Preview

Medical Immunology (Russia)

Advanced search

APPLICATION OF INHIBITOR ANALYSIS FOR STUDYING MECHANISMS AND ACTIONS OF POLYMURAMYL, A MURAMYL PEPTIDE-BASED IMMUNE MODULATOR

https://doi.org/10.15789/1563-0625-2013-1-21-28

Abstract

In present study, the following low-MW inhibitors were used to dissect mechanisms of action for two muramyl peptide components of Polymuramyl, an immunomodulatory drug: (1) N-acetyl-D-glucosaminyl-(β1→4)-N-acetyl-D-muramoyl-L-alanyl-D-isoglutaminyl-meso-diaminopimelic acid (GMtri); (2) a dimeric   muramyl peptide (diGMtetra), wherein two monomers [N-acetyl-D-glucosaminyl-(β1→4)-N-acetyl-D-muramoyl-L-alanyl-D-isoglutaminyl-meso-diaminopimeloyl-D-alanin] are linked via an amide bond between the carboxyl group of terminal D-alanin at one monomer and the ω-amino group of meso-diaminopimelic acid at another monomer. In vitro production of tumor necrosis factor (TNF) by human macrophages stimulated with GMtri or diGMtetra was shown to be inhibited by SB203580 (a RIP2 kinase inhibitor), genistein (a protein tyrosine kinase inhibitor) and BAY 11-7082 (an IκB-kinase inhibitor). Moreover, response to diGMtetra was inhibited by dynasore (an inhibitor of clathrin-dependent endocytosis), as well as by a broad-range protease-inhibiting cocktail. Thus, activating effects upon macrophages induced by the Polymuramyl components is provided by, at least, three biological processes: (1) clathrin-dependent endocytosis; (2) peptidase-mediated processing of diGMtetra; 3) activation of a signal chain RIP2 – IκB-kinase – NF-κB transcription factor.

About the Authors

M. V. Pashenkov
ГНЦ «Институт иммунологии ФМБА России», Москва
Russian Federation


B. I. Alkhazova
ГНЦ «Институт иммунологии ФМБА России», Москва
Russian Federation


V. L. L'vov
ГНЦ «Институт иммунологии ФМБА России», Москва
Russian Federation


B. V. Pinegin
ГНЦ «Институт иммунологии ФМБА России», Москва
Russian Federation


References

1. Пащенков М.В., Попилюк С.Ф., Алхазова Б.И., Львов В.Л., Феденко Е.С., Хаитов Р.М., Пинегин Б.В. Иммунобиологические свойства мурамилпептидных фрагментов пептидогликана грамотрицательных бактерий // Иммунология. – 2010. – Т. 31. – С. 119-125.

2. Пащенков М.В., Будихина А.С., Голубева Н.М., Алхазова Б.И., Елисютина О.Г., Львов В.Л., Феденко Е.С., Пинегин Б.В., Хаитов Р.М. Результаты I фазы клинических испытаний иммуномодулятора «Полимурамил» // Иммунология. – 2011. – Т. 32. – С. 239-243.

3. Пащенков М.В., Будихина А.С., Голубева Н.М., Алхазова Б.И., Львов В.Л., Ступин В.А., Привиденцев А.И., Трушин С.Н., Селиверстов Д.В., Огорельцев А.Ю., Пинегин Б.В., Хаитов Р.М. Клиническая и иммунологическая эффективность иммуномодулятора Полимурамил при гнойной хирургической инфекции // Физиология и патология иммунной системы. Иммунофармакогеномика. – 2011. – Т. 15. – С. 12-18.

4. Billmann-Born S., Till A., Arlt A., Lipinski S., Sina C., Latiano A., Annese V., Hasler R., Kerick M., Manke T., Seegert D., Hanidu A., Schafer H., van Heel D., Li J., Schreiber S., Rosenstiel P. Genome-wide expression profiling identifies an impairment of negative feedback signals in the Crohn’s disease-associated NOD2 variant L1007fsinsC // J. Immunol. – 2011. – Vol. 186. – P. 4027-4038.

