Preview

Medical Immunology (Russia)

Advanced search

Tumor microenvironment: the formation of the immune profile

https://doi.org/10.15789/1563-0625-TMT-1909

Abstract

Tumor microenvironment (TME) is formed as a result of interaction and cross-linking between the tumor cell and different types of surrounding cells. Recent studies have shown that the tumor reprograms the microenvironment so that TME promotes the development of primary tumors, their metastasis and becomes an important regulator of oncogenesis. Under the influence of the tumor, the immune profile in the TME undergoes significant changes, “editing". An immunosuppressive network is formed, which suppresses the activity of the main effector of cellular immunity — T lymphocytes. T cells in TMA are in a state of anergy and exhaustion. T cells in TME are characterized by increased expression of inhibitory receptors, decreased secretion of cytokines and cytolytic activity. Blocking inhibitory receptors with specific antibodies can lead to the restoration of the functions of exausted T cells. Therefore, the restoration of the functional activity of T lymphocytes is one of the important strategies in cancer immunotherapy. The formation of the immune profile is influenced by genetic aberrations accumulating in the tumor. They play an important role in creating a specific, characteristic only for this tumor immune environment in the TME. Genetic changes in tumor cells lead to phenotypic and functional rearrangements of lymphocytes, which allows the tumor to escape the reaction of immune cells. Since many tumors occur after prolonged inflammation or exhibit characteristics of chronic inflammation as they progress, inflammation is considered an important factor in the formation of immune profile in TME. Immune infiltrates from different human tumors associated with inflammation may contain valuable prognostic and pathophysiological information. Macrophages in the TME now began to be regarded as descriptive marker and as a therapeutic target. One of the main mechanisms by which tumor cells reprogram surrounding cells is the release of exosomes — small vesicles that carry and deliver proteins and nucleic acids to other cells. When exosomal cargo is absorbed, molecular, transcriptional and translational changes occur in the recipient non-tumor cells in the TME. Therefore, tumor exosomes are an effective means by which the functions of immune cells in TME are purposefully changed. Thus, along with individual molecular and genomic testing of the tumor, attention should be paid to a deeper analysis of the immune profile of TME. It is a large resource of biomarkers and targets for immunotherapy.

About the Authors

E. K. Oleinik
Institute of Biology, Karelian Research Centre, Russian Academy of Sciences
Russian Federation

Oleinik Eugenia K. - PhD, MD (Biology), Associate Professor, Main Research Associate, Head of Immunology Group.

185910, Republic of Karelia, Petrozavodsk, Pushkinskaya str., 11. Phone: 7 (8142) 76-98-10, Phone/Fax: 7 (8142) 76-98-10


Competing Interests: not


M. I. Shibaev
Republican Cancer Dispensary
Russian Federation

PhD (Medicine), Oncology Surgeon.

Petrozavodsk, Republic of Karelia


Competing Interests: not


K. S. Ignatiev
Republican Cancer Dispensary
Russian Federation

Oncology Surgeon.

Petrozavodsk, Republic of Karelia

Competing Interests: not


V. M. Oleinik
Institute of Biology, Karelian Research Centre, Russian Academy of Sciences
Russian Federation

PhD, MD (Biology), Leading Research Associate.

Petrozavodsk, Republic of Karelia


Competing Interests: not


G. A. Zhulai
Institute of Biology, Karelian Research Centre, Russian Academy of Sciences
Russian Federation

Junior Research Associate.

Petrozavodsk, Republic of Karelia

Competing Interests: not


References

1. Afshar-Kharghan V. The role of the complement system in cancer. J. Clin. Invest., 2017, Vol. 127, no. 3, pp. 780–789.

2. Airold, I., Bertaina A., Prigione I., Zorzoli A., Pagliara D., Cocco C., Meazza R., Loiacono F., Lucarelli B., Bernardo M.E,, Barbarito G., Pende D., Moretta A., Pistoia V., Moretta L., Locatelli F. γδ T cell reconstitution after HLA-haploidentical hematopoietic transplantation depleted of TCR-αβ+/CD19+ lymphocytes. Blood, 2015, Vol. 125, no.15, pp. 2349–2358.

