Preview

Медицинская иммунология

Расширенный поиск

РЕГУЛЯТОРНЫЕ Т-КЛЕТКИ В ФОЛЛИКУЛЯРНОЙ ЖИДКОСТИ У ЖЕНЩИН, ПРОХОДЯЩИХ ЛЕЧЕНИЕ ПО ПРОГРАММЕ ЭКО

https://doi.org/10.15789/1563-0625-2018-5-657-666

Полный текст:

Аннотация

Данная работа посвящена исследованию различных субпопуляций FoxP3+ регуляторных Т-клеток (Treg) в фолликулярной жидкости (ФЖ) женщин, проходивших лечение методом ЭКО, и взаимосвязи Treg с параметрами фолликуло-/оогенеза, качеством эмбрионов и исходом ЭКО. В исследование были включены 53 женщины, участвующие в программе стимуляции суперовуляции в возрасте от 25 до 46 лет. Содержание Treg в ФЖ определяли методом проточной цитофлуориметрии с использованием моноклональных антител. Исследования ФЖ выявили наличие в ней FoxP3+Т-клеток как в популяции CD4+ (CD4+FoxP3+), так и CD4(CD4-FoxP3+) лимфоцитов. При этом FoxP3-клетки определяли в популяциях CD4+CD25+ и CD4+CD25лимфоцитов. Женщины с наименьшим числом фолликулов и ооцитов характеризовались наибольшим содержанием в ФЖ CD4+CD25-FoxP3+ и CD4FoxP3+ клеток соответственно. Ретроспективный анализ также выявил сопряженность между относительным содержанием Treg и качеством ооцитов и эмбрионов. Высокий индекс оплодотворения (ИО 0,75-1,0) ассоциировался с более высоким содержанием в ФЖ CD4-FoxP3+ клеток, а высокое качество бластоцист на 5 сутки в сравнении с оппозитной группой характеризовалось более высоким содержанием в ФЖ не только CD4-FoxP3+, но и CD4+FoxP3+ клеток. При этом наступление и прогрессирование беременности также регистрировалось у женщин с наибольшим числом CD4-FoxP3+ клеток. Полученные данные свидетельствуют о наличии различных субпопуляций FoxP3+Т-клеток в ФЖ и их возможном участии в регуляции ранних этапов репродуктивного процесса. Особую роль среди различных субпопуляций Treg, по-видимому, играют СD4-FoxP3+Т-клетки, количество которых прямо сопряжено с эффективностью оогенеза, бластуляции и наступлением клинической беременности.

Об авторах

E. А. Андреева
ФГБНУ «Научно-исследовательский институт фундаментальной и клинической иммунологии».
Россия

эмбриолог, аспирант лаборатории клеточной иммунотерапии.

630099, Россия, г. Новосибирск, ул. Ядринцевская, 14.


Н. А. Хонина
ФГБНУ «Научно-исследовательский институт фундаментальной и клинической иммунологии».
Россия

д.м.н., врач клинический иммунолог, ведущий научный сотрудник лаборатории клеточной иммунотерапии.

Новосибирск.


М. А. Тихонова
ФГБНУ «Научно-исследовательский институт фундаментальной и клинической иммунологии».
Россия

к.б.н., старший научный сотрудник лаборатории клеточной иммунотерапии.

Новосибирск.


Е. В. Баторов
ФГБНУ «Научно-исследовательский институт фундаментальной и клинической иммунологии».
Россия

к.м.н., научный сотрудник лаборатории клеточной иммунотерапии.

Новосибирск.


Н. М. Пасман
ФГАОУ ВО «Новосибирский государственный университет».
Россия

д.м.н., профессор, врач акушер-гинеколог, заведующая кафедрой акушерства и гинекологии медицинского факультета.

Новосибирск.



E. Р. Черных
ФГБНУ «Научно-исследовательский институт фундаментальной и клинической иммунологии».
Россия

д.м.н., профессор, член-корр. РАН, заведующая лабораторией клеточной иммунотерапии.

Новосибирск.


Список литературы

1. Arruvito L., Sanz M., Banham A.H., Fainboim L. Expansion of СD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. J. Immunol., 2007, Vol. 178, no. 4, рр. 2572-2578.

