Preview

Medical Immunology (Russia)

Advanced search

Influence of oxidative stress on the activity of mTOR kinase in CD4+T lymphocytes in autoimmune thyroiditis

https://doi.org/10.15789/1563-0625-IOO-3141

Abstract

Currentstudies of autoimmunityprocesses areaddressing specific processes involving mitochondria, i.e., altered intracellular signaling including the generation of ROS and release of proteins from mitochondria to the cytoplasm, thus activating apoptosis. These functions of mitochondria are usually associated with disturbed bioenergetic functions and excessive production of H2O2. Currently, a new area is actively developing, i.e., potential participation of mitochondria in the immune response. Therefore, the aim of the present study was to evaluate the dynamics of apoptosis factors and autophagy associated with mitochondria of CD4+T cells in autoimmune thyroiditis (AIT). The study was performed with CD4+T cells of AIT patients and healthy donors obtained by magnetic separation. Apoptosis and autophagy were assessed by flow cytometry. Western blotting was used to analyze autophagy marker proteins (p62, LC3I/II, mTOR kinase), and apo ptosis regulator Bcl-2 in CD4+T lymphocytes of the patients and donors. The state of mitochondria in CD4+T lymphocytes was assessed by confocal microscopy. Using an experimental model with increased H2O2, we showed that ROS activate LC3 protein in cells of patients with AIT along with accumulation of autophagic adapter protein p62, as registered on the outer mitochondrial membrane. An increased level of mitophagoses was found in CD4+T cells from the AIT patients. On the basis of these data, one may assume that H2O2 causes activation of mitophagy in CD4+T cells of patients with AIT, and the development of oxidative stress with excessive production of ROS leads to irreversible damage to mitochondria, which causes a decreased apoptotic activity followed by development of secondary necrosis of CD4+T lymphocytes in AIT, making them cytotoxic. Accumulation of such cells in the thyroid tissue may lead to impaired apoptosis in thyrocytes and, as a consequence, to secondary necrosis, thus resulting in development of autoimmune response. The obtained data require additional studies, since the detection of CD4+T lymphocytes prone for apoptosis or necrosis in patients with AIT may be used as a diagnostic criterion for prediction of inflammatory conditions.

About the Authors

A. V. Burtseva
Kazan (Volga Region) Federal University
Russian Federation

Burtseva Anastasia V., Master’s Student, Department of Biochemistry, Biotechnology and Pharmacology

Kazan



A. N. Tikhonova
https://kpfu.ru/student/AnNTikhonova
Kazan (Volga Region) Federal University
Russian Federation

Tikhonova Anastasia N., Bachelor, Department of Biochemistry, Biotechnology and Pharmacology

Kazan



Z. A. Afanasyeva
https://kgma.info/ob_akademii/struktura_akademii1/faculty/kafedra_onkologii_i_hirurgii/sotrudniki_kafedry/afanaseva_zinaida_aleksandrovna/
Kazan State Medical Academy, Branch of Russian Medical Academy of Continuous Professional Education
Russian Federation

Afanasyeva Zinaida A., PhD, MD (Medicine), Professor, Department of Oncology, Radiology and Palliative Medicine

Kazan



Z. I. Abramova
https://kpfu.ru/Zinaida.Abramova
Kazan (Volga Region) Federal University
Russian Federation

Abramova Zinaida I., PhD, MD (Biology), Professor, Department of Biochemistry, Biotechnology and Pharmacology, Institute of Fundamental Medicine and Biology

Kazan



References

1. Arkhipov S.A., Shkurupiy V.A., Zaikovskaya M.V., Akhramenko E.S., Ilyin D.A. Multidirectional effects of H2O2 on macrophages and fibroblasts under conditions of in vitro oxidative stress modeling. Sovremennye naukoemkie tekhnologii = Modern High-Tech Technologies, 2010, no. 8, pp. 76-77. (In Russ.)

2. Bra M., Kvinan B., Suzin S.A. Mitochondria in programmed cell death: various mechanisms of death (review). Biokhimiya = Biochemistry, 2005, Vol. 70, no. 2, pp. 284-293. (In Russ.)

3. Budanov A.V. The role of sestrins in the regulation of the cellular response to stress. Uspekhi sovremennoy biologii = Biology Bulletin Reviews, 2022, Vol. 142, no. 1, pp. 5-24. (In Russ.)

4. Budanov A.V. The role of sestrins in the regulation of cellular response to stress. Uspekhi sovremennoy biologii = Biology Bulletin Reviews, 2022, Vol. 142, no. 1, pp. 5-24. (In Russ.)

5. Volpe R. Diseases of the thyroid gland / Ed. L.I. Braverman: Trans. from English]. Moscow: Meditsina, 2010. pp. 140-172.

6. Gamalei I.A., Klubin I.V. Hydrogen peroxide as a signaling molecule. Tsitologiya = Tsitologiya, 1996, Vol. 38, no. 12, pp. 1233-1247. (In Russ.)

7. Zhukova S.I., Kanner I.D., Mamontova T.M., Shelomentseva E.M., Maksimov M.L. The role of T-regulatory cells in autoimmune thyroiditis. Meditsinskiy sovet = Medical Council, 2020, no. 21, pp. 152-159. (In Russ.)