3. Amarnath S, Foley J.E., Farthing D.E., Gress R.E., Laurence A, Eckhaus M.A., Metais J.Y., Rose J.J., Hakim F.T., Felizardo T.C., Cheng A.V., Robey P.G., Stroncek D.E., Sabatino M, Battiwalla M, Ito S, Fowler D.H., Barrett A.J,. Bone marrow-derived mesenchymal stromal cells harness purinergenic signaling to tolerize human Th1 cells in vivo. Stem Cells, 2015, Vol. 33, no. 4, pp. 1200–1212.

4. Amsen D., Klaas P. J. M., van Gisbergen P. H., Rene A. W., van Lier A. Tissue-resident memory T cells at the center of immunity to solid tumors. . Immunol., 2018, Vol. 19, no.6 pp. 538–546 .

5. Andrews L.P., Yano H., Dario A. A. Vignali D. A .A. Inhibitory receptors and ligands beyond PD-1, PD-L1 and CTLA-4: breakthroughs or backups. Nature Immunology, 2019, Vol. 20, no. 11, pp. 1425–1434.

6. Balli D., RechA.J., Stanger, B.Z., Vonderheide R.H. Immune Cytolytic Activity Stratifies Molecular Subsets of Human Pancreatic Cancer. Clin. Cancer Res., 2017, Vol. 23, no. 12, pp. 3129–3138.

7. Becht E., Giraldo N. A., Dieu-Nosjean M. C., Sautиs-Fridman C., Fridman W. H. Cancer immune contexture and immunotherapy. Curr. Opin. Immunol., 2016, Vol. 39, pp. 7–13.

8. Becht E., de Reynie`s A., Giraldo N.A., Pilati C., Buttard B., Lacroix L., Selves J., Saute`s-Fridman C., Laurent-Puig P., Fridman W.H. Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. Clin. Cancer, 2016, Res., Vol. 22, pp. 4057–4066.

9. Bertucci F., Finetti P, Colpaert C., Mamessier E., Parizel M., Dirix L., Viens P., Birnbaum D., van Laere S. PDL1 expression in inflammatory breast cancer is frequent and predicts for the pathological response to chemotherapy. Oncotarget, 2015, Vol. 6, no. 15, pp.13506–13519.

10. Bottazzia B., Ribolib E., Mantovani A. Aging, inflammation and cancer. Seminars in Immunology, 2018, Vol. 40, pp. 74–82.

11. Boyiadzis M., Whiteside T.L. The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia, 2017, Vol. 6, pp.1259-1268.

12. Burrello J., Monticone S., Gai C., Gomez Y., Kholia S., Camussi G. Stem Cell-Derived Extracellular Vesicles and Immune-Modulation. Front Cell Dev Biol., 2016, Vol. 4, pp. 83.

13. Cha Y.J., Kim H.R., Lee C.Y., Cho B.C., Shim H.S. Clinicopathological and prognostic significance of programmed cell death ligand-1expression in lung adenocarcinoma and its relationship with p53 status. Lung Cancer, 2016, Vol. 97, pp.73–80.

14. Chang C.H., Curtis J.D., Maggi L.B., Faubert B., Villarino A.V., O’Sullivan D.O. Huang S.C., van der Windt G.J., Blagih J., Qiu J., Weber J.D., Pearce E.J., Jones R.G., Pearce E.L. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell, 2013, Vol. 153, no. 6, pp. 1239–1251

15. Chang C.H., Qiu J., O’Sullivan D., Buck M.D., Noguchi T., Curtis J.D., Chen Q. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 2015, Vol. 162, no. 6, pp. 1229–1241

16. Charoentong P., Finotello F., Angelov M., Mayer C., Efremova M., Rieder D., Hackl H., Trajanoski Z. Pan-cancer Immunogenomic Analyses. Reveal Genotype-Immunophenotype Relationshipsand Predictors of Response to Checkpoint Blockade. Cell Rep., 2017, Vol. 18, no. 1, pp. 248–262.

17. Chen W., Huang Y., Han J., Yu L., Li Y., Lu Z., Li H., Liu Z., Shi C., Duan F., Xiao Y. Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol Res., 2016, Vol. 64, no. 4, pp. 831–840.

18. Chen D. S., Mellman I. Elements of cancer immunity and the cancer-immune set point. , 2017, Vol., no. 7637, pp. 321–330.

19. Dadi S., Li M. O. Tissue-resident lymphocytes: sentinel of the transformed tissue. Immunother. Cancer, 2017, Vol. 16, pp. 41.

