Preview

Medical Immunology (Russia)

Advanced search

Polymorphism of the vascular endothelial growth factor gene regulatory regions (VEGF rs699947 and rs3025039) in patients of the West Siberian of Russia who had COVID-19.

https://doi.org/10.15789/1563-0625-POT-3281

Abstract

VEGF-A is the significant cytokines associated with angiogenesis, an increase in serum levels of which was detected in coronavirus infection with COVID - 19 and its association with severity and mortality was shown. A number of polymorphic sites have been identified in the VEGF regulatory regions are associated with its level. The VEGF-2758 (rs699947) is located in the promoter region of the gene and VEGF-2578 CC genotype is associated with a higher level of production. The VEGF 936 (rs3025039) is located in the 3' untranslated region of the VEGF gene and the T allele is associated with a reduced plasma protein level. The aim of the study was to analyze the association of polymorphic positions of the regulatory regions of the VEGF gene (rs699947 and rs3025039) with the severity of the disease and cardiovascular problems in patients of the West Siberian region of Russia who suffered from COVID-19. The study included 260 patients with COVID - 19 with varying degrees of severity. The examination took into account the presence of the history of cardiovascular diseases (CVD) and those that first appeared after diseases. VEGF rs699947 and VEGF rs3025039 were genotyped using TagMan probes. The reliability of differences in the distribution frequencies of the studied features in the groups was determined using a two-way version of the exact Fisher test. We found no differences in the genotypes frequency distribution of single polymorphic positions and the complex VEGF-2578/ VEGF+936 between groups with varying degrees of severity of the disease – severe, moderate, and mild, both in the general group of patients and in the subgroup of patients with CVD history. In addition, there were no significantly significant differences between patients with newly emerged CVD after infection compared to patients without similar complications, both in single genotypes and in VEGF-2578/ VEGF+936 complexes. According to our data, the functional polymorphism of the VEGF gene in these positions is not associated with either the severity of COVID - 19 or with cardiovascular disorders in the disease. Changes in VEGF levels may be due to changes in factors affecting it, which requires additional study.

About the Authors

Alla Vladimirovna Shevchenko
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL- Branch of IC&G SB RAS), Novosibirsk, Russian Federation
Russian Federation

PhD, Dr. Biol. Sci., Leading Researcher, Laboratory of Clinical Immunogenetics  RICEL- Branch of IC&G SB RAS



Vladimir Iosiphovich Konenkov
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL- Branch of IC&G SB RAS), Novosibirsk, Russian Federation
Russian Federation

MD, PhD, Dr. Med. Sci., Professor, Academician of Russian Academy of Science, Head of the Laboratory of Clinical Immunogenetics RICEL- Branch of IC&G SB RAS



Alexandra Aleksandrovna Karaseva
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL- Branch of IC&G SB RAS), Novosibirsk, Russian Federation

Junior Researcher of the Laboratory of Genetic and Environmental Determinants of the Human Life Cycle IIPM — Branch of IC&G SB RAS



Alena Dmitrievna Afanaseva
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL- Branch of IC&G SB RAS), Novosibirsk, Russian Federation

 MD, PhD, head Laboratory of Genetic and Environmental Determinants of the Human Life Cycle IIPM — Branch of IC&G SB RAS



Irina Ivanovna Logvinenko
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL- Branch of IC&G SB RAS), Novosibirsk, Russian Federation

Dr. Med. Sci., Professor, Chief Researcher of the Laboratory of Preventive Medicine IIPM — Branch of IC&G SB RAS



References

1. Profilaktika, diagnostika I lechenie novoj koronavirusnoj infektsii (COVID-19). Vremennie metoditcheskie rekomendatsii. Versia 15 (22.02.2022). М.: Ministerstvo zdravooxranenia Rossijskoj Federatsii, 2022.(In Russ.). https://static-0.minzdrav.gov.ru/system/attachments /attaches/ 000/059/392/original/ВМР_COVID-19_V15.pdf

2. Ackermann M., Verleden S.E., Kuehnel M., Haverich A., Welte T., Laenger .F, Vanstapel A., Werlein C., Stark H., Tzankov A., Li W.W., Li V.W., Mentzer S.J., Jonigk D. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med., 2020, Vol.383, no.2, pp.120-128. https://doi.org/10.1056/NEJMoa2015432

3. Al-Habboubi H.H., Sater M.S., Almawi A.W., Al-Khateeb G.M., Almawi W.Y. Contribution of VEGF polymorphisms to variation in VEGF serum levels in a healthy population. Eur Cytokine Netw. 2011, Vol.22, no.3, pp.154-158. https://doi.org/10.1684/ecn.2011.0289

4. Ali M.A.M., Spinler S.A. COVID-19 and thrombosis: From bench to bedside. Trends Cardiovasc Med., 2021, Vol.31,no.3,pp.143-160. https://doi.org/10.1016/j.tcm.2020.12.004

