Preview

Медицинская иммунология

Расширенный поиск

ФУНКЦИОНАЛЬНАЯ АКТИВНОСТЬ В-КЛЕТОК МЫШИ. РОЛЬ МИКРООКРУЖЕНИЯ

https://doi.org/10.15789/1563-0625-2008-1-51-58

Аннотация

Резюме. Для исследования влияния микроокружения на функциональную активность В-лимфоцитов использовали модель адоптивного переноса клеток мышей CBA конгенным мышам CBA/N, не имеющим CD5+ В-1 клеток, и модель кокультивирования спленоцитов мышей CBA/N с клетками селезенки или перитонеальной полости мышей СВА. Об активности В-лимфоцитов судили по числу IgM-продуцентов и клеток, образующих антитела к Т-независимому антигену 2-го типа – поливинилпирролидону. За распределением введенных клеток следили, определяя количество клеток, окрашенных витальным красителем CDFA-SE, в селезенке и брюшной полости реципиентов. Внутривенный перенос спленоцитов CBA приводил к значительному (в 3-4 раза) увеличению числа иммуноглобулин-продуцентов в селезенке xid-реципиентов, достигавшему уровня, характерного для мышей СВА. Перенос CBA/N мышам xid-клеток увеличения количества иммуноглобулин-продуцентов не вызывал. Это свидетельствует о том, что увеличение количества IgM-продуцентов в селезенке реципиентов обусловлено клетками донора, предположительно, CD5+ В-1 лимфоцитами. Вместе с тем восстановить у xid-мышей иммунный ответ на поливинилпирролидон не удалось. В брюшной полости интактных мышей (и CBA, и CBA/N) продуценты иммуноглобулина не выявлялись. Внутрибрюшинный перенос СВА спленоцитов к появлению иммуноглобулин-продуцентов в брюшной полости реципиентов также не приводил. Это означает, что микроокружение брюшной полости тормозит активность В-лимфоцитов. В то же время внутривенное введение «молчащих» перитонеальных клеток мышей CBA мышам CBA/N, приводило к значительному возрастанию числа IgM-продуцентов в селезенке реципиента, т.е. в другом микроокружении работа перитонеальных В-клеток «разрешалась». Данные опытов in vivo согласуются с результатами, полученными in vitro. Добавление к спленоцитам CBA/N 10-50% спленоцитов или перитонеальных клеток мышей СВА приводило к резкому повышению числа IgM-продуцентов в культурах. Полученные данные свидетельствуют об определяющей роли микроокружения в функциональной активности В-лимфоцитов мыши.

Об авторах

И. Н. Дьяков
ГУ НИИ вакцин и сывороток им. И.И. Мечникова РАМН, Москва
Россия

Лаборатория биосинтеза иммуноглобулинов

115088, Москва, ул. 1-я Дубровская, 15



И. В. Григорьев
ГУ НИИ вакцин и сывороток им. И.И. Мечникова РАМН, Москва
Россия
Лаборатория биосинтеза иммуноглобулинов


Е. В. Сидорова
ГУ НИИ вакцин и сывороток им. И.И. Мечникова РАМН, Москва
Россия
Лаборатория биосинтеза иммуноглобулинов


И. Н. Чернышова
ГУ НИИ вакцин и сывороток им. И.И. Мечникова РАМН, Москва
Россия
Лаборатория биосинтеза иммуноглобулинов


Список литературы

1. Baumgarth N., Tung J.W., Herzenberg L.A. Inherent specificities in natural antibodies: a key to immune defense against pathogen invasion // Springer Semin. Immunopathol. – 2005. – Vol. 26, N 4. – P. 347-62.

2. Berland R., Wortis H.H. Origins and functions of B-1 cells with notes on the role of CD5 // Annu. Rev. Immunol. – 2002. – Vol. 20. – P. 253-300.

3. Chace J.H., Fleming A.L., Gordon J.A., Perandones C.E., Cowdery J.S. Regulation of differentiation of peritoneal B-1a (CD5+) B cells. Activated peritoneal macrophages release prostaglandin E2, which inhibits IgM secretion by peritoneal B-1a cells // J. Immunol. – 1995. – Vol. 154, N 11. – P. 5630-5636.

4. Fagarasan S., Watanabe N., Honjo T. Generation, expansion, migration and activation of mouse B1 cells // Immunol. Rev. – 2000. – Vol. 176. – P. 205-215.

5. Gaudin E., Rosado M., Agenes F., McLean A., Freitas A.A. B-cell homeostasis, competition, resources, and positive selection by self-antigens // Immunol. Rev. – 2004. – Vol. 197. – P. 102-115.

6. Hayakawa K., Hardy R.R., Stall A.M., Herzenberg L.A., Herzenberg L.A. Immunoglobulin-bearing B cells reconstitute and maintain the murine Ly-1 B cell lineage // Eur. J. Immunol. – 1986. – Vol. 16, N 10. – P. 1313-1316.