20. Di Trapani M., Bassi G., Midolo M., Gatti A., Kamga P.T., Cassaro A., Carusone R., Adamo A., Krampera M. Differential and transferable modulatory effects of mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci Rep., 2016, Vol. 6:24120.

21. Djenidi F. J., Goubar A., Durgeau A., Meurice G., de MontprévilleV., Validire P., Besse B., Mami-Chouaib M. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. . Immunol., 2015, Vo1. 194, no. 7, pp. 3475-3486.

22. Dostert G., Mesure B., Menu P., Velot E. How Do Mesenchymal Stem Cells Influence or Are Influenced by Microenvironment through Extracellular Vesicles Communication? Front Cell Dev Biol., 2017, Vol. 07, 6 ps.

23. Galdiero M. R., Varricchi G., Loffredo S., Mantovani A., Marone G. Roles of neutrophils in cancer growth and progression. J. Leukoc. Biol., 2018, Vol. 103, no. 3, pp. 457–464.

24. Ganesan A. P., Clarke J., Wood G., Garrida-Martes E.M., Che S.J., Mellows T. Tissue-resident memory features are linked to the magnitude of cytotoxic T cell responses in human lung cancer. Nat. Immunol., 2017, Vol. 18, no. 8, pp.940–950.

25. Gentles A. J., Newman A. M., Liu C. L., Bratman S.V., Feng W., Kim D., Nair V. S., Xu Y., Khuong A., Hoang C. D. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med., 2015, Vol. 21, no. 8, pp. 938–945.

26. Germenis A. E., Karanikas V. Immunoepigenetics: the unseen side of cancer immunoediting. Immunology and Cell Biology, 2007, Vol. 85, no. 1, pp.55-59.

27. Gholami M.D., Alikardar G., Saeedi Y., Heydari S., Garssen J., Falak R. Exhaustion of T lymphocytes in the tumor microenvironment: significance and effective mechanisms. Cell. Immun., 2017, Vol. 322, pp. 1-14.

28. Goswami K. K., Ghosh T., Ghosh S., Sarkar M., Bose A., Baral R. Tumor promoting role of anti-tumor macrophages in tumor. Microenvironment Cellular Immunology, 2017, Vol. 316, no. 6, pp. 1-10.

29. Hensley C.T, Wasti A.T., De Berardinis R.J. Gutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest., 2013, Vol. 123, no. 9, pp. 3678-3684

30. Hombrink P., Helbig C, Backer RA, Piet B, Oja AE, Stark R, Brasser G, Jongejan A, Jonkers RE, Nota B, Basak O, Clevers HC, Moerland PD, Amsen D, van Lier RA. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immun., 2016, Vol. 17, no. 12, pp. 1467–1478

31. Jhaveri K., Teplinsky E., Silvera D., Valeta-Magara A., Arju R., Giashudin Sh., Sarfraz Y. Hyperactivated mTOR and JAK2/STAT3 pathways: molecular drivers and potential therapeutic targets of inflammatory and invasive ductal breast cancers after neoadjuvant chemotherapy. Clin. Breast Cancer, 2016, Vol. 16, no. 2, pp. 113–122.

32. Jiang D., Gao Z., Cai Z., Wang M., He J. Clinicopathological and prognostic significance of FOXP3+ tumor infiltrating lymphocytes in patients with breast cancer: a meta-analysis. BMC. Cancerp, 2015, Vol 15, p.727

33. Jiang Y., Li Y., Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis., 2015, Vol. 6, e1792

34. Komdeur F. L., Prins T. M., van de Wall S., Plat A., Wisman G. B. A., Hollema H., Daemen T., Church D. N., De Bruyn M. Nijman, H. W. CD103+ tumor-infiltrating lymphocytes are tumorreactive intraepithelial CD8+ T cells ciated with prognostic benefit and therapy response in cervical cancer. OncoImmunology, 2017, Vol 6, no. 9, e1338230

35. Kumar B., Garcia M., Murakami J.L, Chen C.C., Exosome-mediated microenvironment dysregulation in leukemia. Biochim Biophys Acta, 2016, Vol. 1863, no. 3, pp. 464–470.

