Preview

Medical Immunology (Russia)

Advanced search

INTERDEPENDENCE BETWEEN THE PHENOTYPE OF DENDRITIC CELLS AND AMOUNTS OF BLOOD PROINFLAMMATORY MONOCYTES IN PATIENTS WITH KIDNEY CANCER

https://doi.org/10.15789/1563-0625-2019-4-689-702

Abstract

The aim of the study was to investigate an interdependence between the phenotype of dendritic cells (DC) differentiated from monocytes and the number of pro-inflammatory monocytes in peripheral blood of patients with kidney cancer (KC). The study involved 28 patients at the age of 40-55 years suffering with KC (Т3N0М0, clear cell type) before surgical treatment. The diagnosis was verified histologically. 31 healthy agematched persons were examined as a control group. Mononuclear cells were isolated from heparinized venous blood by centrifugation in a Histopaque®-1077 density gradient followed by plastic adsorption in RPMI 1640 medium supplied with 10% autologous serum. Immature DCs (iDCs) were generated from blood monocytes by culturing for 5 days with GM-CSF and IFNα. Activation of DCs (mDCs) was induced by incubation with the tumor cell lysate and TNFα, followed by incubation for 48 hours. A tumor fragment was used to prepare the lysate of autologous tumor cells. Phenotyping of blood monocytes and DC at various maturation stages was performed by flow cytometry. The numbers of CD14+CD16+ monocytes in peripheral blood of KC patients were decreased (up to 42% of the total monocyte level) against the control ranges. In this regard, the analysis of the dependence between the phenotype of DCs differentiated from monocytes and the number of pro-inflammatory blood monocytes was carried out by comparing the groups with a high content of pro-inflammatory monocytes in the blood in KC patients (> 42%, near-control range) and low content (resp., < 42%). We have found that the contents of tolerogenic iDC in cell culture are increased in KC patients with low amounts of pro-inflammatory monocytes in blood (< 42%). A relatively increased expression of antigen-presenting and co-stimulatory molecules proved to be the specific feature of iDC phenotype in patients with high contents (> 42%) of proinflammatory monocytes in blood. The phenotype of dendritic cells in KC patients with different content of proinflammatory monocytes during maturation/activation showed more differences. In the patients with low levels of pro-inflammatory monocytes, the cell pool of in vitro maturing DCs was characterized by low level of CD86 and HLA-DR receptor expression, thus reflecting a weak co-stimulating and antigen-presenting activity. In the patients with high levels of pro-inflammatory monocytes in blood, the in vitro activated DCs showed higher level of functional activity using the above markers. The revealed differences in the DC phenotype and interrelations with amounts of blood monocyte subpopulations in KC patients may presume the programmed cell differentiation mechanisms depending on the microenvironment, under pathogenic conditions (i.e., in presence of malignant tumor growth).

About the Authors

A. A. Savchenko
Research Institute of Medical Problems of the North, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences
Russian Federation

PhD, MD (Medicine), Professor, Head, Laboratory of Molecular and Cellular Physiology and Pathology

Krasnoyarsk



A. G. Borisov
Research Institute of Medical Problems of the North, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences
Russian Federation

PhD (Medicine), Leading Research Associate, Laboratory of Molecular and Cellular Physiology and Pathology

Krasnoyarsk



I. V. Kudryavtsev
Institute of Experimental Medicine, First St. Petersburg State I. Pavlov Medical University
Russian Federation

PhD (Biology), Senior Research Associate, Department of Immunology, ; Assistant Professor, Department of Immunology

197376, Russian Federation, St. Petersburg, Acad. Pavlov str., 12

Phone: 7 (812) 234-16-69



A. V. Moshev
Research Institute of Medical Problems of the North, Krasnoyarsk Science Center, Siberian Branch, Russian Academy of Sciences
Russian Federation

Junior Research Associate, Laboratory of Molecular and Cellular Physiology and Pathology

Krasnoyarsk



References

1. Nazarkina Zh.K., Zajakina A., Laktionov P.P. Maturation and Antigen Loading Protocols Influence Activity of Anticancer Dendritic Cells. Molecular Biology, 2018, Vol. 52, no. 2, pp. 222-231. (in Russ). doi: 10.1134/S0026893317050132.

2. Kudryavtsev I.V., Subbotovskaya A.I. Application of six-color flow cytometric analysis for immune profile monitoring. Medical Immunology, 2015, Vol. 17, no. 1, pp. 19-26. (in Russ). doi: 10.15789/1563-0625-2015-1-19-26.