7. Herzenberg L.A. B-1 cells: the lineage question revisited // Immunol. Rev. – 2000. – Vol. 175. – P. 9-22.

8. Julius P. Jr., Kaga M., Palmer Y., Vyas V., Prior L., Delice D., Riggs J. Recipient age determines the success of intraperitoneal transplantation of peritoneal cavity B cells // Immunology. – 1997. – Vol. 91, N 3. – P. 383-390.

9. Kantor A.B., Herzenberg L.A. Origin of murine B cell lineages // Annu. Rev. Immunol. – 1993. – Vol. 11. – P. 501-538.

10. Kantor A.B., Stall A.M., Adams S., Herzenberg L.A., Herzenberg L.A. Differential development of progenitor activity for three B-cell lineages // Proc. Natl. Acad. Sci. USA. – 1992. – Vol. 89. – P. 3320-3324.

11. Kawahara T., Ohdan H., Zhao G., Yang Y.G., Sykes M. Peritoneal cavity B cells are precursors of splenic IgM natural antibody-producing cells // J. Immunol. – 2003. – Vol. 171, N 10. – P. 5406-5414.

12. Klinman D.M., Holmes K.L. Differences in the repertoire expressed by peritoneal and splenic Ly-1 (CD5)+ B cells // J. Immunol. – 1990. – Vol. 144, N 12. – P. 4520-4525.

13. Kretschmer K., Jungebloud A., Stopkowicz J., Stoermann B., Hoffmann R., Weiss S. Antibody repertoire and gene expression profile: Implications for different developmental and functional traits of splenic and peritoneal B-1 lymphocytes // J. Immunol. – 2003. – Vol. 171. – P. 1192-1201.

14. McIntyre T.M., Holmes K.L., Steinberg A.D., Kastner D.L. CD5+ peritoneal B cells express high levels of membrane, but not secretory, C mu mRNA // J. Immunol. – 1991. – Vol. 146, N 10. – P. 3639-3645.

15. Mond J.J., Vos Q., Lees A., Snapper C.M. T cell independent antigens // Curr. Opin. Immunol. – 1995. – Vol. 7, N 3. – P. 349-354.

16. Montecino-Rodriguez E., Leathers H., Dorshkind K. Identification of a B-1 B cell-specified progenitor // Nat. Immunol. – 2006. – Vol. 7, N 3. – P. 293-301.

17. Murakami M., Tsubata T., Shinkura R., Nisitani S., Okamoto M., Yoshioka H., Usui T., Miyawaki S., Honjo T. Oral administration of lipopolysaccharides activates B-1 cells in the peritoneal cavity and lamina propria of the gut and induces autoimmune symptoms in an autoantibody transgenic mouse // J. Exp. Med. – 1994. – Vol. 180, N 1. – P. 111-121.

18. Prior L., Pierson S., Woodland R.T., Riggs J. Rapid restoration of B-cell function in XID mice by intravenous transfer of peritoneal cavity B cells // Immunology. – 1994. – Vol. 83, N 2. – P. 180-183.

19. Sidorova E.V., Li-Sheng L., Devlin B., Chernishova I., Gavrilova M. Role of different B-cell subsets in the specific and polyclonal immune response to T-independent antigens type 2 // Immunol. Lett. – 2003. – Vol. 88, N 1. – P. 37-42.

20. Tumang J.R., Hastings W.D., Bai C., Rothstein T.L. Peritoneal and splenic B-1 cells are separable by phenotypic, functional, and transcriptomic characteristics // Eur. J. Immunol. – 2004. – Vol. 34, N 8. – P. 2158-2167.

21. Tung J.W., Herzenberg L.A. Unraveling B-1 progenitors // Curr. Opin. Immunol. – 2007. – Vol. 19, N 2. – P. 150-155.

22. Whitmore A.C., Haughton G., Arnold L.W. Phenotype of B cells responding to the thymus-independent type-2 antigen polyvinylpyrrolidinone // Int. Immunol. – 1996. – Vol. 8, N 4. – P. 533-542.

23. Сидорова Е.В. Что нам известно сегодня о В-клетках // Успехи современной биологии. – 2006. – № 3. – С. 227-241.


Рецензия

Для цитирования:


Дьяков И.Н., Григорьев И.В., Сидорова Е.В., Чернышова И.Н. ФУНКЦИОНАЛЬНАЯ АКТИВНОСТЬ В-КЛЕТОК МЫШИ. РОЛЬ МИКРООКРУЖЕНИЯ. Медицинская иммунология. 2008;10(1):51-58. https://doi.org/10.15789/1563-0625-2008-1-51-58

For citation:


Dyakov I.N., Grigoriev I.V., Sidorova E.V., Chernyshova I.N. FUNCTIONAL ACTIVITY OF MURINE B CELL: A ROLE OF MICROENVIRONMENT. Medical Immunology (Russia). 2008;10(1):51-58. (In Russ.) https://doi.org/10.15789/1563-0625-2008-1-51-58

Просмотров: 1118


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)