Preview

Медицинская иммунология

Расширенный поиск

ПРОТИВОРАКОВАЯ ДНК-ВАКЦИНАЦИЯ: ПРИНЦИП И ВОЗМОЖНОСТИ МЕТОДА

https://doi.org/10.15789/1563-0625-2017-2-145-156

Полный текст:

Аннотация

Резюме. Традиционные методы лечения онкологических заболеваний приближаются к пределу своей эффективности. Стремительное развитие иммунологии и экспериментальной иммунотерапии привело к первым успехам вакцинации против опухолей. Последняя декада знаменательна переходом вакцинации из лаборатории в онкологическую клинику и ростом популярности ДНК-вакцин. На сегодняшний день накоплен большой массив экспериментальных данных и результатов клинических испытаний, связанных с разнообразными способами получения и применения ДНК-вакцин. В данном обзоре рассмотрены принципы получения ДНК-вакцин, разнообразие их конструкций, механизм действия, формы и способы доставки в организм.

 

Об авторах

М. В. Стёганцева
Республиканский научно-практический центр детской онкологии, гематологии и иммунологии
Беларусь
магистр биологических наук, младший научный сотрудник лаборатории генетических биотехнологий


А. Н. Мелешко
Республиканский научно-практический центр детской онкологии, гематологии и иммунологии
Беларусь
к.б.н., заведующий лабораторией молекулярно-генетических исследований


Список литературы

1. Попов Ю.А., Микшис Н.И. Генетические (ДНК) вакцины // Проблемы особо опасных инфекций, 2010. T. 105. C. 20-24. [Popov Yu.A., Mikshis N.I. Genetic (DNA) vaccines. Problemy osobo opasnykh infektsiy = Plague Problems, 2010 ,Vol. 105, pp. 20-24. (In Russ.)]

2. Южакова Д.В., Ширманова М.В., Сергеева Т.Ф., Загайнова Е.В., Лукъянов К.А. Иммунотерапия злокачественных новообразований // Современные технологии в медицине, 2016. Т. 8, № 1. С. 173-182. [Yuzhakova D.V., Shirmanova М.V., Sergeeva Т.F., Zagaynova E.V., Lukyanov К.А. Immunotherapy of Cancer. Sovremennye tekhnologii v meditsine = Modern Technologies in Medicine, 2016, Vol. 8, no. 1, pp. 173-182. (In Russ.)]

3. Ardolino M., Hsu J., Raulet D.H. Cytokine treatment in cancer immunotherapy. Oncotarget., 2015, Vol. 6, no. 23, pp. 19346-19347.

4. Boussif O., Lezoualc’h F., Zanta M.A., Mergny M.D., Scherman D., Demeneix B., Behr J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci., 1995, Vol. 92, no. 16, pp. 7297-7301.

5. Brodeur G.M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer, 2003, Vol. 3, no. 3, pp. 203-216.

6. Chang D.Z., Lomazow W., Somberg C.J., Stan R., Perales M.A. Granulocyte-macrophage colony stimulating factor: an adjuvant for cancer vaccines. Hematology, 2004, Vol. 9, no. 3, pp. 207-215.

7. Cheng M., Chen Y., Xiao W., Sun R., Tian Z. NK cell-based immunotherapy for malignant diseases. Cell. Mol. Immunol., 2013, Vol. 10, no. 3, pp. 230-252.

8. Cho C.S. Design and development of degradable polyethylenimines for delivery of DNA and small interfering RNA. ISRN Materials Science, 2012, Vol. 2012, pp. 1-24.

9. Cho H.I., Celis E. Design of immunogenic and effective multi-epitope DNA vaccines for melanoma. Cancer Immunol. Immunother., 2012, Vol. 61, no. 3, pp. 343-351.

10. Chollet P., Favrot M.C., Hurbin A., Coll J.L. Side-effects of a systemic injection of linear polyethylenimineDNA complexes. J. Gene Med., 2002, Vol. 4, no. 1, pp. 84-91.

11. Christensen D., Korsholm K.S., Andersen P., Agger E.M. Cationic liposomes as vaccine adjuvants. Expert. Rev. Vaccines, 2011, Vol. 10, no. 4, pp. 785-796.