3. Savchenko A.A., Borisov A.G., Kudryavtsev I.V., Gvozdev I.I., Moshev A.V. Phenotypic peculiarities of dendritiс cells differentiated from blood monocytes in patients with kidney cancer. Medical Immunology (Russia), 2018, Vol. 20, no. 2, pp. 215-226. (in Russ). doi: 10.15789/1563-0625-2018-2-215-226.

4. Leplina O.Y., Starostina N.M., Blinova D.D., Zheltova O.I., Oleinik E.A., Tyrinova T.V., Ostanin A.A., Chernykh E.R. Results of a pilot clinical trial of dendriticcell based vaccines for treatment of recurrent herpesvirus infection. Medical Immunology (Russia), 2016, Vol. 18, no. 5, pp 425-436. (in Russ). doi: 10.15789/1563-0625-2016-5-425-436.

5. Savchenko A.A., Borisov A.G., Modestov A.A., Moshev A.V., Kudryavtsev I.V., Tonacheva O.G., Koshcheev V.N. Monocytes subpopulations and chemiluminescent activity in patients with renal cell carcinoma. Medical Immunology (Russia), 2015, Vol. 17, no. 2, pp. 141-150. (in Russ). doi:10.15789/1563-0625-2015-2-141-150.

6. Nazarkina Zh.K., Zajakina A., Laktionov P.P. Maturation and Antigen Loading Protocols Influence Activity of Anticancer Dendritic Cells. Molecular Biology, 2018, Vol. 52, no. 2, pp. 222-231. (in Russ). doi: 10.1134/S0026893317050132.

7. Tyrinova T.V., Mishinov S.V., Leplina O.Y., Alshevskaya A.A., Kurochkina Y.D., Oleynik E.A., Kalinovskiy А.V., Lopatnikova Y.A., Chernov S.V., Stupak V.V., Sennikov S.V., Ostanin A.A., Chernykh E.R. Role of TNFα/TNF-R1-signaling pathway in cytotoxic activity of dendritic cells against glioblastoma cell lines. Medical Immunology (Russia), 2018, Vol. 20, no. 3, pp. 353-364. (in Russ). doi: 10.15789/1563-0625-2018-3-353-364.

8. Savchenko A.A., Borisov A.G., Kudryavtsev I.V., Gvozdev I.I., Moshev A.V. Phenotypic peculiarities of dendritiс cells differentiated from blood monocytes in patients with kidney cancer. Medical Immunology (Russia), 2018, Vol. 20, no. 2, pp. 215-226. (in Russ). doi: 10.15789/1563-0625-2018-2-215-226.

9. Bai W.K., Zhang W., Hu B. Vascular endothelial growth factor suppresses dendritic cells function of human prostate cancer. Onco. Targets Ther., 2018, Vol. 11, pp. 1267-1274. doi: 10.2147/OTT.S161302.

10. Savchenko A.A., Borisov A.G., Modestov A.A., Moshev A.V., Kudryavtsev I.V., Tonacheva O.G., Koshcheev V.N. Monocytes subpopulations and chemiluminescent activity in patients with renal cell carcinoma. Medical Immunology (Russia), 2015, Vol. 17, no. 2, pp. 141-150. (in Russ). doi:10.15789/1563-0625-2015-2-141-150.

11. Bennaceur K., Popa I., Chapman J.A., Migdal C., Péguet-Navarro J., Touraine J.L., Portoukalian J. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells. Glycobiology, 2009, Vol. 19, no. 6, pp. 576-582. doi: 10.1093/glycob/cwp015.

12. Tyrinova T.V., Mishinov S.V., Leplina O.Y., Alshevskaya A.A., Kurochkina Y.D., Oleynik E.A., Kalinovskiy А.V., Lopatnikova Y.A., Chernov S.V., Stupak V.V., Sennikov S.V., Ostanin A.A., Chernykh E.R. Role of TNFα/TNF-R1-signaling pathway in cytotoxic activity of dendritic cells against glioblastoma cell lines. Medical Immunology (Russia), 2018, Vol. 20, no. 3, pp. 353-364. (in Russ). doi: 10.15789/1563-0625-2018-3-353-364.

13. Chen X., Hao S., Zhao Z., Liu J., Shao Q., Wang F., Sun D., He Y., Gao W., Mao H. Interleukin 35: Inhibitory regulator in monocyte-derived dendritic cell maturation and activation. Cytokine, 2018, Vol. 108, pp. 43-52. doi: 10.1016/j.cyto.2018.03.008.

