Preview

Medical Immunology (Russia)

Advanced search

Bioinformatic analysis of single nucleotide variants in the F12 gene associated with hereditary angioedema

https://doi.org/10.15789/1563-0625-BAO-3235

Abstract

Hereditary angioedema (HAE) is a genetically determined disorder, a primary immunodeficiency involving complement system dysfunction. In most patients, the disease is characterized by a deficiency of C1 inhibitor (type I HAE) or impaired functional activity of the C1 inhibitor (type II HAE). In such cases, the diagnosis is based on laboratory findings. In HAE with normal C1 inhibitor levels and activity, the diagnosis can only be based on family history and/or genetic testing. Among patients with HAE with normal C1 inhibitor, mutations in the F12 gene are most frequently observed, particularly in females. However, mutations with uncertain clinical significance are often identified. Given the limited number of HAE cases, it is not feasible to experimentally determine the clinical relevance of newly discovered polymorphic variants. A potential solution to this problem is the in silico analysis of each novel polymorphism. Hence, the aim of our study was to evaluate the predictive potential of bioinformatic methods in assessing polymorphic variants in the F12 gene. The study was focused on four polymorphic variants: NC_000005.9:g.176831285C>G, NC_000005.9:g.176831258C>G, NC_000005.9:g.176831232G>C, and NC_000005.9:g.176831232G>T, with varying clinical significance statuses. To predict the effect of these polymorphic variants on the F12 protein, we used various Web-based tools employing different algorithms, including SIFT, PolyPhen-2, FATHMM-XF, MutationTaster2021, MutPred2, MUpro, I-Mutant 2, HOPE, and ChimeraX. The in silico approach demonstrated that the NC_000005.9:g.176831232G>C (p.Thr328Arg), and NC_000005.9:g.176831232G>T (p.Thr328Lys) mutations have a pathogenic effect, which is fully consistent with their previously established clinical status. At the same time, the polymorphic variants NC_000005.9:g.176831258C>G (p.Gln319His), and NC_000005.9:g.176831285C>G (p.Arg310Ser) do not appear to be independent causes of the disease. However, their potential role in modifying the clinical phenotype cannot be excluded. Bioinformatic analysis plays a key role in preliminary assessment of clinical significance of newly detected mutations in the F12 gene and provides a more precise identification of pathogenic variants. Integration of bioinformatic tools into diagnostic workflows is essential for determining the cause of disease in patients with hereditary angioedema presenting with normal levels and functional activity of the C1 inhibitor.

About the Authors

A. V. Sedykh
Saint Petersburg Pasteur Institute
Russian Federation

Junior Researcher, Laboratory of Immunology and Virology of HIV Infection



Yu. V. Ostankova
Saint Petersburg Pasteur Institute
Russian Federation

PhD (Biology), Head of the of the Laboratory of Immunology and Virology of HIV Infection, Senior Researcher of the Laboratory of Molecular Immunology



A. N. Schemelev
Saint Petersburg Pasteur Institute
Russian Federation

PhD (Biology), Junior Researcher



Areg A. Totolian
Saint Petersburg Pasteur Institute; First St. Petersburg State I. Pavlov Medical University
Russian Federation

PhD, MD (Medicine), Professor, Full Member, Russian Academy of Sciences, Head, Laboratory of Molecular Immunology, Director; Head, Department of Immunology



References

1. Manto I.A., Latysheva E.A., Sorokina L.E., Latysheva T.V. The place of scales and questionnaires in assessing the disease’s severity and the long-term prophylaxis’s prescribing in patients with hereditary angioedema. Terapevticheskiy arkhiv = Terapevticheskii Arkhiv, 2021, Vol. 93, no. 12, pp. 1498-1509. (In Russ.)

2. Pechnikova N.A., Ostankova Y.V., Totolian Areg A. Application of bioinformatical analysis to identify candidate genes associated with hereditary angioedema. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2022, Vol. 24, no. 5, pp. 1027-1046. (In Russ.) doi: 10.15789/1563-0625-AOB-2579.

3. Pechnikova N.A., Ostankova Yu.V., Saitgalina M.A., Bebyakov A.M., Denisova A.R., Podchernyaeva N.S., Totolian Areg A. Applying bioinformatic analysis for prognostic assessment of the HS3ST6 missense mutations clinical significance in the development of hereditary angioedema. Meditsinskaya Immunologiya = Medical Immunology (Russia), 2022, Vol. 25, no. 1, pp. 135-154. (In Russ.) doi: 10.15789/1563-0625-ABA-2577.