5. Chamaillard M., Hashimoto M., Horie Y., Masumoto J., Qiu S., Saab L., Ogura Y., Kawasaki A., Fukase K., Kusumoto S., Valvano M.A., Foster S.J., Mak T.W., Nunez G., Inohara N. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid // Nat. Immunol. – 2003. – Vol. 4. – P. 702-707.

6. Girardin S.E., Boneca I.G., Viala J., Chamaillard M., Labigne A., Thomas G., Philpott D.J., Sansonetti P.J. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection // J. Biol. Chem. – 2003. – Vol. 278. – P. 8869-8872.

7. Girardin S.E., Travassos L.H., Herve M., Blanot D., Boneca I. G., Philpott D.J., Sansonetti P.J., Mengin-Lecreulx D. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2 // J. Biol. Chem. – 2003. – Vol. 278. – P. 41702-41708.

8. Godl K., Wissing J., Kurtenbach A., Habenberger P., Blencke S., Gutbrod H., Salassidis K., Stein-Gerlach M., Missio A., Cotten M., Daub H. An efficient proteomics method to identify the cellular targets of protein kinase inhibitors // Proc Natl Acad Sci USA. – 2003. – Vol. 100. – P. 15434-15439.

9. Huang T.T., Feinberg S.L., Suryanarayanan S., Miyamoto S. The zinc finger domain of NEMO is selectively required for NF-kappa B activation by UV radiation and topoisomerase inhibitors // Mol. Cell Biol. – 2002. – Vol. 22. – P. 5813-5825.

10. Kagan J. C., Su T., Horng T., Chow A., Akira S., Medzhitov R. TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta // Nat. Immunol. – 2008. – Vol. 9. – P. 361-368.

11. Kanneganti T.D., Lamkanfi M., Kim Y.G., Chen G., Park J.H., Franchi L., Vandenabeele P., Nunez G. Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling // Immunity. – 2007. – Vol. 26. – P. 433-443.

12. Kersse K., Bertrand M.J., Lamkanfi M., Vandenabeele P. NOD-like receptors and the innate immune system: coping with danger, damage and death // Cytokine Growth Factor Rev. –2011. – Vol. 22. – P. 257-276.

13. Leber J.H., Crimmins G.T., Raghavan S., Meyer-Morse N.P., Cox J.S., Portnoy D.A. Distinct TLR- and NLR-mediated transcriptional responses to an intracellular pathogen // PLoS Pathog. – 2008. – Vol. 4. – P. e6.

14. Lee J., Tattoli I., Wojtal K.A., Vavricka S.R., Philpott D.J., Girardin S.E. pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling // J. Biol. Chem. – 2009. – Vol. 284. – P. 23818-23829.

15. Macia E., Ehrlich M., Massol R., Boucrot E., Brunner C., Kirchhausen T. Dynasore, a cell-permeable inhibitor of dynamin // Dev. Cell. – 2006. – Vol. 10. – P. 839-850.

16. Marina-Garcia N., Franchi L., Kim Y.G., Hu Y., Smith D.E., Boons G.J., Nunez G. Clathrin- and dynamin-dependent endocytic pathway regulates muramyl dipeptide internalization and NOD2 activation // J. Immunol. – 2009. – Vol. 182. – P. 4321-4327.

17. Marina-Garcia N., Franchi L., Kim Y.G., Miller D., McDonald C., Boons G.J., Nunez G. Pannexin-1-mediated intracellular delivery of muramyl dipeptide induces caspase-1 activation via cryopyrin/NLRP3 independently of Nod2 // J. Immunol. – 2008. – Vol. 180. – P. 4050-4057.

18. Masumoto J., Yang K., Varambally S., Hasegawa M., Tomlins S.A., Qiu S., Fujimoto Y., Kawasaki A., Foster S.J., Horie Y., Mak T.W., Nunez G., Chinnaiyan A.M., Fukase K., Inohara N. Nod1 acts as an intracellular receptor to stimulate chemokine production and neutrophil recruitment in vivo // J. Exp. Med. – 2006. – Vol. 203. – P. 203-213.

