ANALYSIS OF EXPRESSION OF ANGIOGENIC AND ANGIOSTATIC CHEMOKINES AND THEIR RECEPTORS IN SYNOVIAL TISSUE BY QUANTITATIVE REAL-TIME PCR
https://doi.org/10.15789/1563-0625-2013-6-525-534
Abstract
Abstract. Chemokines are generally believed to play an important role in immunopathogenesis of different joint diseases. Synovial fluid is the primary bio-material, along with peripheral blood, for evaluation of patients with joint pathology (rheumatoid arthritis, osteoarthritis, psoriatic arthritis, etc). However, analysis of synovial membranes is also of importance, since the main pathologic processes evolve at this site. Analysis of chemokines and their receptors in synovium may provide more complete information about immunopathogenesis of articular disease of different etiologies. We carried out optimization procedures for real-time reverse-transcription PCR analysis, in order to quantify specific mRNA expression of angiogenic and angiostatic chemokines and their receptors in synovium. All the stages, from sampling the biological material and until analysis of results are described in details. Normal ranges for mRNA expression rates are provided, as based on examination of subjects with previous traumatic joint injury, without any clinical signs of current systemic or local inflammation. We demonstrate that this method can be informative for comparing intra-articular expression of chemokines and their receptors between different clinical groups. It can also be used to investigate the role of chemokines in appropriate immunopathological events.
About the Authors
D. A. ZhebrunRussian Federation
Research Associate, Laboratory of Immunology
197341, Russian Federation, St. Petersburg, Akkuratova str., 2. Phone: 7 (812) 702-37-77
A. L. Maslyansky
Russian Federation
PhD (Medicine), Senior Research Associate, Laboratory of Rheumatology Department
A. G. Titov
Russian Federation
PhD (Medicine), Rheumatology Department
A. P. Patruhin
Russian Federation
Clinical Traumatologist
A. A. Kostareva
Russian Federation
PhD (Medicine) Chief
I. S. Goltseva
Russian Federation
Master Student
Areg A. Totolian
Russian Federation
PhD, MD (Medicine), Professor, Corresponding Member, Deputy Director, Head, Laboratory of Immunology
References
1. Arenberg D.A., Keane M.P., DiGiovine B., Kunkel S.L., Morris S.B., Xue Y.Y., Burdick M.D., Glass M.C., Iannettoni M.D., Strieter R.M. Epithelial neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer. J. Clin Invest., 1998, vol. 102, pp. 465-472.
2. Blades M.C., Ingegnoli F., Wheller S.K., Manzo A., Wahid S., Panayi G.S., Perretti M., Pitzalis C. Stromal cell-derived factor 1 (CXCL12) induces monocyte migration into human synovium transplanted onto SCID Mice. Arthritis Rheum., 2002, vol. 46, no. 3, pp. 824-836.
3. Boulday G., Haskova Z., Reinders M.E., Pal S., Briscoe D.M. Vascular endothelial growth factorinduced signaling pathways in endothelial cells that mediate overexpression of the chemokine IFN-gammainducible protein of 10 kDa in vitro and in vivo. J. Immunol., 2006, vol. 176, pp. 3098-3107.
4. Bustin S.A., Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech., 2004, vol. 15, pp. 155-166.
5. Chen Z., Malhotra P.S., Thomas G.R., Ondrey F.G., Duffey D.C., Smith C.W., Enamorado I., Yeh N.T., Kroog G.S., Rudy S., McCullagh L., Mousa S., Quezado M., Herscher L.L., Van Waes C. Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin. Cancer Res., 1999, vol. 5, pp. 1369-1379.
6. Esche C., Stellato C., Beck L.A. Chemokines: key players in innate and adaptive immunity. J. Invest. Dermatol., 2005, vol. 125, pp. 615-628.
7. Firestein G.S. Etiology and pathogenesis of rheumatoid arthritis. Kelly’s Textbook of Rheumatology. Philadelphia, PA, Saunders Elsevier, 2009, pp. 1035-1086.
8. Frangogiannis N.G., Entman M.L. Chemokines in myocardial ischemia. Trends Cardiovasc. Med., 2005, vol. 15, pp. 163-169.
9. Heid C.A., Stevens J., Livak K.J., Williams P.M. Real time quantitative PCR. Genome Res.,1996, vol. 6, no. 10, pp. 986-994.
10. Hellemans J., Mortier G., De Paepe A., Speleman F., Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology, 2007, vol. 8, p. R19.
11. Hitchon C.A., Alex P., Erdile L.B., Frank M.B., Dozmorov I., Tang Y., Wong K., Centola M., El- Gabalawy H.S. A distinct multicytokine profile is associated with anti-cyclical citrullinated peptide antibodies in patients with early untreated inflammatory arthritis. J. Rheumatol., 2004 Dec, vol. 31, no. 12, pp. 2336-2346.
12. Keane M.P., Donnelly S.C., Belperio J.A., Goodman R.B., Dy M., Burdick M.D., Fishbein M.C., Strieter R.M. Imbalance in the expression of CXC chemokines correlates with bronchoalveolar lavage fluid angiogenic activity and procollagen levels in acute respiratory distress syndrome. J. Immunol., 2002, vol. 169, pp. 6515-6521.
