FUNCTIONAL ACTIVITY OF MURINE B CELL: A ROLE OF MICROENVIRONMENT
https://doi.org/10.15789/1563-0625-2008-1-51-58
Abstract
Abstract. To study influence of microenvironment upon functional activity of B cells, we used experimental models of adoptive cell transfer from CBA to congenic CBA/N mice lacking CD5+ B-1 cells, and cocultivation of CBA/N splenocytes with spleen, or peritoneal CBA cells. B cell activity was determined as numbers of IgM-producing cells, and as amounts of cells producing antibodies to a T-independent antigen type 2 (polyvinylpirrolidone). In vivo distribution of transferred cells was determined as the numbers of cells stained with a vital dye (CDFA-SE) in spleen and peritoneum of recipients. Intravenous injection of CBA splenocytes resulted into a significant (3- to 4-fold) increase in numbers of IgM-producing cells in the spleens of xid–recipients, where their levels reached those of CBA mice. Intravenous injection of CBA/N splenocytes into xid-mice did not induce any increase of IgM-producers in their spleen. That means that increased number of IgM-producers in recipient spleen is due to donor cells, presumably, CD5+ B-1 lymphocytes. Meanwhile, restoration of immune response to polyvinylpirrolidone in xid-mice following transfer of CBA splenocytes was not successful. IgM-producing cells were undetectable in peritoneum of intact mice (both CBA and CBA/N). Intraperitoneal transfer of CBA splenocytes also did not induce their accumulation. It could mean that peritoneal microenvironment inhibits B cell activity. Meanwhile, intravenous injection of «silent» peritoneal cells into CBA/N mice brought about great increase of IgM-producers in recipient spleen, i.e., the «job» of B cells was permitted in other microenvironment. The results yielded in vivo are in agreement with data of in vitro experiments. Addition of CBA splenocytes or peritoneal cells (10-50%) to CBA/N splenocytes induced sharp increase of IgM-producing cells in the cultures. The data obtained provide evidence for a decisive role of microenvironment in functional activity of murine B lymphocytes.
About the Authors
I. N. DyakovRussian Federation
I. V. Grigoriev
Russian Federation
E. V. Sidorova
Russian Federation
I. N. Chernyshova
Russian Federation
References
1. Baumgarth N., Tung J.W., Herzenberg L.A. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion // Springer Semin. Immunopathol. – 2005. – Vol. 26, N 4. – P. 347-62.
2. Berland R., Wortis H.H. Origins and functions of B-1 cells with notes on the role of CD5 // Annu. Rev. Immunol. – 2002. – Vol. 20. – P. 253-300.
3. Chace J.H., Fleming A.L., Gordon J.A., Perandones C.E., Cowdery J.S. Regulation of differentiation of peritoneal B-1a (CD5+) B cells. Activated peritoneal macrophages release prostaglandin E2, which inhibits IgM secretion by peritoneal B-1a cells // J. Immunol. – 1995. – Vol. 154, N 11. – P. 5630-5636.
4. Fagarasan S., Watanabe N., Honjo T. Generation, expansion, migration and activation of mouse B1 cells // Immunol. Rev. – 2000. – Vol. 176. – P. 205-215.
5. Gaudin E., Rosado M., Agenes F., McLean A., Freitas A.A. B-cell homeostasis, competition, resources, and positive selection by self-antigens // Immunol. Rev. – 2004. – Vol. 197. – P. 102-115.
6. Hayakawa K., Hardy R.R., Stall A.M., Herzenberg L.A., Herzenberg L.A. Immunoglobulin-bearing B cells reconstitute and maintain the murine Ly-1 B cell lineage // Eur. J. Immunol. – 1986. – Vol. 16, N 10. – P. 1313-1316.
7. Herzenberg L.A. B-1 cells: the lineage question revisited // Immunol. Rev. – 2000. – Vol. 175. – P. 9-22.
8. Julius P. Jr., Kaga M., Palmer Y., Vyas V., Prior L., Delice D., Riggs J. Recipient age determines the success of intraperitoneal transplantation of peritoneal cavity B cells // Immunology. – 1997. – Vol. 91, N 3. – P. 383-390.
