Preview

Medical Immunology (Russia)

Advanced search

Spontaneous and activation-induced apoptosis of peripheral blood mononuclear cells in the pathogenesis of type 1 diabetes mellitus

https://doi.org/10.15789/1563-0625-SAA-1834

Abstract

Apoptosis is the leading mechanism of pancreatic β-cell destruction in type 1 diabetes mellitus (T1DM). Assessment of activation apoptosis in response to stimulation with mitogen or a specific antigen is considered more significant when studying apoptosis markers in peripheral blood mononuclear cells to clarify the role of programmed cell death in pathogenesis of various diseases, since the role of apoptosis in immune response is increased in activated cells. It has been established that the stimuli that activate resting Tlymphocytes initiate apoptotic death of activated T lymphocytes. Therefore, detection of spontaneous apoptosis only is not very informative. In addition, determination of cell sensitivity to apoptosis induction makes it possible to identify relations of pathological process to the enhancement or weakening of this sensitivity. The key point in the T1DM initiation is apoptosis resistance of activated autoreactive T lymphocytes, that migrate from bloodstream to the pancreas and take an active part in destruction of the pancreatic insular structures. Despite long studies of T1DM pathogenesis, the exact causes of resistance of effector T cell clones to apoptosis remain unclear. There are no facts that answer the question: to what extent is the ability of T lymphocytes of peripheral blood to enter into apoptosis associated with severity and duration of the disease. In this regard, the aim of the study was to evaluate the effectiveness of in vitro activation-induced apoptosis of T lymphocytes in the patients with T1DM, depending on the state of compensation and duration of the disease. The features of activationinduced apoptosis have been studied in cultures of peripheral blood mononuclear cells (PBMC) in the patients with T1DM. Phytohemagglutinin (PHA) and insulin were used as apoptosis inducers. Increased in vitro sensitivity of PBMC to activation-induced apoptosis was revealed in T1DM patients. The strongest apoptotic response to PHA was detected in cases of T1DM decompensation. Considering predominantly Tcells to undergo apoptosis in response to PHA stimulation, one may speak about high sensitivity of activated T lymphocytes to induced apoptosis in the patients with T1DM. The highest level of activation-induced apoptosis in response to insulin stimulation was revealed in the compensation phase of T1DM. We have found that the intensity of spontaneous and activation-induced apoptosis correlates with decompensation of the disease and the degree of β-cells secretory function disorder. In fact, strong direct correlation was observed between the percentage of hypodiploid cells and blood concentration of glucose, and the inverse correlation was shown between the number of apoptotic cells and serum levels of C-peptide. The data obtained are in accordance with the modern concept of T1DM immunopathogenesis, which includes a development of autoimmune diseases associated not only with enhanced apoptosis of target cells, but also with a defect in phagocytic clearance of apoptotic cells due to impaired efferocytosis, i.e., phagocytosis of apoptotic cells. Thus, the maximal increase in spontaneous and activation-induced apoptosis levels of peripheral blood lymphocytes during the DM-1 decompensation is explained not only by the hyperglycemia effects, but also by the secondary immune response to the so-called “late apoptotic” or “secondary necrotic” β-cells, due to their ineffective phagocytic clearance.

About the Authors

A. V. Lugovaya
First St. Petersburg State I. Pavlov Medical University
Russian Federation

Lugovaya A.V., PhD (Medicine), Аllergist-Immunologist, Doctor of Clinical Laboratory Diagnostics, Department of Clinical Laboratory Diagnostics

197022, St. Petersburg, L. Tolstoy str., 6-8, bldg 11.


Competing Interests:

Конфликт интересов

Все авторы статьи заявляют об отсутствии конфликта интересов и дают свое согласие на публикацию статьи «Спонтанный и индуцированный апоптоз мононуклеаров периферической крови в патогенезе сахарного диабета 1 типа».



N. M. Kalinina
First St. Petersburg State I. Pavlov Medical University; А. Nikiforov Russian Center of Emergency and Radiation Medicine
Russian Federation
Kalinina N.M., PhD, MD (Medicine), Professor, Department of Immunology; Leading Research Associate, Аllergist-Immunologist, Main Research Associate

197022, St. Petersburg, L. Tolstoy str., 6-8, bldg 11.


Competing Interests:

Конфликт интересов

Все авторы статьи заявляют об отсутствии конфликта интересов и дают свое согласие на публикацию статьи «Спонтанный и индуцированный апоптоз мононуклеаров периферической крови в патогенезе сахарного диабета 1 типа».



