Single cell transcriptomics in prostate cancer research
https://doi.org/10.15789/1563-0625-SCT-3214
Abstract
The objective of our study was to review current advances in transcriptome technologies focused on single cell analysis with emphasis on their application in the study of the tumor microenvironment and immune landscape in prostate cancer (PCa). PubMed, Medline, Web of Science, and Embase scientific databases were analyzed. PCa is an androgen hormone-dependent malignant neoplasm that affects the male genitourinary system. Evidence shows that, in men under 40 years of age, PCa is extremely rare, while the highest number of cases occurs in the 50 to 70 age group. Today, PCa is one of the most common cancers among men and represents one of the leading causes of cancer-related deaths. According to the Global Cancer Observatory (GCO), there were 1,467,854 new cases of cancer worldwide in 2022, resulting in 397,430 deaths associated with the disease. PCa ranks fourth in terms of incidence and second in terms of mortality among all cancers in men. In Russia, PCa ranks second in incidence among all cancers in men, with 52,712 cases registered as of 2022, and fourth in mortality, with 14,635 cases. A thorough understanding of the mechanisms of the pathogenesis and progression of PCa is key to effective diagnosis and treatment development. This review presents an analysis of transcriptome-based techniques in single-cell resolution for studying cellular heterogeneity in PCa. The methodology of the analysis is also presented in detail, cellular heterogeneity in PCa is characterized, current research in the field of single cell transcriptomics in PCa is described, and promising applications of the results in clinical practice are also outlined. The results of research in this area have significant potential for use as both prognostic and diagnostic markers of tumor processes. Thus, the work emphasizes the importance of studying cellular heterogeneity to improve the methods of PCa diagnostics and therapy. Technologies for studying the transcriptome of single cells provide unique opportunities for in-depth understanding of the molecular and cellular mechanisms underlying the immune response in cancer. The data obtained may become the basis for the development of new directions in fundamental immunology, the development of innovative therapeutic strategies and a personalized approach to prostate cancer treatment, which opens prospects for improving the efficiency of treatment.
About the Authors
E. R. AkramovaRussian Federation
Akramova E.R., Laboratory Research Assistant, Laboratory of Immunology, Institute of Urology and Clinical Oncology; Master's Student in Biology, Institute for Education Development
2 Shafiev St, Bldg 5 Ufa, Republic of Bashkortostan 450083
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
Yu. V. Sharifyanova
Russian Federation
Sharifyanova Yu.V., Junior Researcher, Laboratory of Immunology, Institute of Urology and Clinical Oncology
2 Shafiev St, Bldg 5 Ufa, Republic of Bashkortostan 450083
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
D. Kh. Gainullina
Russian Federation
Gainullina D.Kh., Laboratory Research Assistant, Laboratory of Immunology, Institute of Urology and Clinical Oncology; Student, Pediatric Faculty
2 Shafiev St, Bldg 5 Ufa, Republic of Bashkortostan 450083
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
P. N. Shmelkova
Russian Federation
Shmelkova P.N., Laboratory Research Assistant, Laboratory of Immunology, Institute of Urology and Clinical Oncology; Student, Pediatric Faculty
2 Shafiev St, Bldg 5 Ufa, Republic of Bashkortostan 450083
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
L. I. Kalimullina
Russian Federation
Kalimullina L.I., Junior Researcher, Laboratory of Immunology, Institute of Urology and Clinical Oncology
2 Shafiev St, Bldg 5 Ufa, Republic of Bashkortostan 450083
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
V. N. Pavlov
Russian Federation
Pavlov V.N., PhD, MD (Medicine), Professor, Full Member, Russian Academy of Sciences, Rector
2 Shafiev St, Bldg 5 Ufa, Republic of Bashkortostan 450083
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
K. I. Enikeeva
Russian Federation
Enikeeva K.I., PhD (Pharmacy), Head, Laboratory of Immunology, Institute of Urology and Clinical Oncology
2 Shafiev St, Bldg 5 Ufa, Republic of Bashkortostan 450083
Competing Interests:
The authors declare that there are no potential conflicts of interest that require disclosure in this article.