9. Kantor A.B., Herzenberg L.A. Origin of murine B cell lineages // Annu. Rev. Immunol. – 1993. – Vol. 11. – P. 501-538.
10. Kantor A.B., Stall A.M., Adams S., Herzenberg L.A., Herzenberg L.A. Differential development of progenitor activity for three B-cell lineages // Proc. Natl. Acad. Sci. USA. – 1992. – Vol. 89. – P. 3320-3324.
11. Kawahara T., Ohdan H., Zhao G., Yang Y.G., Sykes M. Peritoneal cavity B cells are precursors of splenic IgM natural antibody-producing cells // J. Immunol. – 2003. – Vol. 171, N 10. – P. 5406-5414.
12. Klinman D.M., Holmes K.L. Differences in the repertoire expressed by peritoneal and splenic Ly-1 (CD5)+ B cells // J. Immunol. – 1990. – Vol. 144, N 12. – P. 4520-4525.
13. Kretschmer K., Jungebloud A., Stopkowicz J., Stoermann B., Hoffmann R., Weiss S. Antibody repertoire and gene expression profile: Implications for different developmental and functional traits of splenic and peritoneal B-1 lymphocytes // J. Immunol. – 2003. – Vol. 171. – P. 1192-1201.
14. McIntyre T.M., Holmes K.L., Steinberg A.D., Kastner D.L. CD5+ peritoneal B cells express high levels of membrane, but not secretory, C mu mRNA // J. Immunol. – 1991. – Vol. 146, N 10. – P. 3639-3645.
15. Mond J.J., Vos Q., Lees A., Snapper C.M. T cell independent antigens // Curr. Opin. Immunol. – 1995. – Vol. 7, N 3. – P. 349-354.
16. Montecino-Rodriguez E., Leathers H., Dorshkind K. Identification of a B-1 B cell-specified progenitor // Nat. Immunol. – 2006. – Vol. 7, N 3. – P. 293-301.
17. Murakami M., Tsubata T., Shinkura R., Nisitani S., Okamoto M., Yoshioka H., Usui T., Miyawaki S., Honjo T. Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse // J. Exp. Med. – 1994. – Vol. 180, N 1. – P. 111-121.
18. Prior L., Pierson S., Woodland R.T., Riggs J. Rapid restoration of B-cell function in XID mice by intravenous transfer of peritoneal cavity B cells // Immunology. – 1994. – Vol. 83, N 2. – P. 180-183.
19. Sidorova E.V., Li-Sheng L., Devlin B., Chernishova I., Gavrilova M. Role of different B-cell subsets in the specific and polyclonal immune response to T-independent antigens type 2 // Immunol. Lett. – 2003. – Vol. 88, N 1. – P. 37-42.
20. Tumang J.R., Hastings W.D., Bai C., Rothstein T.L. Peritoneal and splenic B-1 cells are separable by phenotypic, functional, and transcriptomic characteristics // Eur. J. Immunol. – 2004. – Vol. 34, N 8. – P. 2158-2167.
21. Tung J.W., Herzenberg L.A. Unraveling B-1 progenitors // Curr. Opin. Immunol. – 2007. – Vol. 19, N 2. – P. 150-155.
22. Whitmore A.C., Haughton G., Arnold L.W. Phenotype of B cells responding to the thymus-independent type-2 antigen polyvinylpyrrolidinone // Int. Immunol. – 1996. – Vol. 8, N 4. – P. 533-542.
23. Сидорова Е.В. Что нам известно сегодня о В-клетках // Успехи современной биологии. – 2006. – № 3. – С. 227-241.
Review
For citations:
Dyakov I.N., Grigoriev I.V., Sidorova E.V., Chernyshova I.N. FUNCTIONAL ACTIVITY OF MURINE B CELL: A ROLE OF MICROENVIRONMENT. Medical Immunology (Russia). 2008;10(1):51-58. (In Russ.) https://doi.org/10.15789/1563-0625-2008-1-51-58