V. Ph. Mitreikin
First St. Petersburg State I. Pavlov Medical University
Russian Federation

Mitreikin V.Ph., PhD, MD (Medicine), Professor, Department of Pathological Physiology

197022, St. Petersburg, L. Tolstoy str., 6-8, bldg 11.


Competing Interests:

Конфликт интересов

Все авторы статьи заявляют об отсутствии конфликта интересов и дают свое согласие на публикацию статьи «Спонтанный и индуцированный апоптоз мононуклеаров периферической крови в патогенезе сахарного диабета 1 типа».



Yu. V. Emanuel
First St. Petersburg State I. Pavlov Medical University
Russian Federation

Emanuel Yu.V., PhD (Medicine), Clinical Neurologist, Associate Professor, Department of Neurology and Manual Medicine, Faculty of Postgraduate Education

197022, St. Petersburg, L. Tolstoy str., 6-8, bldg 11.


Competing Interests:

Конфликт интересов

Все авторы статьи заявляют об отсутствии конфликта интересов и дают свое согласие на публикацию статьи «Спонтанный и индуцированный апоптоз мононуклеаров периферической крови в патогенезе сахарного диабета 1 типа».



Yu. P. Kovalchuk
First St. Petersburg State I. Pavlov Medical University
Russian Federation

Kovalchuk Yu.P., PhD (Medicine), Associate Professor, Department of Clinical Laboratory Diagnostics with a course of Molecular Medicine, Deputy Head Physician, Department of Clinical Laboratory Diagnostics

197022, St. Petersburg, L. Tolstoy str., 6-8, bldg 11.


Competing Interests:

Конфликт интересов

Все авторы статьи заявляют об отсутствии конфликта интересов и дают свое согласие на публикацию статьи «Спонтанный и индуцированный апоптоз мононуклеаров периферической крови в патогенезе сахарного диабета 1 типа».



A. V. Artyomova
First St. Petersburg State I. Pavlov Medical University
Russian Federation

Artyomova A.V., Clinical Neurologist, Senior Laboratory Assistant, Department of Neurology and Manual Medicine, Faculty of Postgraduate Education

197022, St. Petersburg, L. Tolstoy str., 6-8, bldg 11.


Competing Interests:

Конфликт интересов

Все авторы статьи заявляют об отсутствии конфликта интересов и дают свое согласие на публикацию статьи «Спонтанный и индуцированный апоптоз мононуклеаров периферической крови в патогенезе сахарного диабета 1 типа».



References

1. Vasina L.V., Ivanov G.A., Lugovaya A.V., Morozova L.Yu. Change of content of circulating CD59+ cells of peripheral blood at acute coronary syndrome. Vestnik SanktPeterburgskogo gosudarstvennogo universiteta = Bulletin of St. Petersburg State University, 2008, no. 1, pp. 6-12. (In Russ.)

2. Vasina L.V., Lugovaya A.V., Petrischev N.N., Serebryanaya N.B. Pathogenic significance of relative alteration in V-binding mononuclears and CD 59+ lymphocytes of peripheral blood in patients with acute coronary syndrome. Mediko-biologicheskie i sotsialno-psikhologicheskie problemy bezopasnosti v chrezvychaynykh situatsiyakh = Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situation, 2008, no. 1, pp. 74-80. (In Russ.)

3. Zurochka A.V., Davydova E.V., Altman D.A. Intensity of apoptotic and proliferative events in lymphocytes under dyslipidemic conditions at early stages of chronic brain ischemia. Meditsinskaya immunologiya = Medical Immunology (Russia), 2014, Vol. 16, no. 1, pp. 27-34. (In Russ.) doi: 10.15789/1563-0625-2014-1-27-34.

4. Zurochka A.V., Khaidukov S.V., Kudriavtsev I.V., Chereshev V.A. Flow cytometry in biomedical research. Ekaterinburg: RIO UB RAS, 2018. 720 p.

5. Fundamental Immunology. Ed. William E. Paul, M.D. Moscow: Mir, 1988. 476 p.

6. Kudriavtsev I.V., Golovkin A.S., Zurochka A.V., Khaidukov S.V. Modern technologies and approaches to apoptosis studies in experimental biology. Meditsinskaya immunologiya = Medical Immunology (Russia), 2012, Vol. 14, no. 6, pp. 461-482. (In Russ.) doi: 10.15789/1563-0625-2012-6-461-482.

7. Petrishchev N.N., Vasina L.V., Lugovaya A.V. Content of soluble markers of apoptosis and circulating V annexin-connected apoptotic cells in the blood of patients with acute coronary syndrome. Vestnik Sankt-Peterburgskogo gosudarstvennogo universiteta = Bulletin of St. Petersburg State University, 2008, no. 1, pp. 14-24. (In Russ.)

