Preview

Медицинская иммунология

Расширенный поиск

РОЛЬ ТРАНСКРИПЦИОННОГО ФАКТОРА PAX-5 В ИММУНОЛОГИЧЕСКИХ ПРОЦЕССАХ

https://doi.org/10.15789/1563-0625-2011-6-569-580

Полный текст:

Аннотация

Резюме.  Рассмотрены  характеристики  транскрипционного  фактора  PAX-5  (paired  box  5) (BSAP), его строение, функции, регуляция его активности, вклад в дифференцировку и активацию В-лимфоцитов, процессы переключения на синтез иммуноглобулина Е, участие фактора в опухолевых процессах и предполагаемая роль в развитии бронхиальной астмы (БА).

Исследование особенностей транскрипционного фактора PAX-5 при БА может представлять одно из перспективных направлений в изучении механизмов развития этого заболевания.

Об авторах

В. Н. Минеев
Санкт-Петербургский государственный медицинский университет имени акад. И.П. Павлова, Санкт- Петербург
Россия

198516, Санкт-Петербург, Петродворец,Санкт-Петербургский пр., 56, кв.15.



Л. Н. Сорокина
Санкт-Петербургский государственный медицинский университет имени акад. И.П. Павлова, Санкт- Петербург
Россия


М. А. Нёма
Санкт-Петербургский государственный медицинский университет имени акад. И.П. Павлова, Санкт- Петербург
Россия


В. А. Иванов
Санкт-Петербургский государственный медицинский университет имени акад. И.П. Павлова, Санкт- Петербург
Россия


Г. И. Липкин
Санкт-Петербургский государственный медицинский университет имени акад. И.П. Павлова, Санкт- Петербург
Россия


Список литературы

1. Минеев В.Н., Сорокина Л.Н., Нёма М.А. Влияние IL-4 на активность транскрипционного фактора STAT6 в лимфоцитах периферической крови больных бронхиальной астмой // Медицинская иммунология. – 2009. – Т. 11, № 2-3. – С. 177-184.

2. Патрушев Л.И. Экспрессия генов. – М.: Наука, 2000. – 831 с.

3. Фрейдлин И.С., Тотолян Арег А. Клетки иммунной системы. – СПб.: Наука, 2001. – С. 13.

4. Adams B., Dцrfler P., Aguzzi A., Kozmik Z., Urbanek P., Maurer-Fogy I., Busslinger M. Pax5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis // Genes Dev. 1992. – Vol. 6, N 9. – P. 1589-1607.

5. Babu M.M., Luscombe N.M., Aravind L., Gerstein M., Teichmann S.A. Structure and evolutionof transcriptional regulatory networks // Curr. Opin. Struct. Biol. 2004. - Vol. 14, N 3. – P. 283-291.

6. Barberis A., Widenhorn K., Vitelli L., Busslinger M. A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation // Genes Dev. 1990. – Vol. 4, N 5. – P. 849-859.

7. Baumgartner S., Bopp D., Burri M., Noll M. Structure of two genes at the gooseberry locus related to the pairedat gene and their spatial expression during Drosophila embryogenesis // Genes Dev. 1987. – Vol. 1, N 10. – P. 1247-1267. 8. Bopp D., Burri M., Noll M., Baumgartner S., Frigerio G. Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila // Cell. 1986. – Vol. 47. – P. 1033-1040.

8. Bopp D., Jamet E., Baumgarmer S., Burri M., Noll M. Isolation of two tissue-specific Drosophila paired box genes, pox meso and pox neuro // EMBO J. – 1989. – Vol. 8. – P. 3447-3457.

9. Buckingham M., Relaix F. The role of Pax genes in the development of tissues and ogans: Pax3 and Pax7 regulate muscle progenitor cell functions // Annu Rev. Cell Dev. Biol. – 2007. – Vol. 23. – P. 645-673.

10. Busslinger M. Transcriptional control ofearly B cell development // Annu. Rev. Immunol. – 2004. – Vol. 22. – P. 55-79.