14. Bai W.K., Zhang W., Hu B. Vascular endothelial growth factor suppresses dendritic cells function of human prostate cancer. Onco. Targets Ther., 2018, Vol. 11, pp. 1267-1274. doi: 10.2147/OTT.S161302.

15. de Goeje P.L., Klaver Y., Kaijen-Lambers M.E.H., Langerak A.W., Vroman H., Kunert A., Lamers C.H.J., Aerts J.G.J.V., Debets R., Hendriks R.W. Autologous Dendritic Cell Therapy in Mesothelioma Patients Enhances Frequencies of Peripheral CD4 T Cells Expressing HLA-DR, PD-1, or ICOS. Front Immunol., 2018, Vol. 9, pp. 2034. doi: 10.3389/fimmu.2018.02034.

16. Bennaceur K., Popa I., Chapman J.A., Migdal C., Péguet-Navarro J., Touraine J.L., Portoukalian J. Different mechanisms are involved in apoptosis induced by melanoma gangliosides on human monocyte-derived dendritic cells. Glycobiology, 2009, Vol. 19, no. 6, pp. 576-582. doi: 10.1093/glycob/cwp015.

17. Deicher A., Andersson R., Tingstedt B, Lindell G, Bauden M, Ansari D. Targeting dendritic cells in pancreatic ductal adenocarcinoma. Cancer Cell Int., 2018, Vol. 18, pp. 85. doi: 10.1186/s12935-018-0585-0.

18. Chen X., Hao S., Zhao Z., Liu J., Shao Q., Wang F., Sun D., He Y., Gao W., Mao H. Interleukin 35: Inhibitory regulator in monocyte-derived dendritic cell maturation and activation. Cytokine, 2018, Vol. 108, pp. 43-52. doi: 10.1016/j.cyto.2018.03.008.

19. Finak G., Langweiler M., Jaimes M., Malek M., Taghiyar J., Korin Y., Raddassi K., Devine L., Obermoser G., Pekalski M.L., Pontikos N., Diaz A., Heck S., Villanova F., Terrazzini N., Kern F., Qian Y., Stanton R., Wang K., Brandes A., Ramey J., Aghaeepour N., Mosmann T., Scheuermann R.H., Reed E., Palucka K., Pascual V., Blomberg B.B., Nestle F., Nussenblatt R.B., Brinkman R.R., Gottardo R., Maecker H., McCoy J.P. Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium. Sci. Rep., 2016, Vol. 6, pp. 20686. doi: 10.1038/srep20686.

20. de Goeje P.L., Klaver Y., Kaijen-Lambers M.E.H., Langerak A.W., Vroman H., Kunert A., Lamers C.H.J., Aerts J.G.J.V., Debets R., Hendriks R.W. Autologous Dendritic Cell Therapy in Mesothelioma Patients Enhances Frequencies of Peripheral CD4 T Cells Expressing HLA-DR, PD-1, or ICOS. Front Immunol., 2018, Vol. 9, pp. 2034. doi: 10.3389/fimmu.2018.02034.

21. Han Y., Chen Z., Yang Y., Jiang Z., Gu Y., Liu Y., Lin C., Pan Z., Yu Y., Jiang M., Zhou W., Cao X. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology, 2014, Vol. 59, no. 2, pp. 567-579. doi: 10.1002/hep.26694.

22. Deicher A., Andersson R., Tingstedt B, Lindell G, Bauden M, Ansari D. Targeting dendritic cells in pancreatic ductal adenocarcinoma. Cancer Cell Int., 2018, Vol. 18, pp. 85. doi: 10.1186/s12935-018-0585-0.

23. Hsu J.L., Bryant C.E., Papadimitrious M.S., Kong B., Gasiorowski R.E., Orellana D., McGuire H.M., Groth B.F.S., Joshua D.E., Ho P.J., Larsen S., Iland H.J., Gibson J., Clark G.J., Fromm P.D., Hart D.N. A blood dendritic cell vaccine for acute myeloid leukemia expands anti-tumor T cell responses at remission. Oncoimmunology, 2018, Vol. 7, no. 4, e1419114. doi: 10.1080/2162402X.2017.1419114.