References
1. Azizi E., Carr A.J., Plitas G., Cornish A.E., Konopacki C., Prabhakaran S., Nainys J., Wu K., Kiseliovas V., Setty M., Choi K., Fromme R.M., Dao P., McKenney P.T., Wasti R.C., Kadaveru K., Mazutis L., Rudensky A.Y., Pe’er D. Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment. Cell, 2018, Vol. 174, no. 5, pp. 1293-1308.
2. Beltran H., Hruszkewycz A., Scher H.I., Hildesheim J., Isaacs J., Yu E.Y., Kelly K., Lin D., Dicker A., Arnold J., Hecht T., Wicha M., Sears R., Rowley D., White R., Gulley J.L., Lee J., Diaz Meco M., Small E.J., Shen M., Knudsen K., Goodrich D.W., Lotan T., Zoubeidi A., Sawyers C.L., Rudin C.M., Loda M., Thompson T., Rubin M.A., Tawab-Amiri A., Dahut W., Nelson P.S. The role of lineage plasticity in prostate cancer therapy resistance. Clin. Cancer Res., 2019, Vol. 25, no. 23, pp. 6916-6924.
3. Cao Y., Zhu S., Yu B., Yao C. Single-cell RNA sequencing for traumatic spinal cord injury. FASEB J., 2022, Vol. 36, no. 12, e22656. doi: 10.1096/fj.202200943R.
4. Chen G., Ning B., Shi T. Single-сell RNA-Seq technologies and related computational data analysis. Front. Genet., 2019, Vol. 10, 317. doi: 10.3389/fgene.2019.00317.
5. De Vargas Roditi L., Jacobs A., Rueschoff J.H., Bankhead P., Chevrier S., Jackson H.W., Hermanns T., Fankhauser C.D., Poyet C., Chun F., Rupp N.J., Tschaebunin A., Bodenmiller B., Wild P.J. Single-cell proteomics defines the cellular heterogeneity of localized prostate cancer. Cell Rep. Med., 2022, Vol. 3, no. 4, 100604. doi: 10.1016/j.xcrm.2022.100604.
6. Donati G. The niche in single-cell technologies. Immunol. Cell Biol., 2016, Vol. 94, no. 3, pp. 250-255.
7. Dong B., Miao J., Wang Y., Luo W., Ji Z., Lai H., Zhang M., Cheng X., Wang J., Fang Y., Zhu H.H., Chua C.W., Fan L., Zhu Y., Pan J., Wang J., Xue W., Gao W.Q., Single-cell analysis supports a luminal-neuroendocrine transdifferentiation in human prostate cancer. Commun. Biol., 2020, Vol. 3, no. 1, 778. doi: 10.1038/s42003-020-01476-1.
8. Emmert-Buck M.R., Bonner R.F., Smith P.D., Chuaqui R.F., Zhuang Z., Goldstein S.R., Weiss R.A., Liotta L.A. Laser capture microdissection. Science, 1996, Vol. 274, no. 5, pp. 998-1001.
9. Enikeeva K., Rafikova G., Sharifyanova Y., Mulyukova D., Vanzin A., Pavlov V. Epigenetics as a Key Factor in Prostate Cancer. Adv. Biol., 2024, Vol. 8, no. 5, e2300520. doi: 10.1002/adbi.202300520.
10. Fan X., Zhang X., Wu X., Guo H., Hu Y., Tang F., Huang Y. Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biol., 2015, Vol. 16, no. 1, 148. doi: 10.1186/s13059-015-0706-1.
11. Haffner M.C., Zwart W., Roudier M.P., True L.D., Nelson W.G., Epstein J.I., De Marzo A.M., Nelson P.S., Yegnasubramanian S. Genomic and phenotypic heterogeneity in prostate cancer. Nat. Rev. Urol., 2021, Vol. 18, no. 2, pp. 79-92.
12. Heidegger I., Fotakis G., Offermann A., Goveia J., Daum S., Salcher S., Noureen A., Timmer-Bosscha H., Schäfer G., Walenkamp A., Perner S., Beatovic A., Moisse M., Plattner C., Krogsdam A., Haybaeck J., Sopper S., Thaler S., Keller M.A., Klocker H., Trajanoski Z., Wolf D., Pircher A. Comprehensive characterization of the prostate tumor microenvironment identifies CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer. Mol. Cancer, 2022, Vol. 21, no. 1, 132. doi: 10.1186/s12943-022-01597-7.