11. Busslinger M., Klix N., Pfeffer P., Graninger P.G., Kozmik Z. Deregulation of PAX5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma // Proc. Natl. Acad. Sci. U S A. – 1996. – Vol. 93. – P. 6129-6134

12. Decker T., Pasca di Magliano M., McManus S., Sun Q., Bonifer C., Tagoh H., Busslinger M. Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis // Immunity. – 2009. – Vol. 30, N 4. – P. 508-520.

13. Eberhard D., Jimйnez G., Heavey B., Busslinger M. Transcriptional repression by Pax5 (BSAP. through interaction with corepressors of the Groucho family // The EMBO Journal. – 2000. – Vol. 19. – P. 2292-2303.

14. Emelyanov A.V., Kovac C.R., Sepulveda M.A., Birshtein B.K. The interaction of Pax5 (BSAP. with Daxx can result in transcriptional activation in B cells // J. Biol. Chem. – 2002. – Vol. 277, N 13. – P. 11156-11164.

15. Fitzsimmons D., Hodsdon W., Wheat W., Maira S.-M., Wasylyk B., Hagman J. Pax-5 (BSAP. recruits Ets proto-oncogene family proteins to form functional ternary complexes on a B-cellspecific promote // Genes Dev. – 1996. – Vol. 10, N 17. – P. 2198-2211.

16. Garvie C.W., Hagman J., Wolberger C. Structural studies of Ets-1/Pax5 complex formation on DNA // Mol. Cell. – 2001. – Vol. 8, N 6. – P. 1267-1276.

17. Gonda H., Sugai M., Nambu Y., Katakai T., Agata Y., Mori K.J., Yokota Y., Shimizu A. The balance between Pax5 and Id2 activities is the key to AID gene expression // J. Exp. Med. – 2003. – Vol. 198, N 9. – P. 1427-1437.

18. Gould H.J., Beavil R.L., Vercelli D. IgE isotype determination: epsilon-germline gene transcription, DNA recombination and B-cell differentiation // Br. Med. Bull. – 2000. – Vol. 56, N 4. – P. 908-924.

19. Harada H., Kawano M.M., Huang N., Harada Y., Iwato K., Tanabe 0., Tanaka H., Sakai A., Asaoku H., Kuramoto A. Phenotypic difference of normal plasma cells from mature myeloma cells // Blood. – 1993. – Vol. 81, N 10. – P. 2658-2663.

20. Horcher M., Souabni A., Busslinger M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis // Immunity. – 2001. – Vol. 14, N 6. – P. 779-790.

21. Jun S., Desplan C. Cooperative interactions between paired domain and homeodomain // Development. – 1996. – Vol. 122. – P. 2639-2650.

22. Kilchherr F., Baumgartner S., Bopp D., Frei E., Noll M. Isolation of the paired gene ofDrosophila and its spatial expression during early embryogenesis // Nature. – 1986. –Vol. 321. – P. 493-499.

23. Kishi H., Jin Z.X., Wei X.C., Nagata T., Matsuda T., Saito S., Muraguchi A. Cooperative binding of c-Myb and Pax-5 activates the RAG-2promoter in immature B cells // Blood. – 2002. – Vol. 99, N 2. – P. 576-583.

24. Lin K.-I, Angelin-Duclos C., Kuo T.C., Calame K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B Cells to immunoglobulin M-secreting plasma cells // Molecular and cellular biology. – 2002. – Vol. 22, N 13. – P. 4771-4780.

25. Linderson Y., Eberhard D., Malin S., Johansson A., Busslinger M., Pettersson S. Corecruitment of the Grg4 repressor by PU.1 is critical for Pax5-mediated repression of B-cell-specific genes // EMBO Rep. – 2004. – Vol. 3. – P. 291-296.

26. 27. Linderson Y., French N.S., Neurath M.F., Pettersson S. Context-dependent Pax-5 repression of a PU.1/NF-kappaB regulated reporter gene in B lineage cells // Microbiology and Gene. – 2001. – Vol. 262, N 1-2. – P. 107-114.

27. Liu W., Li X., Chu E.S., Go M.Y., Xu L., Zhao G., Li L., Dai N., Si J., Tao Q., Sung J.J., Yu J. Paired box gene 5 is a novel tumor suppressorin hepatocellular carcinoma through interaction with p53 signaling pathway // Hepatology. – 2011. – Vol. 53, N 3. – P. 843-853.