12. Conry R.M., LoBuglio A.F., Kantor J., Schlom J., Loechel F., Moore S.E., Sumerel L.A., Barlow D.L., Abrams S., Curiel D.T. Immune response to a carcinoembryonic antigen polynucleotide vaccine. Cancer. Res., 1994, Vol. 54, no. 5, pp. 1164-1168.

13. Coulie P.G., Eynde B.J., Bruggen P., Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat. Rev. Cancer, 2014, Vol. 14, no. 2, pp. 135-146.

14. Datta J., Terhune J.H., Lowenfeld L., Cintolo J.A., Xu S., Roses R.E., Czerniecki B.J. Optimizing dendritic cell-based approaches for cancer immunotherapy. Yale. J. Biol. Med., 2014, Vol. 87, no. 4, pp. 491-518.

15. Dempsey A., Bowie A.G. Innate immune recognition of DNA: A recent history. Virology, 2015, Vol. 479-480, pp. 146-152.

16. Desmet C.J., Ishii K.J. Nucleic acid sensing at the interface between innate and adaptive immunity in vaccination. Nat. Rev. Immunol., 2012, Vol. 12, pp. 479-491

17. Eggermont L.J., Paulis L.E., Tel J., Figdor C.G. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol., 2014, Vol. 32, no. 9, pp. 456-465.

18. El-Jurdi N., Reljic T., Kumar A., Pidala J., Bazarbachi A., Djulbegovic B., Kharfan-Dabaja M.A. Efficacy of adoptive immunotherapy with donor lymphocyte infusion in relapsed lymphoid malignancies. Immunotherapy, 2013, Vol. 5, no. 5, pp. 457-466.

19. Fratta E., CoralS., Covre A., Parisi G., Colizzi F., Danielli R., Nicolay H.J., Sigalotti L., Maio M. The biology of cancer testis antigens: Putative function, regulation and therapeutic potential. Mol. Onc., 2011, Vol. 5, no. 2, pp. 164-182.

20. Geresu M.A., Sultan A.F., Seifudin K.A., Gezahegne M.K. Immunotherapy against cancer: A comprehensive review. J. Cancer Res. Exp. Oncol., 2016, Vol. 8, no. 2, pp. 15-25.

21. Giedlin M.A. Cytokines as vaccine adjuvants: the use of interleukin-2. Ed. O’Hagan D.T. Vaccine Adjuvants, 2000, Vol. 42, pp. 283-297.

22. Gothelf A., Gehl J. What you always needed to know about electroporation based DNA vaccines. Hum. Vaccin. Immunother., 2012, Vol. 8, no. 11, pp. 1694-1702.

23. Grant E.V., Thomas M., Fortune J., Klibanov A.M., Letvin N.L. Enhancement of plasmid DNA immunogenicity with linear polyethylenimine. Eur. J. Immunol., 2012, Vol. 42, no. 11, pp. 2937-2948.

24. Heath W.R., Belz G.T., Behrens G.M., Smith C.M., Forehan S.P., Parish I.A., Davey G.M., Wilson N.S., Carbone F.R., Villadangos J.A. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol. Rev., 2004, Vol. 199, no. 1, pp. 9-26.

25. Hersh E.M., Akporiaye E., Harris D., Stopeck A.T., Unger E.C., Warneke J.A., Kradjian S.A. Phase I study of immunotherapy of malignant melanoma by direct gene transfer. Hum. Gene Ther., 1994, Vol. 5, no. 11, pp. 1371- 1384.

26. Herweijer H., Wolff J.A. Progress and prospects: naked DNA gene transfer and therapy. Gene Therapy, 2003, Vol. 10, no. 6, pp. 453-458.

27. Hynes N.E., Lane H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, Vol. 5, no. 7, pp. 341-354.

28. Jeanbart L., Ballester M., Titta A, Corthesy P., Romero P., Hubbell J.A., Swartz M.A. Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol. Res., 2014, Vol. 2, no. 5, pp. 436-447.

29. Khalil D.N., Smith E.L., Brentjens R.J., Wolchok J.D. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Onc., 2016, Vol. 13, no. 5, pp. 273-290.