36. Kumar B. V., Ma W., Miron M., Granot T., Guyer R., Carpenter D., Senda T., Sun X. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep., 2017, Vol. 12, pp. 2921–2934

37. Lasry A., Zingler A., Ben-Neriah Y. Inflammatory networks underlines colorectal cancer. Nat. Immunol., 2016, Vol.17, no. 3, pp. 230-240

38. Layer J.P., Kronm€uller M.T., Quast T., van den Boorn-Konijnenberg D., Effern M., Hinze D., Althoff K., Schramm A., Westerman F., Peifer M. Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression. OncoImmunology, 2017, Vol. 6, e1320626

39. Le D.T., Uram J.N., Wang H., Bartlett B.R., Kemberling H., Eyring A.D.,Skora A.D., Luber B.S., Azad N.S., Laheru D. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med., 2015, Vol. 372, no. 26, pp. 2509–2520.

40. Lim В. W. A., June C. H. The principles of engineering immune cells to treat cancer. Cell, 2017, Vol. 168 no. 4, pp. 724–740.

41. Lim B., Wendy A. W., Xiaoping W., James M. R., Naoto T. U. Inflammatory breast cancer biology: the tumour microenvironment is key. Nat. Rev. Cancer, 2018, Vol. 18, no. 8, pp. 485-499.

42. Linnemann C., van Buuren M.M., Bies L., Verdegaal E.M., Schotte R., Calis J.J., Behjati S., Velds A., Hilkmann H., Atmioui D.E. Highthroughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med., 2015, Vol. 21, no 1, pp. 81–85.

43. Ludwig S., Floros T., Theodoraki M. N., Hong CS., Jackson EK., Lang S., Whiteside TL. Suppression of Lymphocyte Functions by Plasma Exosomes Correlates with Disease Activity in Patients with Head and Neck Cancer. Clin Cancer Res., 2017, Vol. 23, no. 16, pp. 4843–4854.

44. Mantovani A., F. Marchesi A., Malesci L., Laghi P. A. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol., 2017, Vol. 14, no. 7, pp. 399–416.

45. Mego M., Gao H., Cohen E.N., Anfossi S., Giordano A., Tin S., Fouat T.M. Circulating tumor cells (CTCs) are associated with abnormalities in peripheral blood dendritic cells in patients with inflammatory breast cancer. Oncotarget, 2016, Vol 8, no. 22, pp. 35656–35658.

46. Murray T., Marraco S.A.F., Baumgaertner P., Bordry N., Cagnon L., Donda A., Romero P., Verdeil G., Speiser D.E. Very late antigen-1 marks functional tumor-resident CD8 T cells and correlates with survival of melanoma patients. Front. Immunol., 2016, Vol.7, e573.

47. Nasser K. A., Markowitz G J., D., Port1 J. L., Saxena A., Stiles1 B., McGraw T., Mittal V. The lung icroenvironment: an important regulator of tumour growth and metastasis. Nat.Rev.Cancer, 2019, Vol. 19, no. 1, pp. 9-31.

48. Neviani P., Fabbri M. Exosomic microRNAs in the Tumor Microenvironment. Front Med (Lausanne), 2015, Vol. 2, e47.

49. Nizard, M., Roussel H., Diniz M.O., Karaki S., Tran T., Voron T., Dransart E., Sandoval F., Riquet M., Rance B., Marcheteau E., Fabre E., Mandavit M., Terme M., Blanc C., Escudie J.B., Gibault L., Barthes F.L.P., Granier C., Ferreira L.C.S., Badoual C., Johannes L, Tartour E. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat. Commun. 2017, Vol. 8, e15221.

50. Ock C.Y., Hwang J.E., Keam B., Kim S.B., Shim J.J., Jang H.J., Park S., Sohn B.H., Cha M., Ajani J.A. Genomic landscape associated with potential response to anti-CTLA-4 treatment in cancers. Nat. Commun., 2017, Vol. 8, no1, e1050.

51. Ohue Y., Nishikawa H. Regulatory T (Treg) cells in cancer: Can Treg cells be a new therapeutic target? Cancer Science, 2019, Vol. 110, pp. 2080–2089.

52. O’Toole1 A., Michielsen A.J., Nolan1 B., Tosetto1 M., Sheahan E., Mulcahy H.E., WinterD.C., Hyland J.M.,, O’Connell P.R., Fennelly D., O’Donoghue D.O., O’Sullivan J., G A Doherty G.A., Ryan E.J., Tumour icroenvironment of both early- and late-stage colorectal cancer is equally immunosuppressive. BRITISH J. OF CANCER, 2014, Vol. 111, pp. 927-932.