8. Khaitov R.M. Immunology: textbook. Moscow: GEOTAR-Media, 2018. 496 p.

9. Yarilin A.A., Nikonova M.F., Yarilina A.A., Varfolomeeva M.I., Grigorieva T.Yu. Apoptosis, importance of its evaluation in immunopathlogical states. Meditsinskaya immunologiya = Medical Immunology (Russia), 2000, Vol. 2, no. 1, pp. 7-16. (In Russ.)

10. Ardestani A., Maedler K. MST1: a promising therapeutic target to restore functional beta cell mass in diabetes. Diabetologia, 2016, Vol. 59, no. 9, pp. 1843-1849.

11. Baidwan S., Chekuri A., Hynds D.L., Kowluru A. Glucotoxicity promotes aberrant activation and mislocalization of Ras-related C3 botulinum toxin substrate 1 [Rac1] and metabolic dysfunction in pancreatic islet β-cells: reversal of such metabolic defects by metformin. Apoptosis, 2017, Vol. 22, no. 11, pp. 1380-1393.

12. Banfalvi G. Methods to detect apoptotic cell death. Apoptosis, 2017, Vol. 22, no. 2, pp. 306-323.

13. Birge R.B., Boeltz S., Kumar S., Carlson J., Wanderley J., Calianese D., Barcinski M., Brekken R.A., Huang X., Hutchins J.T., Freimark B., Empig C., Mercer J., Schroit A.J., Schett G., Herrmann M. Phosphatidylserine is a global immunosuppressive signal in efferocytosis, infectious disease, and cancer. Cell Death Differ., 2016, Vol. 23, pp. 962-978.

14. Blander J.M. The many ways tissue phagocytes respond to dying cells. Immunol. Rev., 2017, Vol. 277, no. 1, pp. 158-173.

15. Brozzi F., Nardelli T.R., Lopes M., Millard I., Barthson J., Mariana I., Grieco A.F., Villate O., Oliveira J.M., Casimir M., Bugliani M., Engin F., Hotamisligil G.S., Marchetti P., Eizirik D.L. Cytokines induce endoplasmic reticulum stress in human, rat and mouse beta cells via different mechanisms. Diabetologia, 2015, Vol. 58, no. 10, pp. 2307-2316.

16. Elmore S.A., Dixon D., Hailey J.R., Harada T., Herbert R.A., Maronpot R.R., Nolte T., Rehg J.E., Rittinghausen S., Rosol T.J., Satoh H., Vidal J.D., Willard-Mack C.L., Creasy D.M. Abstract Recommendations from the INHAND Apoptosis/Necrosis Working Group. Toxicol. Pathol., 2016, Vol. 44, no. 2, pp. 173-188.

17. Fu D., Yu J.Y., Yang S., Wu M., Hammad S.M., Connel A. R., Du M., Chen J., Lyons T. J. Survival or death: a dual role for autophagy in stress-induce pericyte loss in diabetic retinopathy. Diabetologia, 2016, Vol. 59, no. 10, pp. 2251-2261.

18. Garg A.D., Romano E., Rufo N., Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy mechanisms and clinical translation. Cell Death Differ., 2016, Vol. 23, pp. 938-951.

19. Green D.R. Cell death and the immune system: getting to how and why. Immunol. Rev., 2017, Vol. 277, no. 1, pp. 4-8.

20. Green D.R., Oguin T.H., Martinez J. The clearance of dying cells: table for two. Cell Death Differ., 2016, Vol. 23, pp. 915-926.

21. Hakonen E., Chandral V., Fogarty C.L., Yu N.Y., Ustinov J., Katayama S., Galli E., Danilova T., Lindholm P., Vartiainen A., Einarsdottir E., Krjutškov K., Kere J., Saarma M., Lindah M., Otonkoski T. MANF protects human pancreatic beta cells against stress-induced cell death. Diabetologia, 2018, Vol. 61, no. 10, pp. 2202-2214.

22. Hammes H.P. Diabetic retinopathy: hyperglycaemia, oxidative stress and beyond. Diabetologia, 2018, Vol. 61, no. 1, pp. 29-38.

23. Kumagai J., Akiyama H., Iwashita S., Iida H., Yahara I. In vitro regeneration of resting lymphocytes from stimulated lymphocytes and its inhibition by insulin. J. Immunol., 1981, Vol. 126, no. 4, pp. 1249-1254.

24. Pasparakis M., Vandenabeele P. Necroptosis and its role in inflammation. Nature, 2015, Vol. 517, pp. 311- 320.

25. Purwana I., Liu J.J., Portha B., Buteau J. HSF1 acetylation decreases its transcriptional activity and enhances glucolipotoxicity-induced apoptosis in rat and human beta cells. Diabetologia, 2017, Vol. 60, no. 8, pp. 1432-1441.