19. Meshcheryakova E., Makarov E., Philpott D., Andronova T., Ivanov V. Evidence for correlation between the intensities of adjuvant effects and NOD2 activation by monomeric, dimeric and lipophylic derivatives of N-acetylglucosaminyl-N-acetylmuramyl peptides // Vaccine. – 2007. – Vol. 25. – P. 4515-4520.

20. Nardin A., Lefebvre M.L., Labroquere K., Faure O., Abastado J.P. Liposomal muramyl tripeptide phosphatidylethanolamine: Targeting and activating macrophages for adjuvant treatment of osteosarcoma // Curr Cancer Drug Targets. – 2006. – Vol. 6. – P. 123-133.

21. Park J.H., Kim Y.G., McDonald C., Kanneganti T.D., Hasegawa M., Body-Malapel M., Inohara N., Nunez G. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs // J. Immunol. – 2007. – Vol. 178. – P. 2380-2386.

22. Pashenkov M.V., Popilyuk S.F., Alkhazova B.I., L’vov V.L., Murugin V.V., Fedenko E.S., Khaitov R.M., Pinegin B.V. Muropeptides trigger distinct activation profiles in macrophages and dendritic cells // Int. Immunopharmacol. – 2010. – Vol. 10. – P. 875-882.

23. Tigno-Aranjuez J.T., Asara J.M., Abbott D.W. Inhibition of RIP2’s tyrosine kinase activity limits NOD2-driven cytokine responses // Genes Dev. – 2010. – Vol. 24. – P. 2666-2677.

24. Ting J.P., Duncan J.A., Lei Y. How the noninflammasome NLRs function in the innate immune system // Science. – 2010. – Vol. 327. – P. 286-290.

25. Trajkovic V., Samardzic T., Stosic-Grujicic S., Ramic Z., Mostarica Stojkovic M. Muramyl dipeptide potentiates cytokine-induced activation of inducible nitric oxide synthase in rat astrocytes // Brain Res. – 2000. – Vol. 883. – P. 157-163.

26. Vallabhapurapu S., Karin M. Regulation and function of NF-kappaB transcription factors in the immune system // Ann. Rev. Immunol. – 2009. – Vol. 27. – P. 693-733.

27. Vavricka S.R., Musch M.W., Chang J.E., Nakagawa Y., Phanvijhitsiri K., Waypa T.S., Merlin D., Schneewind O., Chang E.B. hPepT1 transports muramyl dipeptide, activating NF-kappaB and stimulating IL-8 secretion in human colonic Caco2/bbe cells // Gastroenterology. – 2004. – Vol. 127. – P. 1401-1409.

28. Vinnitskii L.I., Buniatian K.A., Pinegin B.V., Mironova E.V., Shvets L.I., Volkov A.A., Inviiaeva E.V., Andronova T.M., Khaitov R.M. Domestic immunomodulator of a new generation, Licopid, in the comprehensive therapy and prevention of infectious complications in surgery // Vestn. Ross. Akad. Med. Nauk. – 1997. – P. 46-49.

29. Voss E., Wehkamp J., Wehkamp K., Stange E.F., Schroder J.M., Harder J. NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2 // J. Biol. Chem. – 2006. – Vol. 281. – P. 2005-2011.

30. West M.A., Bennet T., Seatter S.C., Clair L., Bellingham J. LPS pretreatment reprograms macrophage LPS-stimulated TNF and IL-1 release without protein tyrosine kinase activation // J. Leukoc. Biol. – 1997. – Vol. 61. – P. 88-95.

31. Windheim M., Lang C., Peggie M., Plater L.A., Cohen P. Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide // Biochem. J. – 2007. – Vol. 404. – P. 179-190.


Review

For citations:


Pashenkov M.V., Alkhazova B.I., L'vov V.L., Pinegin B.V. APPLICATION OF INHIBITOR ANALYSIS FOR STUDYING MECHANISMS AND ACTIONS OF POLYMURAMYL, A MURAMYL PEPTIDE-BASED IMMUNE MODULATOR. Medical Immunology (Russia). 2013;15(1):21-28. (In Russ.) https://doi.org/10.15789/1563-0625-2013-1-21-28

Views: 1101


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)