13. Held-Warmkessel J. Treatment of advanced prostate cancer. Semin. Oncol. Nurs., 2001, Vol. 17, no. 2, pp. 118-128.
14. Hwang B., Lee J.H., Bang D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med., 2018, Vol. 50, no. 8, pp. 1-14.
15. Islam S., Zeisel A., Joost S., La Manno G., Zajac P., Kasper M., Lönnerberg P., Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods, 2014, Vol. 11, no. 2, pp. 163-166.
16. Jovic D., Liang X., Zeng H., Lin L., Xu F., Luo Y. Single-cell RNA sequencing technologies and applications: A brief overview. Clin. Transl. Med., 2022, Vol. 12, no. 3, e694. doi: 10.1002/ctm2.694.
17. Kivioja T., Vähärautio A., Karlsson K., Bonke M., Enge M., Linnarsson S., Taipale J. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods., 2011, Vol. 9, no. 1, pp. 72-74.
18. Koukourakis I.M., Platoni K., Kouloulias V., Arelaki S., Zygogianni A. Prostate cancer stem cells: biology and treatment implications. Int. J. Mol. Sci., 2023, Vol. 24, no. 19, 14890. doi: 10.3390/ijms241914890
19. Kumar M.P., Du J., Lagoudas G., Jiao Y., Sawyer A., Drummond D.C., Lauffenburger D.A., Raue A. Analysis of Single-Cell RNA-Seq Identifies Cell-Cell Communication Associated with Tumor Characteristics. Cell Rep., 2018, Vol. 25, no. 6, pp. 1458-1468.
20. Labrecque M.P., Coleman I.M., Brown L.G., True L.D., Kollath L., Lakely B., Nguyen H.M., Yang Y.C., da Costa R.M.G., Kaipainen A., Coleman R., Higano C.S., Yu E.Y., Cheng H.H., Mostaghel E.A., Montgomery B., Schweizer M.T., Hsieh A.C., Lin D.W., Corey E., Nelson P.S., Morrissey C. Molecular profiling stratifies diverse phenotypes of treatment-refractory metastatic castration-resistant prostate cancer. J. Clin. Invest., 2019, Vol. 129, no. 10, pp. 4492-4505.
21. Lambrechts D., Wauters E., Boeckx B., Aibar S., Nittner D., Burton O., Bassez A., Decaluwé H., Pircher A., van den Eynde K., Weynand B., Verbeken E., De Leyn P., Liston A., Vansteenkiste J., Carmeliet P., Aerts S., Thienpont B., Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med., 2018, Vol. 24, no. 8, pp. 1277-1289.
22. Li Z., Li Z., Luo Y., Chen W., Fang Y., Xiong Y., Zhang Q., Yuan D., Yan B., Zhu J. Application and new findings of scRNA-seq and ST-seq in prostate cancer. Cell Regen., 2024, Vol. 13, no. 1, 23. doi: 10.1186/s13619-024-00206-w.
23. Liu W., Wang M., Wang M., Liu M. Single-cell and bulk RNA sequencing reveal cancer-associated fibroblast heterogeneity and a prognostic signature in prostate cancer. Medicine, 2023, Vol. 102, no. 32, e34611. doi: 10.1097/MD.0000000000034611.
24. Liu Y., Liang S., Wang B., Zhao J., Zi X., Yan S., Dou T., Jia J., Wang K., Ge C. Advances in single-cell sequencing technology and its application in poultry science. Genes, 2022, Vol. 13, no. 12, 2211. doi: 10.3390/genes13122211.
25. Liudahl S.M., Betts C.B., Sivagnanam S., Morales-Oyarvide V., da Silva A., Yuan C., Hwang S., GrossblattWait A., Leis K.R., Larson W., Lavoie M.B., Robinson P., Dias Costa A., Väyrynen S.A., Clancy T.E., Rubinson D.A., Link J., Keith D., Horton W., Tempero M.A., Vonderheide R.H., Jaffee E.M., Sheppard B., Goecks J., Sears R.C., Park B.S., Mori M., Nowak J.A., Wolpin B.M., Coussens L.M. Leukocyte heterogeneity in pancreatic ductal adenocarcinoma: phenotypic and spatial features associated with clinical outcome. Cancer Discov., 2021, Vol. 11, no. 8, pp. 2014-2031.