24. Finak G., Langweiler M., Jaimes M., Malek M., Taghiyar J., Korin Y., Raddassi K., Devine L., Obermoser G., Pekalski M.L., Pontikos N., Diaz A., Heck S., Villanova F., Terrazzini N., Kern F., Qian Y., Stanton R., Wang K., Brandes A., Ramey J., Aghaeepour N., Mosmann T., Scheuermann R.H., Reed E., Palucka K., Pascual V., Blomberg B.B., Nestle F., Nussenblatt R.B., Brinkman R.R., Gottardo R., Maecker H., McCoy J.P. Standardizing Flow Cytometry Immunophenotyping Analysis from the Human ImmunoPhenotyping Consortium. Sci. Rep., 2016, Vol. 6, pp. 20686. doi: 10.1038/srep20686.

25. Ki K.K., Faddy H.M., Flower R.L., Dean M.M. Packed Red Blood Cell Transfusion Modulates Myeloid Dendritic Cell Activation and Inflammatory Response In Vitro. J. Interferon & Cytokine Res., 2018, Vol. 38, no. 3, pp. 111-121. doi: 10.1089/jir.2017.0099.

26. Han Y., Chen Z., Yang Y., Jiang Z., Gu Y., Liu Y., Lin C., Pan Z., Yu Y., Jiang M., Zhou W., Cao X. Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology, 2014, Vol. 59, no. 2, pp. 567-579. doi: 10.1002/hep.26694.

27. Kwong C., Gilman-Sachs A., Beaman K. An independent endocytic pathway stimulates different monocyte subsets by the a2 N-terminus domain of vacuolar-ATPase. Oncoimmunology, 2013, Vol. 2, no. 1, e22978. doi: 10.4161/onci.22978.

28. Hsu J.L., Bryant C.E., Papadimitrious M.S., Kong B., Gasiorowski R.E., Orellana D., McGuire H.M., Groth B.F.S., Joshua D.E., Ho P.J., Larsen S., Iland H.J., Gibson J., Clark G.J., Fromm P.D., Hart D.N. A blood dendritic cell vaccine for acute myeloid leukemia expands anti-tumor T cell responses at remission. Oncoimmunology, 2018, Vol. 7, no. 4, e1419114. doi: 10.1080/2162402X.2017.1419114.

29. Li J.G., Du Y.M., Yan Z.D., Yan J., Zhuansun Y.X., Chen R., Zhang W., Feng S.L., Ran P.X. CD80 and CD86 knockdown in dendritic cells regulates Th1/Th2 cytokine production in asthmatic mice. Exp. Ther. Med., 2016, Vol. 11, no. 3, pp. 878-884. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774365/pdf/etm-11-03-0878.pdf.

30. Ki K.K., Faddy H.M., Flower R.L., Dean M.M. Packed Red Blood Cell Transfusion Modulates Myeloid Dendritic Cell Activation and Inflammatory Response In Vitro. J. Interferon & Cytokine Res., 2018, Vol. 38, no. 3, pp. 111-121. doi: 10.1089/jir.2017.0099.

31. Lim T.S., Goh J.K.H., Mortellaro A., Lim C.T., Hämmerling G.J., Ricciardi-Castagnoli P. CD80 and CD86 differentially regulate mechanical interactions of t-cells with antigen-presenting dendritic cells and b-cells. PLoS One, 2012, Vol. 7, nj. 9, e45185. https://doi.org/10.1371/journal.pone.0045185

32. Kwong C., Gilman-Sachs A., Beaman K. An independent endocytic pathway stimulates different monocyte subsets by the a2 N-terminus domain of vacuolar-ATPase. Oncoimmunology, 2013, Vol. 2, no. 1, e22978. doi: 10.4161/onci.22978.

33. Loughland J.R., Minigo G., Burel J., Tipping P.E., Piera K.A., Amante F.H., Engwerda C.R., Good M.F., Doolan D.L., Anstey N.M., McCarthy J.S., Woodberry T. Profoundly Reduced CD1c+ Myeloid Dendritic Cell HLA-DR and CD86 Expression and Increased Tumor Necrosis Factor Production in Experimental Human Blood-Stage Malaria Infection. Infect. Immun., 2016, Vol. 84, no. 5, pp. 1403-1412. doi: 10.1128/IAI.01522-15.

34. Li J.G., Du Y.M., Yan Z.D., Yan J., Zhuansun Y.X., Chen R., Zhang W., Feng S.L., Ran P.X. CD80 and CD86 knockdown in dendritic cells regulates Th1/Th2 cytokine production in asthmatic mice. Exp. Ther. Med., 2016, Vol. 11, no. 3, pp. 878-884. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774365/pdf/etm-11-03-0878.pdf.