2. Bao S.H., Wang X.P.,De Lin Q., Wang W.J., Yin G.J., Qiu L.H. Decidual CD4+CD25+CD127dim/- regulatory T cells in patients with unexplained recurrent spontaneous miscarriage. Eur. J. Obstet. Gynecol. Reprod. Biol., 2011, Vol. 55, pp. 94-98.

3. Basuino L., Silveira C.F. Human follicular fluid and effects on reproduction. JBRA Assist. Reprod., 2016, Vol. 20, no. 1, pp. 38-40.

4. Bedke Т., Pretsch L., Karakhanova S., Enk A.H., Mahnke K. Endothelial cells augment the suppressive function of CD4+CD25+Foxp3+ Regulatory T cells: Involvement of programmed death-1 and IL-10. J. Immunol., 2010, Vol. 184, pp. 5562-5570.

5. Bonelli M., Savitskaya A., Steiner C.W., Rath E., Smolen J.S., Scheinecker C. Phenotypic and functional analysis of CD4+CD25-Foxp3+ T cells in patients with systemic lupus erythematosus. J. Immunol., 2009, Vol. 182, no. 3, pp. 1689-1695.

6. Boyman O., Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat. Rev. Immunol., 2012, pp. 180-190.

7. Bukulmez O., Arici A. Leukocytes in ovarian function. Hum. Reprod. Update, 2000, Vol. 6, no. 1, pp. 1-15.

8. Chakraborty S., Panda A.K., Bose S., Roy D., Kajal K., Guha D., Sa G. Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8+ Treg cells. Sci Rep., 2017, no. 7, Article number 1628. doi:10.1038/s41598-017-01788-z.

9. Chaput N., Darrasse-Jèze G., Bergot A.S., Cordier C., Ngo-Abdalla S., Klatzmann D., Azogui O. Regulatory T cells prevent CD8 T cell maturation by inhibiting CD4 Th cells at tumor sites. J. Immunol., 2007, Vol. 179, no. 8, pp. 4969-4978.

10. Chen W.J., Hu X.F., Yan M. Human umbilical vein endothelial cells promote the inhibitory activation of CD4(+)CD25(+)Foxp3(+) regulatory T cells via PD-L1. Atherosclerosis, 2016, Vol. 244, pp. 108-112.

11. Du M.R., Guo P.F., Piao H.L., Wang S.C., Sun C., Jin L.P., Tao Y., Li Y.H., Zhang D., Zhu R., Fu Q. Embryonic trophoblasts induce decidual regulatory T cell differentiation and maternal-fetal tolerance through thymic stromal lymphopoietin instructing dendritic cells. J. Immunol., 2014, Vol. 15, no. 192 (4), pp. 1502-1511.

12. Gardner D.K., Schoolcraft W.B. Culture and transfer of human blastocysts. Curr. Opin. Obstet. Gynecol., 1999, Vol. 11, no. 3, pp. 307-311.

13. Churlaud G., Pitoiset F., Jebbawi F., Lorenzon R., Bellier B., Rosenzwajg M., Klatzmann D. Human and mouse CD8+CD25+FOXP3+ regulatory T cells at steady state and during interleukin-2 therapy. Front. Immunol., 2015, Vol. 6, p. 171.

14. Horwitz D.A. Identity of mysterious CD4+CD25-Foxp3+ cells in SLE. Arthritis Res. Ther., 2010, Vol. 12, no. 1, p. 101.

15. Kiniwa Y., Miyahara Y., Wang H.Y., Peng W., Peng G., Wheeler T.M., Thompson T.C., Old L.J., Wang R.F. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin. Cancer Res., 2007, Vol. 13, no. 23, pp. 6947-6958.

16. Kollmann Z., Schneider S., Fux M., Bersinger N.A., Wolff M. Gonadotrophin stimulation in IVF alters the immune cell profile in follicular fluid and the cytokine concentrations in follicular fluid and serum. Hum. Reprod., 2017, Vol. 32, no. 4, pp. 820-831.

17. Martins W.P., Nastri C.O., Rienzi L., Poel S.Z., Gracia C., Racowsky C. Blastocyst vs cleavage-stage embryo transfer: systematic review and meta-analysis of reproductive outcomes. Ultrasound Obstet. Gynecol., 2017, Vol. 49, no. 5, pp. 583-591.