5. Alkharsah K.R. VEGF Upregulation in Viral Infections and Its Possible Therapeutic Implications. Int J Mol Sci., 2018, Vol.19, no.6, pp.1642. https://doi.org/10.3390/ijms19061642

6. Bahreiny S.S., Bastani M.N., Keyvani H., Mohammadpour F.R., Aghaei M., Mansouri Z., Karamali N., Sakhavarz T., Amraei M., Harooni E. VEGF-A in COVID-19: a systematic review and meta-analytical approach to its prognostic value. Clin Exp Med., 2025, Vol.25, no.1, pp.81. https://doi.org/10.1007/s10238-025-01583-5

7. Cozma A., Sitar-Tăuț A.V., Orășan O.H., Briciu V., Leucuța D., Sporiș N.D., Lazăr A.L., Mălinescu T.V., Ganea A.M., Sporiș B.M., Vlad C.V., Lupșe M., Țâru M.G., Procopciuc L.M. VEGF Polymorphisms (VEGF-936 C/T, VEGF-634 G/C and VEGF-2578 C/A) and Cardiovascular Implications in Long COVID Patients. Int J Mol Sci., 2024, Vol.25, no.16, pp.8667. https://doi.org/10.3390/ijms25168667

8. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., Müller M.A., Drosten C., Pöhlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell., 2020, Vol.181, no.2, pp.271-280.e8. https://doi.org/ 10.1016/j.cell.2020.02.052

9. Ishanxodjaeva G.T., Ibodov B.A., Mirzoev J.B., Rasulova I.T. Significance of VEGF and IL-6 polymorphisms in the developing of COVID-19 induced acute ischemic stroke. J Neurology and Neurosurgery Research., 2023, Vol.4, no.1, pp.15-22. http://dx.doi.org/10.5281/zenodo.7595663

10. Ma W.-Q., Wang Y., Han X.-Q., Zhu Y., Liu N.-F. Association of genetic polymorphisms in vascular endothelial growth factor with susceptibility to coronary artery disease: a meta–analysis. BMC Med Genet., 2018, Vol.19, no.1, pp.1–12. https://doi.org/10.1186/s12881-018-0628-3

11. Mescht M.A., Steel H.C., Anderson R., Rossouw T.M. Vascular endothelial growth factor A: friend or foe in the pathogenesis of HIV and SARS-CoV-2 infections? Frontiers in Cellular and Infection Microbiology., 2025, Vol.14, pp.1458195. https://doi.org/10.3389/fcimb.2024.1458195

12. Meza-Alvarado J.C., Page R.A., Mallard B., Bromhead C., Palmer B.R. VEGF-A related SNPs: a cardiovascular context. Front Cardiovasc Med., 2023, Vol.10, pp.1190513. https://doi.org/10.3389/fcvm.2023.1190513

13. Miggiolaro A.F.R.S., da Silva F.P.G., Wiedmer D.B., Godoy T.M., Borges N.H., Piper G.W., Oricil A.G.G., Klein C.K., Hlatchuk E.C., Dagostini J.C.H., Collete M., Arantes M.P., D’Amico R.C., Dutra A.A., de Azevedo M.L., de Noronha L. COVID-19 and Pulmonary Angiogenesis: The Possible Role of Hypoxia and Hyperinflammation in the Overexpression of Proteins Involved in Alveolar Vascular Dysfunction. Viruses., 2023, Vol.15, no.3, pp.706. https://doi.org/10.3390/v15030706

14. Moutal A., Martin L.F., Boinon L., Gomez K., Ran D., Zhou Y., Stratton H.J., Cai S., Luo S., Gonzalez K.B., Perez-Miller S., Patwardhan A., Ibrahim M.M., Khanna R. SARS-CoV-2 spike protein co-opts VEGF-A/neuropilin-1 receptor signaling to induce analgesia. Pain., 2021, Vol.162, no.1, pp.243-252. https://doi.org/ 10.1097/j.pain.0000000000002097

15. Norooznezhad A.H., Mansouri K. Endothelial cell dysfunction, coagulation, and angiogenesis in coronavirus disease 2019 (COVID-19). Microvasc Res., 2021, Vol.137, pp.104188. https://doi.org/10.1016/j.mvr.2021.104188.

16. Palmer B.R., Paterson M.A., Frampton C.M., Pilbrow A.P., Skelton L., Pemberton C.J., Doughty R.N., Ellis C.J., Troughton R.W., Richards A.M., Cameron V.A. Vascular endothelial growth factor-A promoter polymorphisms, circulating VEGF-A and survival in acute coronary syndromes. PLoS One., 2021, Vol.16, no.7, pp.e0254206. https://doi.org/10.1371/journal.pone.0254206

17. Pine A.B., Meizlish M.L., Goshua G., Chang C.H., Zhang H., Bishai J., Bahel P., Patel A., Gbyli R., Kwan J.M., Won C.H., Price C., Dela Cruz C.S., Halene S., van Dijk D., Hwa J., Lee A.I., Chun H.J. Circulating markers of angiogenesis and endotheliopathy in COVID-19. Pulm Circ., 2020, Vol.10, no.4, pp.2045894020966547. https://doi.org/10.1177/2045894020966547