53. Parker B. S., Rautela J., Hertzog, P. J. Antitumour actions of interferons: implications for cancer therapy. Nat. Rev. Cancer, 2016, Vol. 16, no.3, pp. 131–144.

54. Pauken E., Wherry E.J. Overcoming T cell exhaustion in infection and cancer. Trends Immunol., 2015, Vol. 38, no. 4, pp. 265–276.

55. Qin F. X. Dynamic Behavior and Function of FOXP3+ regulatory Tcells in Tumor bearing Host. Cell. Molecular Immunol., 2009, Vol. 6, no. 1, pp. 3-13.

56. Quigley D., Silwal-Pandit L., Dannenfelser R., Langerød A., Vollan H.K., Vaske C., Siegel J.U., Troyanskaya O., Chin S.F., Caldas C. Lymphocyte Invasion in IC10/Basal-Like Breast Tumors Is Associated with Wild-Type TP53. Mol. Cancer Res., 2015, Vol. 13, no. 3, pp.493–501.

57. Reiser J., Banerjee A. Effector, Memory, and Dysfunctional CD8(+) T Cell Fates in the Antitumor Immune Response. J. Immunol., 2016 Vol. 2016, no. 8941260, 14 pp.

58. Ribas, A., Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science, 2018, Vol. 359, no. 6382, pp.1350-1355.

59. Ridge S.M, Sullivan F.J, Glynn S.A. Mesenchymal stem cells: key players in cancer progression. Mol Cancer., 2017, Vol. 16, a.n. 31.

60. Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer, Science, 2015, Vol. 348, no, 6230, pp. 124–128.

61. Robinson D.R., Wu Y.M., Lonigro R.J., Vats P., Cobain E., Everett J., Cao X., Rabban E., Kumar-Sinha C., Raymond V. Integrative clinical genomics of metastatic cancer. Nature, 2017, Vol. 548, no. 7667, pp. 297–303.

62. Rooney M.S., Shukla S.A., Wu C.J., Getz G., Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell, 2015, Vol. 160, no. 1-2, pp.48–61.

63. Salmon H., Remark R., Gnjatic S., Merad M. Host tissue determinants of tumour immunity. Nat.Rev. Cancer, 2019, Vol. 19, no. 4, pp. 215-227.

64. Savas P., Salgado R., Denkert C., Sotiriou C., Darcy P.K., Smyth M.J., Loi S. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat. Rev. Clin. Oncol., 2016, Vol 13, pp. 228–241.

65. Schumacher T.N.,Schreiber R.D. Neoantigens in cancer immunotherapy. Science, 2015, Vol. 348, no. 6230, pp. 69–74.

66. Silva-Santos B., Serre K., Norell H. γδ T cells in cancer. Nat. Rev. Immunol., 2015, Vol. 15, no.11, pp. 683–691.

67. Silva-Santos B., Mensurado S., Coffelt S.γδ T cells: pleiotropic immune effectors with therapeutic potential in cancer. Nat.Rev. Cancer, 2019, Vol. 19, no. 7, pp. 392-404.

68. Stanton S.E., Adams S., Disis M.L. Variation in the Incidence and Magnitude of Tumor-Infiltrating Lymphocytes in Breast Cancer Subtypes: A Systematic Review. JAMA Oncol., 2016, Vol. 2, no. 10, pp. 1354–1360.

69. Su Sh., Liu Q., Chen J., Chen J., Xiao F., He Ch., Huang D., Wu W., Lin L., Huang W., Cui X. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell, 2014, Vol. 25, pp. 605–620.

70. Tanaka A., Sakaguchi Sh. Regulatory T cells in cancer immunotherapy. Cell Res., 2017, Vol. 27, no. 1, pp. 109–118.

71. Tanaka A., Sakaguchi Sh. Targeting Treg cells in cancer immunotherapy. Eur. J. Immunol., 2019, Vol. 49, pp. 1140–1146.

72. Van Allen E.M., Miao, D., Schilling B., Shukla S.A., Blank C., Zimmer L., Sucker A., Hillen U., Foppen M.H.G., Goldinger S.M. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science, 2015, Vol. 350, no. 6257, pp. 207–211.

73. Vermijlen D., Gatti D., Kouzeli A., Rus T., Eberl M. γδ T cell responses: how many ligands will it take till we know? Semin. Cell Dev. Biol, 2018, Vol. 84, pp. 75–86.