28. Lowen M, Scott G, Zwollo P. Functional analyses of two alternative isoforms of the transcription factor Pax-5 // J. Biol. Chem. – 2001. – Vol. 276, N 45. – P. 42565-42574.

29. Mahmoud M.S., Huang N., Nobuyoshi M., Lisukov I.A., Tanaka H., Kawano M.M. Altered expression of Pax-5 gene in human myeloma cells // Blood. – 1996. – Vol. 87, N 10. – P. 4311-4315. 31. Martins G., Calame K. Regulation and functions of Blimp-1 in T and B lymphocytes // Annu. Rev. Immunol. – 2008. – Vol. 26. – P. 133-169.

30. McCloskey N., Hunt J., Beavil R.L., Jutton M.R., Grundy G.J., Girardi E., Fabiane S.M.,Fear D.J., Conrad D.H., Sutton B.J., Gould H.J. Soluble CD23 monomers inhibit and oligomers stimulate IGE synthesis in human B cells // J. Biol. Chem. – 2007. – Vol. 282, N 33. – P. 24083-24091.

31. Merluzzi S, Moretti M, Altamura S., Zwollo P., Sigvardsson M., Vitale G, Pucillo C. CD40 stimulation Induces Pax5/BSAP and EBF activation through a APE/Ref-1-dependent redox mechanism // J. Biol. Chem. – 2004. – Vol. 279, N 3. – P. 1777-1786.

32. Morales-A.G.S., Copin S.G., Miguel A.R.,Soro P. G., Morales-A.P., Martнnez-M.J.A. Differential involvement of the transcription factor Blimp-1 in T cell-independent and -dependent B cell differentiation to plasma cells // The Journal of Immunology. – 1999. – Vol. 163. – P. 611-617.

33. Nera K.-P., Lassila O. Pax5 – a Critical Inhibitor of Plasma Cell Fate // Scand. J. Immunol. – 2006. – Vol. 64, N 3. – P. 190-199.

34. Nutt S.L., Busslinger M. Monoallelic expression of Pax5: a paradigm for the haploinsufficiency of mammalian Pax genes? // Biol Chem. – 1999. – Vol. 380, N 6. – P. 601-611.

35. Nutt S.L., Heavey B., Rolink A.G., Busslinger M. Commitment to the B lymphoid lineage depends on the transcription factor Pax5 // Nature. – 1999. – Vol. 401. – P. 556-562.

36. Nutt S.L., Vambrie S., Steinlein P., Kozmik Z., Rolink A., Weith A., Busslinger M. Independent regulation of the two Pax5 alleles during B-cell development // Nat. Genet. – 1999. – Vol. 21, N 4. – P. 390-395.

37. Oiu G., Stavnezer J. Overexpression of BSAP/Pax-5 inhibits switching to IgA and enhances switching to IgE in the I.29μ B cell line // J. Immunol. – 1998. – Vol. 161. – P. 2906-2918.

38. Oppezzo P., Dumas G., Lalanne A.I., Payelle-Brogard B., Magnac C., Pritsch O., Dighiero G., Vuillier F. Different isoforms of BSAP regulate expression of AID in normal and chronic lymphocytic leukemia B cells // Blood. – 2005. – Vol. 105, N 6. – P. 2495-2503.

39. Penichet M.L., Jensen-Jarolim E. Cancer and IgE: Introducing the concept of AllergoOncology. – New York.: Springer-Verlag, 2010. – 280 p.

40. Reimold A.M., Ponath P.D., Li Y.S., Hardy R.R., David C.S., Strominger J.L., Glimcher L.H. Transcription factor B cell lineagespecific activator protein regulates the gene for human X-box binding protein 1. // J. Exp. Med. – 1996. – Vol. 183. – P. 393-401.

41. Roberts E.C., Deed R.W., Inoue T., Norton J.D., Sharrocks A.D. Id helix-loop-helix proteins antagonize Pax transcription factor activity by inhibiting DNA binding // Molecular and cellular biology. – 2001. – Vol. 21, N 2. – P. 524-533.

