Redox Biol., 2020, Vol. 28, pp. 1-14.
45. Soufli I., Toumi R., Rafa H., Touil-Boukoffa C. Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World J. Gastrointest. Pharmacol. Ther., 2016, Vol. 7, no. 3, pp. 353-360.
46. Starikova E.A., Sokolov A.V., Vlasenko A.Y., Burova L.A., Freidlin I.S., Vasilyev V.B. Biochemical and biological activity of arginine deiminase from Streptococcus pyogenes M22. Biochem. Cell Biol. 2016, Vol. 94, no. 2, pp. 129-137.
47. Starikova E.A., Golovin A.S., Vasilyev K.A., Karaseva A.B., Serebriakova M.K., Sokolov A.V., Kudryavtsev I.V., Burova L.A., Voynova I.V., Suvorov A.N., Vasilyev V.B., Freidlin I.S. Role of arginine deiminase in thymic atrophy during experimental Streptococcus pyogenes infection. Scand. J. Immunol., 2019, Vol. 89, no. 2, e12734. doi: 10.1111/sji.12734.
48. Strauss-Ayali D., Conrad S.M., Mosser D.M. Monocyte subpopulations and their differentiation patterns during infection. J. Leukoc. Biol., 2007, Vol. 82, pp. 244-252.
49. Svensson L., Wenneras C. Human eosinophils selectively recognize and become activated by bacteria belonging to different taxonomic groups. Microbes Infect., 2005, Vol. 7, no. 4, pp. 720-728.
50. Thwe P., Amiel E. The role of nitric oxide in metabolic regulation of dendritic cell immune function. Cancer Lett., 2018, Vol. 412, pp. 236-242.
51. Uzzaman A., Cho S.H. Classification of hypersensitivity reactions. Allergy Asthma Proc., 2012, Vol. 33, no. 1, pp. S96-S99.
52. Valderrama J.A., Nizet V. Group A Streptococcus encounters with host macrophages. Future Microbiol., 2018, Vol. 13, no. 1, pp. 119-134.
53. Voyich J.M., Musser J.M., DeLeo F.R. Streptococcus pyogenes and human neutrophils: a paradigm for evasion of innate host defense by bacterial pathogens. Microbes Infect., 2004, Vol. 6, no. 12, pp. 1117-1123.
54. Weichhart T., Hengstschlager M., Linke M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunology, 2015, Vol. 15, pp. 599-614.
55. Wink D.A., Kasprzak K.S., Maragos C.M., Elespuru R.K., Misra M., Dunams T.M., Cebula T.A., Koch W.H., Andrews A.W., Allen J.S. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science, 1991, Vol. 254, pp. 1001-1003.
56. Wong C. K., Cheung P.F., Ip W.K., Lam C.W. Intracellular signaling mechanisms regulating toll-like receptormediated activation of eosinophils. Am. J. Respir. Cell Mol. Biol., 2007, Vol. 37, pp. 85-96.
Supplementary files
Review
For citations:
Starikova E.A., Kudryavtsev I.V., Burova L.A., Lebedeva A.M., Mammedova J.T., Freidlin I.S. Influence of streptococcal arginine deiminase on the leukocyte infiltration in murine air pouch model. Medical Immunology (Russia). 2020;22(6):1121-1130. (In Russ.) https://doi.org/10.15789/1563-0625-IOS-2075