18. Renner W., Kotschan S., Hoffmann C., Obermayer-Pietsch B., Pilger E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. J Vasc Res., 2000, Vol.37, no.6, pp.443-448. https://doi.org/10.1159/000054076

19. Rovas A., Osiaevi I., Buscher K., Sackarnd J., Tepasse P.R., Fobker M., Kühn J., Braune S., Göbel U., Thölking G., Gröschel A., Pavenstädt H., Vink H., Kümpers P. Microvascular dysfunction in COVID-19: the MYSTIC study. Angiogenesis., 2021, Vol.24, no.1, pp.145-157. https://doi.org/10.1007/s10456-020-09753-7

20. Singh P., Singh M., Khinda R., Valecha S., Kumar N., Singh S., Juneja P.K., Kaur T., Mastana S. Genetic Scores of eNOS, ACE and VEGFA Genes Are Predictive of Endothelial Dysfunction Associated Osteoporosis in Postmenopausal Women. Int J Environ. Res Public Health., 2021, Vol.18, no.3, pp.972. https://doi.org/10.3390/ijerph18030972

21. Skrypnik D., Mostowska A., Jagodziński P.P., Bogdański P. Association of rs699947 (-2578 C/A) and rs2010963 (-634 G/C) Single Nucleotide Polymorphisms of the VEGF Gene, VEGF-A and Leptin Serum Level, and Cardiovascular Risk in Patients with Excess Body Mass: A Case-Control Study. J Clin Med., 2020, Vol.9, no.2, pp.469. https://doi.org/10.3390/jcm9020469

22. Smadja D.M., Philippe A., Bory O., Gendron N., Beauvais A., Gruest M., Peron N., Khider L., Guerin C.L., Goudot G., Levavasseur F., Duchemin J., Pene F., Cheurfa C., Szwebel T.A., Sourdeau E., Planquette B., Hauw-Berlemont C., Hermann B., Gaussem P., Samama C.M., Mirault T., Terrier B., Sanchez O., Rance B., Fontenay M., Diehl J.L., Chocron R. Placental growth factor level in plasma predicts COVID-19 severity and in-hospital mortality. J Thromb Haemost., 2021, Vol.19, no.7, pp.1823-1830. https://doi.org/10.1111/jth.15339

23. Talotta R. Impaired VEGF-A-Mediated Neurovascular Crosstalk Induced by SARS-CoV-2 Spike Protein: A Potential Hypothesis Explaining Long COVID-19 Symptoms and COVID-19 Vaccine Side Effects? Microorganisms. 2022, Vol.10, no.12, pp.2452. https://doi.org/ 10.3390/microorganisms10122452

24. Tang Y., Liu .J, Zhang D., Xu Z., Ji J., Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol., 2020, Vol.11, pp.1708. https://doi.org/10.3389/fimmu.2020.01708.

25. Tsuji M., Kondo M., Sato Y., Miyoshi A., Kobayashi F., Arimura K., Yamashita K., Morimoto S., Yanagisawa N., Ichihara A., Tagaya E. Serum VEGF-A levels on admission in COVID-19 patients correlate with SP-D and neutrophils, reflecting disease severity: A prospective study. Cytokine., 2024, Vol.178, pp.156583. https://doi.org/10.1016/j.cyto.2024.156583

26. Wang Y., Huang Q., Liu J., Wang Y., Zheng G., Lin L., Yu H., Tang W., Huang Z. Vascular endothelial growth factor A polymorphisms are associated with increased risk of coronary heart disease: a meta-analysis. Oncotarget., 2017, Vol.8, no.18, pp.30539-30551. https://doi.org/10.18632/oncotarget.15546

27. Watson C.J., Webb N.J., Bottomley M.J., Brenchley P.E. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine., 2000, Vol.12, no.8, pp.1232-1235. https://doi.org/10.1006/cyto.2000.0692

28. Yadav B.K., Yadav R., Chang H., Choi K., Kim J.T., Park M.S., Kang H.G., Choo I., Ahn S.H., Oh D.S., Ha Y.S., Kim I., Seo M.W., Shin B.S. Genetic Polymorphisms rs699947, rs1570360, and rs3025039 on the VEGF Gene Are Correlated with Extracranial Internal Carotid Artery Stenosis and Ischemic Stroke. Ann Clin Lab Sci., 2017, Vol.47, no.2, pp.144-155. PMID: 28442515.


Supplementary files

1. 3281
Subject
Type Other
Download (56KB)    
Indexing metadata ▾

Review

For citations:


Shevchenko A.V., Konenkov V.I., Karaseva A.A., Afanaseva A.D., Logvinenko I.I. Polymorphism of the vascular endothelial growth factor gene regulatory regions (VEGF rs699947 and rs3025039) in patients of the West Siberian of Russia who had COVID-19. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-POT-3281

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)