42. Robichaud G.A., Nardini M., Laflamme M., Cuperlovic-Culf M., Ouellette R.J. Human Pax-5 C-terminal isoforms possess distinct transactivation properties and are differentially modulated in normal and malignant B cells // J. Biol. Chem. – 2004. – Vol. 279, N 48. – P. 49956-49963.

43. Robichaud G.A., Perreault J.-P., Ouellette R.J. Development of an isoform-specific gene suppression system: the study of the human PAX-5B transcriptional element // Nucleic Acids Research. – 2008. – Vol. 36, N 14. – P. 4609-4620.

44. Samara M. Contribution a l’analyse des interactions de longue distance dans le locus des chaines lourdes d’immunoglobulines: Pour obtenir le grade de docteur de Sciences de la Vie et de la Sant / L’universite de Limoges. – 2005, Limoges. – 84 p. –http://epublications.unilim.fr/theses/2005/samaramaha/samara-maha.pdf .

45. Schmitz R., Stanelle J., Hansmann M.L., Kьppers R. Pathogenesis of classical and lymphocytepredominant Hodgkin lymphoma // Annu. Rev. Pathol. – 2009. – Vol. 4. – P. 151-174.

46. Shen C.H., Stavnezer J.. Interaction of stat6 and NF-kappaB: direct association and synergistic activation of interleukin-4-induced transcription // Mol.Cell Biol. – 1998. – Vol. 18. – P. 3395-3404.

47. Souabni A., Jochum W., Busslinger M. Oncogenic role of Pax5 in the T-lymphoid lineage upon ectopic expression from the immunoglobulin heavy-chain locus // Blood. – 2007. – Vol. 109, N 1. – P. 281-289.

48. Stuart E. T., Haffner R., Oren M., Gruss P. Loss of p53 function through PAX-mediated transcriptional repression // The EMBO Journal. – 1995. – Vol. 14, N 22. – P. 5638-5645.

49. Stuart E.T., Kioussi C., Aguzzi A., Gruss P. PAX5 expression correlates with increasing malignancy in human astrocytomas // Clin. Cancer Res. – 1995. – Vol. 2. – P. 207-214.

50. Tell G., Scaloni A., Pellizzari L., Formisano S., Pucillo C., Damante G. Redox potential controls the structure and DNA binding activity of the paired domain // J. Biol. Chem. – 1998. – Vol. 273, N 39. – P. 25062-25072.

51. Urbanek P., Wang Z.-Q., Fetka I., Wagner E.F., Busslinger M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP //Cell. – 1994. – Vol. 79. – P. 901-912.

52. Visan I.A. The CD23 receptor-regulation of expression and signal transduction: Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades / Bayerische Julius-Maximilian Universitдt Wьrzburg vorgelegt von. – Wьrzburg, 2003. – 116 p. – www.opus-bayern.de/uni-wuerzburg/volltexte/2003/555/pdf/The_CD23_receptor-regulation_of_expression_and_signal_trans.pdf.

53. Vorobyov E., Horst J. Getting the proto-Pax by the tail // J. Mol. Evol. – 2006. – Vol. 63, N 2. – P. 153-164.

54. Walther C., Guenet J.L., Simon D., Deutsch U., Jostes B., Goulding M.D., Plachov D., Balling R., Gruss P. Pax: a murine multigene family of paired box containing genes // Genomics. – 1991. – Vol. 11, N 2. – P. 424-434.


Для цитирования:


Минеев В.Н., Сорокина Л.Н., Нёма М.А., Иванов В.А., Липкин Г.И. РОЛЬ ТРАНСКРИПЦИОННОГО ФАКТОРА PAX-5 В ИММУНОЛОГИЧЕСКИХ ПРОЦЕССАХ. Медицинская иммунология. 2011;13(6):569-580. https://doi.org/10.15789/1563-0625-2011-6-569-580

For citation:


Mineev V.N., Sorokina L.N., Nyoma M.A., Ivanov V.A., Lipkin G.I. ROLE OF PAX-5 TRANSCRIPTION FACTOR IN IMMUNOLOGICAL PROCESSES. Medical Immunology (Russia). 2011;13(6):569-580. (In Russ.) https://doi.org/10.15789/1563-0625-2011-6-569-580

Просмотров: 431


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)