26. Ryan A., Murphy M., Godson C., Hickey F.B. Diabetes mellitus and apoptosis: inflammatory cells. Apoptosis, 2009, Vol. 14, no. 12, pp. 1435-1450.

27. Sachet M., Liang Y.Y., Oehler R. The immune response to secondary necrotic cells. Apoptosis, 2017, Vol. 22, no. 10, pp. 1189-1204.

28. Sidarala V., Kowluru A. Exposure to chronic hyperglycemic conditions results in Ras-related C3 botulinum toxin substrate 1 (Rac1)-mediated activation of p53 and ATM kinase in pancreatic β-cells. Apoptosis, 2017, Vol. 22, no. 5, pp. 597-607.

29. Tchorzewski H., Glowacka M., Banasik P., Lewkowicz M., Szalapska-Zawodniak M. Activated T lymphocytes from patients with high risk of type I diabetes mellitus have different ability to produce interferon-γ, interleukin-6 and interleukin-10 and undergo anti-CD95 induced apoptosis after insulin stimulation. Immunol. Lett., 2001, Vol. 75, pp. 225-234.

30. Thomas H.E., Trapani J.A., Kay T.W.H. The role of perforin and granzymes in diabetes. Cell Death Differ., 2010, Vol. 17, pp. 577-585.

31. Vives-Pi M., Rodrıguez-Fernandez S., Pujol-Autonell I. How apoptotic β-cells direct immune response to tolerance or to autoimmune diabetes: a review. Apoptosis, 2015, Vol. 20, no. 3, pp. 263-272.

32. Weinlich R., Oberst A., Beere H.M., Green D.R. Necroptosis in development, inflammation and disease. Nat. Rev. Mol. Cell. Biol., 2016, Vol. 18, pp. 127-136.

33. Zhang M., Zhang L., Hu J., Lin J., Tingting W., Duan Y., Man W., Feng J., Sun L., Jia H., Li C., Zhang R., Wang H., Sun D. MST1 coordinately regulates autophagy and apoptosis in diabetic cardiomyopathy in mice. Diabetologia, 2016, Vol. 59, no. 11, pp. 2435-2447.

34. Zhao Y., Scott N.A., Fynch S., Elkerbout L., Wong W.W., Mason K.D., Strasser A., Huang D.C., Kay T.W.H., Thomas H.E. Autoreactive T cells induce necrosis and not BCL-2-regulated or death receptor-mediated apoptosis or RIPK3-dependent necroptosis of transplanted islets in a mouse model of type 1 diabetes. Diabetologia, 2015, Vol. 58, no. 1, pp. 140-148.


Supplementary files

1. The names of the pictures
Subject
Type Исследовательские инструменты
Download (13KB)    
Indexing metadata ▾
2. Figure 1.
Subject
Type Исследовательские инструменты
Download (27KB)    
Indexing metadata ▾
3. Figure 2
Subject
Type Исследовательские инструменты
Download (48KB)    
Indexing metadata ▾
4. Figure 3
Subject
Type Исследовательские инструменты
Download (45KB)    
Indexing metadata ▾
5. Тable 1
Subject
Type Исследовательские инструменты
Download (15KB)    
Indexing metadata ▾
6. Тable 2
Subject
Type Исследовательские инструменты
Download (16KB)    
Indexing metadata ▾
7. References
Subject
Type Исследовательские инструменты
Download (29KB)    
Indexing metadata ▾
8. Signatures of authors
Subject
Type Исследовательские инструменты
Download (2MB)    
Indexing metadata ▾
9. Title page
Subject
Type Исследовательские инструменты
Download (25KB)    
Indexing metadata ▾
10. Summary
Subject
Type Исследовательские инструменты
Download (26KB)    
Indexing metadata ▾
11. Metadata
Subject
Type Исследовательские инструменты
Download (2MB)    
Indexing metadata ▾
12. Литература исправленный
Subject
Type Other
Download (32KB)    
Indexing metadata ▾

Review

For citations:


Lugovaya A.V., Kalinina N.M., Mitreikin V.P., Emanuel Yu.V., Kovalchuk Yu.P., Artyomova A.V. Spontaneous and activation-induced apoptosis of peripheral blood mononuclear cells in the pathogenesis of type 1 diabetes mellitus. Medical Immunology (Russia). 2020;22(1):123-134. (In Russ.) https://doi.org/10.15789/1563-0625-SAA-1834

Views: 1177


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)