4. Russian Association of Allergists and Clinical Immunologists, National Association of Experts in Primary Immunodeficiencies. Primary immunodeficiencies with predominant deficiency of antibody synthesis: Сlinical guidelines [Electronic resource]. Available at: https://cr.minzdrav.gov.ru/view-cr/735_1 (date of access: July 23, 2025).

5. Russian Association of Allergists and Clinical Immunologists, National Association of Experts in Primary Immunodeficiencies, Union of Pediatricians of Russia, Association of Medical Geneticists. Hereditary angioedema: clinical guidelines. [Electronic resource]. Available at: https://cr.minzdrav.gov.ru/view-cr/267_2 (date of access: July 23, 2025).

6. Adzhubei I.A., Schmidt S., Peshkin L., Ramensky V.E., Gerasimova A., Bork P., Kondrashov A.S., Sunyaev S.R. A method and server for predicting damaging missense mutations. Nat. Methods , 2010, Vol. 7, no. 4, pp. 248-249.

7. Beer N.L., Osbak K.K., van de Bunt M., Tribble N.D., Steele A.M., Wensley K.J., Gloyn A.L. Insights into the pathogenicity of rare missense GCK variants from the identification and functional characterization of compound heterozygous and double mutations inherited in cis. Diabetes Care , 2012, Vol. 35, no. 7, pp. 1482-1484.

8. Bork K., Wulff K., Meinke P., Wagner N., Hardt J., Witzke G. A novel mutation in the coagulation factor 12 gene in subjects with hereditary angioedema and normal C1-inhibitor. Clin. Immunol., 2011, Vol. 141, no. 1, pp. 31-35.

9. Busse P.J., Christiansen S.C., Riedl M.A., Banerji A., Bernstein J.A., Castaldo A.J., Craig T.J., Davis-Lorton M., Frank M.M., Gower R.G. US HAEA Medical Advisory Board 2020 Guidelines for the Management of Hereditary Angioedema. J. Allergy Clin. Immunol. Pract., 2021, Vol. 9, no. 1, pp. 132-150.

10. Camilli F., Borrmann A., Gholizadeh S., te Beek T.A.H., Kuipers R.K.P., Venselaar H. The future of HOPE: what can and cannot be predicted about the molecular effects of a disease causing point mutation in a protein? EMBnet.journal, 2011, Vol. 17, no. 1, pp. 25-37.

11. Capriotti E., Fariselli P., Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res., 2005, Vol. 33, Suppl. 2, pp. 306-310.

12. Cheng J., Randall A., Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins, 2006, Vol. 62, no. 4, pp. 1125-1132.

13. Cohn D.M., Renné T. Targeting factor XIIa for therapeutic interference with hereditary angioedema. J. Intern. Med., 2024, Vol. 296, no. 4, pp. 311-326.

14. Depetri F., Tedeschi A., Cugno M. Angioedema and emergency medicine: From pathophysiology to diagnosis and treatment. Eur. J. Intern. Med., 2019, Vol. 59, pp. 8-13.

15. Dewald G., Bork K. A missense mutation in the factor XII gene in a family with hereditary angioedema. Biochem. Biophys. Res. Commun., 2006, Vol. 343, no. 4, pp. 1286-1289.

16. Itan Y., Shang L., Boisson B., Ciancanelli M.J., Markle J.G., Martinez-Barricarte R., Scott E., Shah I., Stenson P.D., Gleeson J., Cooper D., Quintana-Murci L., Zhang S., Abel L., Casanova J. The mutation significance cutoff: gene-level thresholds for variant predictions. Nat. Methods, 2016, Vol. 13, no. 2, pp. 109-110.

17. Lucena-Aguilar G., Sanchez-Ivanov I., Matafonov A., Sun M.F., Cheng Q., Dickeson S.K., Verhamme I.M., Gailani D. Proteolytic properties of single-chain factor XII: a mechanism for triggering contact activation. Blood, 2017, Vol. 129, no. 11, pp. 1527-1537.

18. Liao S.M., Du Q.S., Meng J.Z., Pang Z.W., Huang R.B. The multiple roles of histidine in protein interactions. Chem. Cent. J., 2013, Vol. 7, no. 1, 44. doi: 10.1186/1752-153X-7-44.

19. Liu J., Qin J., Borodovsky A., Racie T., Castoreno A., Schlegel M., Maier M.A., Zimmerman T., Fitzgerald K., Butler J., Akinc A. An investigational RNAi therapeutic targeting Factor XII (ALN-F12) for the treatment of hereditary angioedema. RNA, 2019, Vol. 25, no. 2, pp. 255-263.