26. Luecken M.D., Theis F.J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol., 2019, Vol. 15, no. 6, e8746. doi: 10.15252/msb.20188746.
27. Ou Y., Xia C., Ye C., Liu M., Jiang H., Zhu Y., Yang D. Comprehensive scRNA-seq analysis to identify new markers of M2 macrophages for predicting the prognosis of prostate cancer. Ann. Med., 2024, Vol. 56, no. 1, 2398195. doi: 10.1080/07853890.2024.2398195.
28. Picelli S., Björklund Å.K., Faridani O.R., Sagasser S., Winberg G., Sandberg R. Smart-seq2 for sensitive fulllength transcriptome profiling in single cells. Nat. Methods, 2013, Vol. 10, no. 11, pp. 1096-1108.
29. Rozenblatt-Rosen O., Regev A., Oberdoerffer P., Nawy T., Hupalowska A., Rood J.E., Ashenberg O., Cerami E., Coffey R.J., Demir E., Ding L., Esplin E.D., Ford J.M., Goecks J., Ghosh S., Gray J.W., Guinney J., Hanlon S.E., Hughes S.K., Hwang E.S., Iacobuzio-Donahue C.A., Jané-Valbuena J., Johnson B.E., Lau K.S., Lively T., Mazzilli S.A., Pe’er D., Santagata S., Shalek A.K., Schapiro D., Snyder M.P., Sorger P.K., Spira A.E., Srivastava S., Tan K., West R.B., Williams E.H. Human Tumor Atlas Network. The human tumor atlas network: charting tumor transitions across space and time at single-cell resolution. Cell, 2020, Vol. 181, no. 2, pp. 236-249.
30. Sheng K., Cao W., Niu Y., Deng Q., Zong C. Effective detection of variation in single-cell transcriptomes using MATQ-seq. Nat. Methods, 2017, Vol. 14, no. 3, pp. 267-270.
31. Siefert J.C., Cioni B., Muraro M.J., Alshalalfa M., Vivié J., van der Poel H.G., Schoots I.G., Bekers E., Feng F.Y., Wessels L.F.A., Zwart W., Bergman A.M. The prognostic potential of human prostate cancerassociated macrophage subtypes as revealed by single-cell transcriptomics. Mol. Cancer Res., 2021, Vol. 19, no. 10, pp. 1778-1791.
32. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, Vol. 70, no. 1, pp. 7-30.
33. Slovin S., Carissimo A., Panariello F., Grimaldi A., Bouché V., Gambardella G., Cacchiarelli D. Single-сell RNA sequencing analysis: A step-by-step overview. Methods Mol. Biol., 2021, Vol. 2284, pp. 343-365.
34. Sun Z., Wang J., Zhang Q., Meng X., Ma Z., Niu J., Guo R., Tran L.J., Zhang J., Liu Y., Ye F., Ma B. Coordinating single-cell and bulk RNA-seq in deciphering the intratumoral immune landscape and prognostic stratification of prostate cancer patients. Environ. Toxicol., 2024, Vol. 39, no. 2, pp. 657-668.
35. Tirosh I., Izar B., Prakadan S.M., Wadsworth M.H. 2nd, Treacy D., Trombetta J.J., Rotem A., Rodman C., Lian C., Murphy G., Fallahi-Sichani M., Dutton-Regester K., Lin J.R., Cohen O., Shah P., Lu D., Genshaft A.S., Hughes T.K., Ziegler C.G., Kazer S.W., Gaillard A., Kolb K.E., Villani A.C., Johannessen C.M., Andreev A.Y., Van Allen E.M., Bertagnolli M., Sorger P.K., Sullivan R.J., Flaherty K.T., Frederick D.T., Jané-Valbuena J., Yoon C.H., Rozenblatt-Rosen O., Shalek A.K., Regev A., Garraway L.A. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq. Science., 2016, Vol. 352, no. 6282, pp. 189-196.