35. Ning Y., Shen K., Wu Q., Sun X., Bai Y., Xie Y., Pan J., Qi C. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol. Lett., 2018, Vol. 199, pp. 36-43. doi: 10.1016/j.imlet.2018.05.002.

36. Lim T.S., Goh J.K.H., Mortellaro A., Lim C.T., Hämmerling G.J., Ricciardi-Castagnoli P. CD80 and CD86 differentially regulate mechanical interactions of t-cells with antigen-presenting dendritic cells and b-cells. PLoS One, 2012, Vol. 7, nj. 9, e45185. https://doi.org/10.1371/journal.pone.0045185

37. Qian C., Cao X. Dendritic cells in the regulation of immunity and inflammation. Semin. Immunol., 2018, Vol. 35, pp. 3-11. doi: 10.1016/j.smim.2017.12.002.

38. Loughland J.R., Minigo G., Burel J., Tipping P.E., Piera K.A., Amante F.H., Engwerda C.R., Good M.F., Doolan D.L., Anstey N.M., McCarthy J.S., Woodberry T. Profoundly Reduced CD1c+ Myeloid Dendritic Cell HLA-DR and CD86 Expression and Increased Tumor Necrosis Factor Production in Experimental Human Blood-Stage Malaria Infection. Infect. Immun., 2016, Vol. 84, no. 5, pp. 1403-1412. doi: 10.1128/IAI.01522-15.

39. Sansom D.M., Manzotti C.N., Zheng Y. What's the difference between CD80 and CD86? Trends Immunol., 2003, Vol. 24, no. 6, pp. 314-319. doi:10.1016/S1471-4906(03)00111-X.

40. Ning Y., Shen K., Wu Q., Sun X., Bai Y., Xie Y., Pan J., Qi C. Tumor exosomes block dendritic cells maturation to decrease the T cell immune response. Immunol. Lett., 2018, Vol. 199, pp. 36-43. doi: 10.1016/j.imlet.2018.05.002.

41. Shang N., Figini M., Shangguan J., Wang B., Sun C., Pan L., Ma Q., Zhang Z. Dendritic cells based immunotherapy. Am. J. Cancer Res., 2017, Vol. 7, no. 10, pp. 2091-2102. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5665855/pdf/ajcr0007-2091.pdf.

42. Qian C., Cao X. Dendritic cells in the regulation of immunity and inflammation. Semin. Immunol., 2018, Vol. 35, pp. 3-11. doi: 10.1016/j.smim.2017.12.002.

43. Song X., Ding Y., Liu G., Yang X., Zhao R., Zhang Y., Zhao X., Anderson G.J., Nie G. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases. J. Biol. Chem., 2016, Vol. 291, no. 16, pp. 8453-8464. doi: 10.1074/jbc.M116.716316.

44. Sansom D.M., Manzotti C.N., Zheng Y. What's the difference between CD80 and CD86? Trends Immunol., 2003, Vol. 24, no. 6, pp. 314-319. doi:10.1016/S1471-4906(03)00111-X.

45. Song X., Zhang Y., Zhang L., Song W., Shi L. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget, 2018, Vol. 9, no. 14, pp. 11572-11580. doi: 10.18632/oncotarget.24098.

46. Shang N., Figini M., Shangguan J., Wang B., Sun C., Pan L., Ma Q., Zhang Z. Dendritic cells based immunotherapy. Am. J. Cancer Res., 2017, Vol. 7, no. 10, pp. 2091-2102. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC5665855/pdf/ajcr0007-2091.pdf.

47. Souto G.R., Matias M.D.P., Nunes L.F.M., Ferreira R.C., Mesquita R.A. Mature dendritic cell density is affected by smoking habit, lesion size, and epithelial dysplasia in oral leukoplakia samples. Arch. Oral. Biol., 2018, Vol. 95, pp. 51-57. doi: 10.1016/j.archoralbio.2018.07.008

48. Song X., Ding Y., Liu G., Yang X., Zhao R., Zhang Y., Zhao X., Anderson G.J., Nie G. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases. J. Biol. Chem., 2016, Vol. 291, no. 16, pp. 8453-8464. doi: 10.1074/jbc.M116.716316.