30. Khanna R. Tumor surveillance: missing peptides and MHC molecules. Immunol. Cell Biol., 1998, Vol. 76, no. 1, pp. 20-26.

31. Kichler A., Behr J.P., Erbacher P. Polyethylenimines: a family of potent polymers for nucleic acid delivery. Ed. Huang L., Hung M.C., Wagner E. Nonviral Vectors for Gene Therapy, 1999, pp. 191-206.

32. Kobiyama K., Jounai N., Aoshi T., Tozuka M., Takeshita F., Coban C., Ishii K.J. Innate immune signaling by and genetic adjuvants for DNA vaccination. Vaccines, 2013, Vol. 1, no. 3, pp. 278-292.

33. Kochan G., Escors D., Breckpot K., Guerrero-Setas D. Role of non-classical MHC class I molecules in cancer immunosuppression. Oncoimmunol., 2013, Vol. 2, no 11, pp. e26491-e26498.

34. Kodama Y., Ohkubo C., Kurosaki T., Egashira K., Sato K., Fumoto S., Nishida K., Higuchi N., Kitahara T., Nakamura T., Sasaki H. Secure and effective delivery system of plasmid dna coated by polynucleotide. J. Drug Target., 2014, Vol. 23, no. 1, pp.43-51.

35. Koh Y.T., García-Hernández M.L., Kast W.M. Tumor immune escape mechanisms. Ed. Teicher B. Cancer Drug Resistance, 2006, pp. 577-602.

36. Kunath K., Harpe A., Fischer D., Petersen H., Bickel U., Voigt K., Kissel T. Low-molecular-weight polyethylenimine as a non-viral vector for DNA delivery: comparison of physicochemical properties, transfection efficiency and in vivo distribution with high-molecular-weight polyethylenimine. J. Control. Release, 2003, Vol. 89, no, 1, pp. 113-125.

37. Liang W., Lam K.W. Endosomal escape pathways for non-viral nucleic acid delivery systems. J. Control. Release, 2012, Vol. 151, no. 3, pp. 220-228.

38. Linnebacher M., Gebert J., Rudy W. Frameshift peptide derived T-cell epitopes: a source of novel tumorspecific antigens. Int. J. Cancer, 2001, Vol. 93, no. 1, pp. 6-11.

39. Ma B., Zhang S., Jiang H., Zhao B., Lu H. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J. Control. Release, 2007, Vol. 123, pp. 184-194.

40. Mariri A., Tibor A., Lestrate P., Mertens P., Bolle X., Letesson J.J. Yersinia enterocoliticaas a vehicle for a naked DNA vaccine encoding Brucella abortus bacterioferritin or P39 antigen. Infect. Immun., 2002, Vol. 70, no. 4, pp. 1915-1923.

41. McAllister J., Proll D. Comparison of DNA vaccine delivery systems: intramuscular injection versus gene gun administration. DSTO, 2004, Vol. 0567, pp. 1-9.

42. McCreery T.P., Sweitzer R.H., Unger E.C., Sullivan S. DNA Delivery to cells in vivo by ultrasound gene delivery to mammalian cells. Ed. Heiser W.C. Methods in Molecular Biology, 2004, Vol. 245, pp. 293-298.

43. Melero I., Gaudernack G., Gerritsen W., Huber C., Parmiani G., Scholl S., Thatcher N., Wagstaff J., Zielinski C., Faulkner I.,Mellstedt H. Therapeutic vaccines for cancer: an overview of clinical trials. Nat. Rev. Clin Onc., 2014, Vol. 11, pp. 509-524.

44. Mukherjee S., Ray S., Thakur R.S. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian J. Pharm. Sci., 2009, Vol. 71, no. 4, pp. 349-358.

45. Overwijk W.W., Theoret M.R., Restifo N.P. The future of interleukin-2: enhancing therapeutic anticancer vaccines. Cancer J. Sci. Am., 2000, Vol. 6, no. 1, pp. S76-S80.

46. Parmiani G., Russo V., Maccalli C., Parolini D., Rizzo N., Maio M. Peptide-based vaccines for cancer therapy. Hum.Vaccin. Immunother., 2014, Vol. 10, no. 11, pp. 3175-3178.