74. Wang B,, Wu S., Zeng H., Liu Z., Dong W., He W., Chen X., Dong X., Zheng L., Lin T., Huang J. CD103+ tumor infiltrating lymphocytes predict a favorable prognosis in urothelial cell carcinoma of the bladder. J. Urol., 2015, Vol. 194 no. 2, pp. 556–562.

75. Wang W., Kryczek I., Dostál L., Lin H., Tan L., Zhao L., Lu F., Wei S., Maj T., Peng D., He G., Vatan L., Szeliga W., Kuick R., Kotarski J., Tarkowski R., Dou Y., Rattan R., Munkarah A., Liu J.R., Zou W. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell, 2016, Vol. 165, no. 5, pp. 1092–1105.

76. Wang Z.Q., Milne K., Derocher H., Webb J. R., Nelson B. H., Watson P.H. CD103 and intratumoral immune response in breast cancer. Clin. Cancer Res., 2016, Vol. 22, no. 24, pp. 6290–6297.

77. Wang Q., Hu B., Hu X., Kim H., Squatrito M., Scarpace L., deCarvalho A.C., Lyu S., Li P., Li Y. Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 2017, Vol. 32, no. 1, pp. 42–56.

78. Wellenstein M.D., de Visser K.E. Cancer-Cell-Intrinsic Mechanisms Shaping the Tumor Immune Landscape Immunity 2018, Vol., 48, no 3, pp. 399-416.

79. Wherry T.J., Kurachi M. Molecular and cellular insights into T cell exhaustion Nat. Rev. Immunol., 2015, Vol. 15, no. 8, pp. 486–499.

80. Whiteside T.L. Tumor-Derived Exosomes and Their Role in Cancer Progression. Adv Clin Chem., 2016, Vol. 74, pp.103–141.

81. Whiteside T.L. Exosomes carrying immunoinhibitory proteins and their role in cancer. Clin Exp Immunol., 2017, Vol. 189, no.3, pp. 259-267.

82. Whiteside T.L. Exosome and mesenchymal stem cell cross-talk in the tumor microenvironment. Semin Immunol. 2018, Vol. 35, no. 2, pp. 69-79.

83. Workel H.H., Komdeur F.L., Wouters M.C., Plat A., Klip H.G., Eggink F.A., Wisman G.B.,, Arts H.J., Oonk M.H., Mourits M.J., Yigit R., Versluis M., Duiker E.W., Hollema H., de Bruyn M., Nijman H.W. CD103 defines intraepithelial CD8+ PD1+ tumourinfiltrating lymphocytes of prognostic significance in endometrial adenocarcinoma. Eur. J. Cancer, 2016, Vol. 60, pp. 1–11.

84. Zhang B., Yin Y., Lai R.C., Tan S.S., Choo A.B., Lim S.K. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev., 2014, Vol. 23, no.11, pp.1233–1244.

85. Zhang Y., Ertl H.C. Starved and asphyxiated: How can CD8+ T cells within a tumor microenvironment prevent tumor progression. Front. immunol., 2016, Vol. 10, 32 pp.

86. Zundler S., Becker E., Spocinska M., Slawik M., Parga-Vida L., Stark R., Wiendl M., Atreya T., Rath M., Leppkes M., Hildner K., Lуpez-Posadas R., Lukassen S., Ekici A. B., Neufert C., Atreya I., van Gisbergen K. J. G, Neurath M.F. Hobit- and Blimp-1-driven CD4+ tissue-resident memory T cells control chronic intestinal inflammation. Nat Immunol., 2019, Vol. 20, no. 3, pp. 288–300.


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (32KB)    
Indexing metadata ▾
2. Неозаглавлен
Subject
Type Other
Download (37KB)    
Indexing metadata ▾
3. Неозаглавлен
Subject
Type Other
Download (30KB)    
Indexing metadata ▾
4. Неозаглавлен
Subject
Type Исследовательские инструменты
Download (203KB)    
Indexing metadata ▾

Review

For citations:


Oleinik E.K., Shibaev M.I., Ignatiev K.S., Oleinik V.M., Zhulai G.A. Tumor microenvironment: the formation of the immune profile. Medical Immunology (Russia). 2020;22(2):207-220. (In Russ.) https://doi.org/10.15789/1563-0625-TMT-1909

Views: 4166


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)