18. Mei S., Tan J., Chen H., Chen Y., Zhang J. Changes of CD4+CD25high regulatory T cells and FOXP3 expression in unexplained recurrent spontaneous abortion patients. Fertill. Steril., 2010, Vol. 94, no. 6, pp. 2244-2247.

19. Miyara M., Yoshioka Y., Kitoh A., Shima T., Wing K., Niwa A., Parizot C., Taflin C., Heike T., Valeyre D., Mathian A., Nakahata T., Yamaguchi T., Nomura T., Ono M., Amoura Z., Gorochov G., Sakaguchi S. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity, 2009, Vol. 30, no. 6, pp. 899-911.

20. Oakley O.R., Kim H.Y., El-Amouri I., Lin P.P., Cho J., Bani-Ahmad M., Ko C. Periovulatory leukocyte infiltration in the rat ovary. Endocrinology, 2010, Vol. 151, no. 9, pp. 4551-4559.

21. Ohkura N., Kitagawa Y., Sakaguchi S. Development and maintenance of regulatory T cells. Immunity, 2013, Vol. 38, no. 3, pp. 414-423.

22. Rudensky A.Y. Regulatory T cells and Foxp3. Immunol. Rev., 2011, Vol. 241, no. 1, pp. 260-268.

23. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative contro of immune responses. Annu Rev. Immunol., 2004, Vol. 22, pp. 531-562.

24. Woidacki K., Meyer N., Schumacher A., Goldschmidt A., Maurer M., Zenclussen A.C. Transfer of regulatory T cells into abortion-prone mice promotes the expansion of uterine mast cells and normalizes early pregnancy angiogenesis. Sci Rep., 2015, Report 5, 13938. doi:10.1038/srep13938.

25. Yagi H., Nomura T., Nakamura K. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int. Immunol., 2004, Vol. 16, no. 11, pp. 1643-1656.

26. Yang H.X., Zhang W., Zhao L.D., Li Y., Zhang F.C., Tang F.L., He W., Zhang X.: Are CD4+CD25-Foxp3+ cells in untreated new-onset lupus patients regulatory T cells? Arthritis Res. Ther., 2009, Vol. 11, no. 5, p. R153.

27. Yu J., Qian L., Wu F., Li M., Chen W., Wang H. Decreased frequency of peripheral blood CD8+CD25+FoxP3+regulatory T cells correlates with IL-33 levels in pre-eclampsia. Hypertens Pregnancy, 2017, Vol. 36, no. 2, pp. 217-225.

28. Zamah A.M., Hassis M.E., Albertolle M.E., Williams K.E. Proteomic analysis of human follicular fluid from fertile women. Clin. Proteomics, 2015, Vol. 12, no. 1, p. 5.

29. Zóka A., Barna G., Somogyi A., Műzes G., Oláh Á., Al-Aissa Z., Hadarits O., Kiss K., Firneisz G. Extension of the CD4+Foxp3+CD25(-/low) regulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity, 2015, Vol. 48, no. 5, pp. 289-297.


Для цитирования:


Андреева E.А., Хонина Н.А., Тихонова М.А., Баторов Е.В., Пасман Н.М., Черных E.Р. РЕГУЛЯТОРНЫЕ Т-КЛЕТКИ В ФОЛЛИКУЛЯРНОЙ ЖИДКОСТИ У ЖЕНЩИН, ПРОХОДЯЩИХ ЛЕЧЕНИЕ ПО ПРОГРАММЕ ЭКО. Медицинская иммунология. 2018;20(5):657-666. https://doi.org/10.15789/1563-0625-2018-5-657-666

For citation:


Andreeva E.A., Khonina N.A., Tikhonova M.A., Batorov E.V., Pasman N.M., Chernykh E.R. REGULATORY T CELLS IN FOLLICULAR FLUID OF WOMEN UNDERGOING IVF TREATMENT. Medical Immunology (Russia). 2018;20(5):657-666. (In Russ.) https://doi.org/10.15789/1563-0625-2018-5-657-666

Просмотров: 119


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)