47. Paterson Y., Guirnalda P.D., Wood L.M. Listeria and Salmonella bacterial vectors of tumor-associated antigens for cancer immunotherapy. Semin. Immunol., 2010, Vol. 22, no. 3, pp. 183-189.

48. Pereira V.B. Zurita-Turk M., Saraiva T.L, Castro C.P. DNA vaccine approach: from concepts to applications. World J. Vaccin., 2014, Vol. 4, no. 2, pp. 50-71.

49. Qin H., Cha S., Neelapu S.S., Lou Y., Wei J., Liu Y.J., Kwak L.W. Vaccine site inflammation potentiates idiotype DNA vaccine-induced therapeutic T cell-, and not B cell-, dependent antilymphoma immunity. Blood, 2009, Vol. 114, no. 19, pp. 4142-4149.

50. Radhakrishnan A.K. Advances in immunotherapy using dendritic cells. JSME, 2012, Vol. 6, pp. 113-117.

51. Radkevich-Brown O., Piechocki M.P., Back J.B., Weise A.M., Pilon-Thomas S., Wei W.Z. Intratumoral DNA electroporation induces anti-tumor immunity and tumor regression. Cancer Immunol. Immunother., 2010, Vol. 59, no. 3, pp. 409-417.

52. Restifo N.P., Minev B.R., Taggarse A.S., McFarland B.J., Wang M., Irvine K.R. Enhancing the recognition of tumour associated antigens. Folia Biol., 1994, Vol. 40, no. 1-2, pp. 74-88.

53. Rice J., Elliott T., Buchan S., Stevenson F.K.DNA fusion vaccine designed to induce cytotoxic T cell responses against defined peptide motifs: implications for cancer vaccines. J. Immunol., 2001, Vol. 167, no. 3, pp. 1558-1565.

54. Rice J., Ottensmeier C.H., Stevenson F.K. DNA vaccines: precision tools for activating effective immunity against cancer. Nat. Rev. Cancer., 2008, Vol. 8, no. 2, pp. 108-120.

55. Rock K.L., Shen L. Cross-presentation: underlying mechanisms and role in immune surveillance. Immunol. Rev., 2005, Vol. 207, no. 1, pp. 166-183.

56. Savelyeva N., Allen A., Chotprakaikiat W., Harden E., Jobsri J., Godeseth R., Wang Y., Stevenson F., Ottensmeier C. Linked CD4 T cell help: broadening immune attack against cancer by vaccination. Curr. Top. Microbiol. Immunol., 2016 [Epub ahead of print].

57. Savelyeva N., Zhu D., Stevenson F.K. Engineering DNA vaccines that include plant virus coat proteins. Biotechnol. Genet. Eng. Rev., 2003, Vol. 20, no. 1, pp. 101-116.

58. Seok H.Y., Suh H., Baek S., Kim Y.C. Microneedle applications for DNA vaccine delivery to the skin. Methods Mol. Biol., 2014, Vol. 1143, pp. 141-158.

59. Shah M.A. Nanoparticles for DNA vaccine delivery. J. Biomed. Nanotech., 2014, Vol. 10, no. 9, pp. 2332-2349.

60. Shahabi V., Maciag P.C., Rivera S., Wallecha A. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng. Bugs., 2010, Vol. 1, no. 4, pp. 235-243.

61. Shata M.T, Hone D.M. Vaccination with a Shigella DNA vaccine vector induces antigen-specific CD8+T cells and antiviral protective immunity. J. Virol., 2001, Vol. 75, no. 20, pp. 9665-9670.

62. Shedlock D.J., Weiner D.B. DNA vaccination: antigen presentation and the induction of immunity. J. Leuk. Biol., 2000, Vol. 68, no. 6, pp. 793-806.

63. Sigalotti L., Fratta E., Coral S. Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-Aza-2’-deoxycytidine. Cancer Res., 2004, Vol. 64, no. 24, pp. 9167-9171.

64. Smith K.A. Multivalent immunity targeting tumor-associated antigens by intra-lymph node DNA-prime, peptide-boost vaccination. Cancer Gene Ther., 2011, Vol. 18, no. 1, pp. 63-76.