20. Meng E.C., Goddard T.D., Pettersen E.F., Couch G.S., Pearson Z.J., Morris J.H., Ferrin T.E. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci., 2023, Vol. 32, no. 11, pp 23-38.

21. Motta G., Juliano L., Shariat-Madar Z. Kallikrein-kinin system: insights into a multifunctional system. Front. Physiol., 2023, Vol. 14, 1305981. doi: 10.3389/fphys.2023.1305981.

22. Mottaz A., David F.P.A., Veuthey A.L., Yip Y.L. Easy retrieval of single amino-acid polymorphisms and phenotype information using SwissVar. Bioinformatics, 2010, Vol. 26, no. 6, pp. 851-852.

23. Ng P.C., Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res., 2003, Vol. 31, no. 13, pp. 3812-3814.

24. Pac M., Bernatowska E. Comprehensive activities to increase recognition of primary immunodeficiency and access to immunoglobulin replacement therapy in Poland. Eur. J. Pediatr., 2016, Vol. 175, pp. 1099–1105.

25. Pathak M., Wilmann P., Awford J., Li C., Hamad B.K., Fischer P.M., Emsley J. Coagulation factor XII protease domain crystal structure. J. Thromb. Haemost., 2015,Vol. 13, no. 4, pp. 580-591.

26. Pejaver V., Urresti J., Lugo-Martinez J., Pagel K.A., Lin G.N., Nam H.J., Mort M., Cooper D.N., Sebat J., Iakoucheva L.M., Mooney S., Radivojac P. Inferring the molecular and phenotypic impact of amino acid variants with MutPred2. Nat. Commun., 2020, Vol. 11, 5918. doi: 10.1038/s41467-020-19669-x.

27. Rentzsch P., Witten D., Cooper G.M., Shendure J., Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res., 2019, Vol. 47, no. D1, pp. 886-894.

28. Rogers M.F., Shihab H.A., Mort M., Cooper D.N., Gaunt T.R., Campbell C. FATHMM-XF: accurate prediction of pathogenic point mutations via extended features. Bioinformatics, 2018, Vol. 34, no. 3, pp. 511-513.

29. Shamanaev A., Dickeson S.K., Ivanov I., Litvak M., Sun M.F., Kumar S., Gailani D. Mechanisms involved in hereditary angioedema with normal C1-inhibitor activity. Front. Physiol., 2023, Vol. 14, 1146834. doi: 10.3389/fphys.2023.1146834.

30. Sherry S.T., Ward M.H., Kholodov M., Baker J., Phan L., Smigielski E.M., Sirotkin K. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 2001, Vol. 29, no. 1, pp. 308-311.

31. Sim N.L., Kumar P., Hu J., Henikoff S., Schneider G., Ng P.C. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res., 2012, Vol. 40, W1, pp. 452-457.

32. Steinhaus R., Proft S., Schuelke M., Cooper D.N., Schwarz J.M., Seelow D. MutationTaster2021. Nucleic Acids Res., 2021, Vol. 49, no. W1, pp. 446-451.

33. Stenson P.D., Mort M., Ball E.V., Chapman M., Evans K., Azevedo L., Hayden M.J., Heywood S., Millar D.S., Phillips A.D., Cooper D.N. The Human Gene Mutation Database (HGMD ® ): optimizing its use in a clinical diagnostic or research setting. Hum. Genet., 2020, Vol. 139, no. 10, pp. 1197–1207.

34. Trivedi R., Nagarajaram H.A. Intrinsically disordered proteins: an overview. Int. J. Mol. Sci., 2022, Vol. 23, no. 22, 14050. doi: 10.3390/ijms232214050.

35. Wu Y. Contact pathway of coagulation and inflammation. Thromb. J., 2015, Vol. 13, 17. doi: 10.1186/s12959-015-0048-y.

36. Zanichelli A., Magerl M., Longhurst H., Fabien V., Maurer M. Hereditary angioedema with C1 inhibitor deficiency: delay in diagnosis in Europe. Allergy Asthma Clin. Immunol., 2013, Vol. 9, no. 1, 29. doi: 10.1186/1710-1492-9-29.


Supplementary files

Review

For citations:


Sedykh A.V., Ostankova Yu.V., Schemelev A.N., Totolian A.A. Bioinformatic analysis of single nucleotide variants in the F12 gene associated with hereditary angioedema. Medical Immunology (Russia). 2025;27(6):1369-1384. (In Russ.) https://doi.org/10.15789/1563-0625-BAO-3235

Views: 465

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)