36. Trapnell C., Cacchiarelli D., Grimsby J., Pokharel P., Li S., Morse M., Lennon N.J., Livak K.J., Mikkelsen T.S., Rinn J.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol., 2014, Vol. 32, no. 4, pp. 381-386.
37. Valihrach L., Androvic P., Kubista M. Platforms for single-cell collection and analysis. Int. J. Mol. Sci., 2018, Vol. 19, no. 3, 807. doi: 10.3390/ijms19030807.
38. Vento-Tormo R., Efremova M., Botting R.A., Turco M.Y., Vento-Tormo M., Meyer K.B., Park J.E., Stephenson E., Polański K., Goncalves A., Gardner L., Holmqvist S., Henriksson J., Zou A., Sharkey A.M., Millar B., Innes B., Wood L., Wilbrey-Clark A., Payne R.P., Ivarsson M.A., Lisgo S., Filby A., Rowitch D.H., Bulmer J.N., Wright G.J., Stubbington M.J.T., Haniffa M., Moffett A., Teichmann S.A. Single-cell reconstruction of the early maternal-fetal interface in humans. Nature, 2018, Vol. 563, no. 7731, pp. 347-353.
39. Zhang B., Wang S., Fu Z., Gao Q., Yang L., Lei Z., Shi Y., Le K., Xiong J., Liu S., Zhang J., Su J., Chen J., Liu M., Niu B. Single-cell RNA sequencing reveals intratumoral heterogeneity and potential mechanisms of malignant progression in prostate cancer with perineural invasion. Front. Genet., 2023, Vol. 13, 1073232. doi: 10.3389/fgene.2022.1073232.
40. Zhang L., Li Z., Skrzypczynska K.M., Fang Q., Zhang W., O’Brien S.A., He Y., Wang L., Zhang Q., Kim A., Gao R., Orf J., Wang T., Sawant D., Kang J., Bhatt D., Lu D., Li C.M., Rapaport A.S., Perez K., Ye Y., Wang S., Hu X., Ren X., Ouyang W., Shen Z., Egen J.G., Zhang Z., Yu X. Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell, 2020, Vol. 181, no. 2, pp. 442-459.e29.
41. Zheng G.X., Terry J.M., Belgrader P., Ryvkin P., Bent Z.W., Wilson R., Ziraldo S.B., Wheeler T.D., McDermott G.P., Zhu J., Gregory M.T., Shuga J., Montesclaros L., Underwood J.G., Masquelier D.A., Nishimura S.Y., Schnall-Levin M., Wyatt P.W., Hindson C.M., Bharadwaj R., Wong A., Ness K.D., Beppu L.W., Deeg H.J., McFarland C., Loeb K.R., Valente W.J., Ericson N.G., Stevens EA., Radich J.P., Mikkelsen T.S., Hindson B.J., Bielas J.H. Massively parallel digital transcriptional profiling of single cells. Nat. Commun., 2017, Vol. 8, 14049. doi: 10.1038/ncomms14049.
42. Ziegenhain C., Vieth B., Parekh S., Reinius B., Guillaumet-Adkins A., Smets M., Leonhardt H., Heyn H., Hellmann I., Enard W. Comparative analysis of single-cell RNA sequencing methods. Mol. Cell, 2017, Vol. 65, no. 4, pp. 631-643.
43. Zilionis R., Engblom C., Pfirschke C., Savova V., Zemmour D., Saatcioglu HD., Krishnan I., Maroni G., Meyerovitz C.V., Kerwin C.M., Choi S., Richards W.G., De Rienzo A., Tenen D.G., Bueno R., Levantini E., Pittet M.J., Klein A.M. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity, 2019, Vol. 50, no. 5, pp. 1317-1334.
Supplementary files
Review
For citations:
Akramova E.R., Sharifyanova Yu.V., Gainullina D.Kh., Shmelkova P.N., Kalimullina L.I., Pavlov V.N., Enikeeva K.I. Single cell transcriptomics in prostate cancer research. Medical Immunology (Russia). 2025;27(5):935-944. (In Russ.) https://doi.org/10.15789/1563-0625-SCT-3214





