65. Song K., Chang Y., Prud’homme G.J. IL-12 plasmid-enhanced DNA vaccination against carcinoembryonic antigen (CEA) studied in immune-gene knockout mice. Gene Therapy, 2000, Vol. 7, no. 18, pp. 1527-1535.

66. Swann J.B. Immune surveillance of tumors. J. Clin. Invest,. 2007, Vol. 117, no. 5, pp. 1137-1146.

67. Tang D.C., DeVit M., Johnston S.A. Genetic immunization is a simple method for eliciting an immune response. Nature, 1992, Vol. 356, no. 6365, pp. 152-154.

68. Veiman K.L., Künnapuu K., Lehto T., Kiisholts K., Pärn K., Langel Ü., Kurrikoff K. PEG shielded MMP sensitive CPPs for efficient and tumor specific gene delivery in vivo. J. Control. Release, 2015, Vol. 209, pp. 238-247.

69. Verstrepen B.E., Bins A.D., Rollier C.S., Mooij P., Koopman G., Sheppard N.C.,Sattentau Q., Wagner R., Wolf H., Schumacher T.N., Heeney J.L., Haanen J.B. Improved HIV-1 specific T-cell responses by short-interval DNA tattooing as compared to intramuscular immunization in non-human primates. Vaccine, 2008, Vol. 26, no. 26, pp. 346-351.

70. Vigneron N. Human Tumor Antigens and Cancer Immunotherapy. BioMed. Res. Int., 2015, Vol. 2015, pp. 1-17.

71. Walther W., Fichtner I, Schlag P.M., Stein U.S. Nonviral jet-injection technology for intratumoral in vivo gene transfer of naked DNA. Ed. Walther W., Stein U.S. Gene Therapy of Cancer, 2009, Vol. 542, pp. 195-208.

72. Weir G.M., Liwski R.S., Mansour M. Immune modulation by chemotherapy or immunotherapy to enhance cancer vaccines. Cancers, 2011, Vol. 3, no. 3, pp. 3114-3142.

73. Whiteside T.L., Mandapathil M., Szczepanski M., Szajnik M. Mechanisms of tumor escape from the immune system: Adenosine-producing Treg, exosomes and tumor-associated TLRs. Bull. Cancer, 2011, Vol. 98, no. 2, pp. 25-31.

74. Williams J.A. Vector design for improved DNA vaccine efficacy, safety and production. Vaccines, 2013, Vol. 1, no. 3, pp. 225-249.

75. Yotnda P., Firat H., Garcia-Pons F. Cytotoxic T cell response against the chimeric p210 BCR-ABL protein in patients with chronic myelogenous leukemia. J. Clin. Invest., 1998, Vol. 101, no. 10, pp. 2290-2296.

76. Yotnda P., Garcia F., Peuchmaur M. Cytotoxic T cell response against the chimeric ETV6-AML1 protein in childhood acute lymphoblastic leukemia. J. Clin. Invest. 1998, Vol. 102, no. 2, pp. 455-462.

77. Zanta M.A., Belguise-Valladier P., Behr J.P. Gene delivery: A single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. PNAS, 1998, Vol. 96, no. 1, pp. 91-96.

78. Zeuthen J., Kirkin A.F. Recognition of human tumours: melanoma differentiation antigens. Ed. Robins R.A., Rees R.C., Cancer Immunol., 2001, Vol. 30, pp 59-72.

79. Zhang S., Xu Y., Wang B., Qiao W., Liu D., Li Z. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J. Control. Release, 2004, Vol. 100, no. 2, pp. 165-180.


Для цитирования:


Стёганцева М.В., Мелешко А.Н. ПРОТИВОРАКОВАЯ ДНК-ВАКЦИНАЦИЯ: ПРИНЦИП И ВОЗМОЖНОСТИ МЕТОДА. Медицинская иммунология. 2017;19(2):145-156. https://doi.org/10.15789/1563-0625-2017-2-145-156

For citation:


Stegantseva M.V., Meleshko A.N. ANTICANCER DNA VACCINATION: PRINCIPLE AND PERSPECTIVES OF THE METHOD. Medical Immunology (Russia). 2017;19(2):145-156. (In Russ.) https://doi.org/10.15789/1563-0625-2017-2-145-156

Просмотров: 7161


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)