13. Kitadai Y., Haruma K., Sumii K., Yamamoto S., Ue T., Yokozaki H., Yasui W., Ohmoto Y., Kajiyama G., Fidler I.J., Tahara E. Expression of IL-8 correlates with vascularity in human gastric carcinomas. Am. J. Pathol., 1998, vol. 152, pp. 93-100
14. K nig A., Krenn V., Toksoy A., Gerhard N., Gillitzer R. MIG, GROα and RANTES messenger RNA expression in lining layer, infiltrates and different leucocyte populations of synovial tissue from patients with rheumatoid arthritis, psoriatic arthritis and osteoarthritis. Virchows Arch., 2000, vol. 436, pp. 449-458.
15. Maurer A.M., Zhou B., Han Z.C. Roles of platelet factor 4 in hematopoiesis and angiogenesis. Growth Factors, 2006, vol. 24, pp. 242-252.
16. Murphy P.M., Baggiolini M., Charo I.F., Hebert C.A., Horuk R., Matsushima K., Miller L.H., Oppenheim J.J., Power C.A. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev., 2000, vol. 52, pp. 145-176.
17. Overbergh L., Giulietti A., Valckx D., Decallonne R., Bouillon R., Mathieu C. The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J. Biomol. Tech., 2003, vol. 14, no. 1, pp. 33-43.
18. Overbergh L, Gysemans C, Mathieu C. Quantification of chemokines by real-time reverse transcriptase PCR: applications in type 1 diabetes. Expert Rev. Mol. Diagn., 2006 Jan, vol. 6, no. 1, pp. 51-64.
19. Pierer M., Rethage J., Seibl R., Lauener R., Brentano F., Wagner U., Hantzschel H., Michel B.A., Gay R.E., Gay S., Kyburz D. Chemokine secretion of rheumatoid arthritis synovial fibroblasts stimulated by Tolllike receptor 2 ligands. J. Immunol., 2004, vol. 172, no. 2, pp. 1256-1265.
20. Schmittgen T., Livak K. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 2008, vol. 3, no. 6, pp. 1101-1108.
21. Schmutz C., Hulme A., Burman A., Salmon M., Ashton B., Buckley C., Middleton J. Chemokine receptors in the rheumatoid synovium: upregulation of CXCR5. Arthritis Res. Ther., 2005, vol. 7, no. 2, pp. R217-229.
22. Schroeder A., Mueller O., Stocker S., Salowsky R., Leiber M., Gassmann M., Lightfoot S., Menzel W., Granzow M., Ragg T. The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol., 2006, vol. 7, p. 3 http://www.biomedcentral.com/1471-2199/7/3
23. Stamatovic S.M., Keep R.F., Mostarica-Stojkovic M., Andjelkovic A.V. CCL2 regulates angiogenesis via activation of Ets-1 transcription factor. J. Immunol., 2006, vol. 177, pp. 2651-2661.
24. Strieter R.M., Polverini P.J., Kunkel S.L., Arenberg D.A., Burdick M.D., Kasper J., Dzuiba J., Van Damme J., Walz A., Marriott D., Chan S.-Y., Roczniak S., Shanafelt A.B. The functional role of the ELR motif in CXC chemokine-mediated angiogenesis. J. Biol. Chem., 1995, vol. 270, pp. 27348-27357.
25. Van Damme J., Mantovani A. From cytokines to chemokines. Cytokine & Growth Factor Reviews 16, 2005, pp. 549-551.
26. Van der Voort R., Antoine W.T. van Lieshout, Liza W.J. Toonen, Annet W. Sl etjes, Wim B. van den Berg, Carl G. Figdor, Timothy R.D.J. Radstake, Gosse J. Adema. Elevated CXCL16 expression by synovial macrophages recruits memory T cells into rheumatoid joints. Arthritis Rheum., 2005, vol. 52, no. 5, pp. 1381-1391.
27. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 2002, vol. 3, no. 7: http://genomebiology.com/2002/3/7/research/0034.5
28. Volin M.V., Woods J.M., Amin M.A., Connors M.A., Harlow L.A., Koch A.E. Fractalkine: A novel angiogenic chemokine in rheumatoid arthritis. Am. J. Pathol., 2001, vol. 159, pp. 1521-1526.
29. Yoshida S., Arakawa F., Higuchi F., Ishibashi Y., Goto M., Sugita Y., Nomura Y., Niino D., Shimizu K., Aoki R., Hashikawa K., Kimura Y., Yasuda K., Tashiro K., Kuhara S., Nagata K., Ohshima K. Gene expression analysis of rheumatoid arthritis synovial lining regions by cDNA microarray combined with laser microdissection: up-regulation of inflammation-associated STAT1, IRF1, CXCL9, CXCL10, and CCL5. Scand. J. Rheumatol., 2012, vol. 41, pp. 170-179.
30. Zlotnik A., Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity, 2000, vol. 12, pp. 121-127.
Review
For citations:
Zhebrun D.A., Maslyansky A.L., Titov A.G., Patruhin A.P., Kostareva A.A., Goltseva I.S., Totolian A.A. ANALYSIS OF EXPRESSION OF ANGIOGENIC AND ANGIOSTATIC CHEMOKINES AND THEIR RECEPTORS IN SYNOVIAL TISSUE BY QUANTITATIVE REAL-TIME PCR. Medical Immunology (Russia). 2013;15(6):525-534. (In Russ.) https://doi.org/10.15789/1563-0625-2013-6-525-534