49. Suryatenggara J., Wibowo H., Atmodjo W.L., Mathew G. Characterization of alpha-fetoprotein effects on dendritic cell and its function as effector immune response activator. J. Hepatocell. Carcinoma., 2017, Vol. 4, pp. 139-151. doi: 10.2147/JHC.S139070.

50. Song X., Zhang Y., Zhang L., Song W., Shi L. Hypoxia enhances indoleamine 2,3-dioxygenase production in dendritic cells. Oncotarget, 2018, Vol. 9, no. 14, pp. 11572-11580. doi: 10.18632/oncotarget.24098.

51. Sutherland D.R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin Cytom., 2018, Vol. 94, no. 1, pp. 1-15. doi: 10.1002/cyto.b.21626.

52. Souto G.R., Matias M.D.P., Nunes L.F.M., Ferreira R.C., Mesquita R.A. Mature dendritic cell density is affected by smoking habit, lesion size, and epithelial dysplasia in oral leukoplakia samples. Arch. Oral. Biol., 2018, Vol. 95, pp. 51-57. doi: 10.1016/j.archoralbio.2018.07.008

53. Wang C., Pu J., Yu H., Liu Y., Yan H., He Z., Feng X. A Dendritic Cell Vaccine Combined With Radiotherapy Activates the Specific Immune Response in Patients With Esophageal Cancer. J. Immunother., 2017, Vol. 40, no. 2, pp. 71-76. doi: 10.1097/CJI.0000000000000155.

54. Suryatenggara J., Wibowo H., Atmodjo W.L., Mathew G. Characterization of alpha-fetoprotein effects on dendritic cell and its function as effector immune response activator. J. Hepatocell. Carcinoma., 2017, Vol. 4, pp. 139-151. doi: 10.2147/JHC.S139070.

55. Wu M.R., Zhang T., DeMars L.R., Sentman C.L. B7H6-specific chimeric antigen receptors lead to tumor elimination and host antitumor immunity. Gene Ther., 2015, Vol. 22, no. 8, pp. 675-684. doi: 10.1038/gt.2015.29.

56. Sutherland D.R., Ortiz F., Quest G., Illingworth A., Benko M., Nayyar R., Marinov I. High-sensitivity 5-, 6-, and 7-color PNH WBC assays for both Canto II and Navios platforms. Cytometry B Clin Cytom., 2018, Vol. 94, no. 1, pp. 1-15. doi: 10.1002/cyto.b.21626.

57. Yanagisawa R., Koizumi T., Koya T., Sano K., Koido S., Nagai K., Kobayashi M., Okamoto M., Sugiyama H., Shimodaira S. WT1-pulsed Dendritic Cell Vaccine Combined with Chemotherapy for Resected Pancreatic Cancer in a Phase I Study. Anticancer Res., 2018, Vol. 38, no. 4, pp. 2217-2225. doi: 10.21873/anticanres.12464.

58. Wang C., Pu J., Yu H., Liu Y., Yan H., He Z., Feng X. A Dendritic Cell Vaccine Combined With Radiotherapy Activates the Specific Immune Response in Patients With Esophageal Cancer. J. Immunother., 2017, Vol. 40, no. 2, pp. 71-76. doi: 10.1097/CJI.0000000000000155.

59. Wu M.R., Zhang T., DeMars L.R., Sentman C.L. B7H6-specific chimeric antigen receptors lead to tumor elimination and host antitumor immunity. Gene Ther., 2015, Vol. 22, no. 8, pp. 675-684. doi: 10.1038/gt.2015.29.

60. Yanagisawa R., Koizumi T., Koya T., Sano K., Koido S., Nagai K., Kobayashi M., Okamoto M., Sugiyama H., Shimodaira S. WT1-pulsed Dendritic Cell Vaccine Combined with Chemotherapy for Resected Pancreatic Cancer in a Phase I Study. Anticancer Res., 2018, Vol. 38, no. 4, pp. 2217-2225. doi: 10.21873/anticanres.12464.


Review

For citations:


Savchenko A.A., Borisov A.G., Kudryavtsev I.V., Moshev A.V. INTERDEPENDENCE BETWEEN THE PHENOTYPE OF DENDRITIC CELLS AND AMOUNTS OF BLOOD PROINFLAMMATORY MONOCYTES IN PATIENTS WITH KIDNEY CANCER. Medical Immunology (Russia). 2019;21(4):689-702. (In Russ.) https://doi.org/10.15789/1563-0625-2019-4-689-702

Views: 914


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)