8. Zenkov N.K., Chechushkov A.V., Kozhin P.M., Martinovich G.G., Kandalintseva N.V., Menshchikova E.B. Autophagy as a mechanism of protection under oxidative stress. Byulleten sibirskoy meditsiny = Bulletin of Siberian Medicine, 2019, Vol. 18, no. 2, pp. 195-214. (In Russ.)

9. Kandror V.I. Autoimmune diseases of the thyroid gland and apoptosis. Problemy endokrinologii = Problems of Endocrinology, 2002, Vol. 48, no. 1, pp. 45-48. (In Russ.)

10. Kormosh N.G. The physiological role of reactive oxygen species (subcellular level) – a clinician’s view. Rossiyskiy bioterapevticheskiy zhurnal = Russian Biotherapeutic Journal, 2011, Vol. 10, no. 4, pp. 29-35. (In Russ.)

11. Nuralieva N.F., Yukina M.Yu., Troshina E.A. Fundamentals of immunopathogenesis of autoimmune thyropathies and type 1 diabetes mellitus. Doktor.Ru = Doctor.Ru, 2019, no. 4 (159), pp. 49-53. (In Russ.)

12. Potapnev M.P. Apoptosis of immune system cells and its regulation by cytokines. Immunologiya = Immunologiya, 2002, Vol. 23, no. 4, pp. 237-243. (In Russ.)

13. Rybakova A.A., Platonova N.M., Troshina E.A. Oxidative stress and its role in the development of autoimmune thyroid diseases. Problemy endokrinologii = Problems of Endocrinology, 2019, Vol. 65, no. 6, pp. 451-457. (In Russ.)

14. Troshina E.A. Chronic autoimmune thyroiditis – a “signal disease” as part of a multiorgan autoimmune syndrome. Problemy endokrinologii = Problems of Endocrinology, 2023, Vol. 69, no. 4, pp. 4-10. (In Russ.)

15. Tyukavin A.I., Suchkov S.V. Molecular mechanisms of cell functioning in norm and pathology. Formuly Farmatsii = Formulas of Pharmacy, 2022, Vol. 4, no. 4, pp. 26-40. (In Russ.)

16. Urazova O.I., Kravets E.B., Novitsky V.V., Rogaleva A.V., Budkina T.E., Sinyukova O.A., Nedosekova Yu.V., Kuznetsova V.N. Apoptosis of blood lymphocytes in patients with autoimmune thyropathies. Meditsinskaya immunologiya = Medical Immunology (Russia), 2008, Vol. 10, no. 2-3, pp. 187-192. (In Russ.) doi: 10.15789/1563-0625-2008-2-3-187-192.

17. Freidlin I.S., Mammadova D.T., Starikova E.A. The role of autophagy in infections. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova = Russian Journal of Physiology, 2019, Vol. 105, no. 12, pp. 1486-1501. (In Russ.)

18. Chasovskikh N.Yu., Ryazantseva N.V., Novitsky V.V. Apoptosis and oxidative stress]. Tomsk: Pechatnaya manufaktura, 2009. 148 p.

19. Ates I., Arikan M.F., Altay M., Yilmaz F.M., Yilmaz N., Berker D., Guler S. The effect of oxidative stress on the progression of Hashimoto’s thyroiditis. Arch. Physiol. Biochem., 2018, Vol. 124, no. 4, pp. 351-356.

20. Bermann M., Magee M., Koenig R.J., Kaplan M.M., Arscott P., Maastricht J., Johnson J., Baker J.R. Differential autoantibody responses to thyroid peroxidase in patients with Graves’ disease and Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab., 1993, Vol. 77, no. 4, pp. 1098-1101.

21. Bjørkøy G., Lamark T., Brech A., Outzen H., Perander M., Øvervatn A., Stenmark H., Johansen T. p62/ SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J. Cell Biol., 2005, Vol. 171, no. 4, pp. 603-614.

22. Czabotar P.E., Lessene G., Strasser A., Adams J.M. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, Vol. 15, no. 1, pp. 49-63.

23. Filomeni G., De Zio D., Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015, Vol. 22, no. 3, pp. 377-388.

24. Green D.R. The end and after: how dying cells impact the living organism. Immunity, 2011, Vol. 35, no. 4, pp. 441-444.

25. Hailey D.W., Rambold A.S. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell, 2010, Vol. 141, no. 4, pp. 656-667.

26. Hu H., Tian M., Ding C., Yu S. The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front. Immunol., 2019, Vol. 9, 3083. doi: 10.3389/fimmu.2018.03083.

27. Jiang P., Mizushima N. Autophagy and human diseases. Cell Res., 2014, Vol. 24, no. 1, pp. 69-79.

28. Kaminskyy V., Zhivotovsky B. Proteases in autophagy. Biochim. Biophys. Acta, 2012, Vol. 1824, no. 1, pp. 44-50.

29. Kim I., Rodriguez-Enriquez S., Lemasters J.J. Selective degradation of mitochondria by mitophagy. Arch. Biochem. Biophys., 2007, Vol. 462, no. 2, pp. 245-253.

30. Kochman J., Jakubczyk K., Bargiel P., Janda-Milczarek K. The influence of oxidative stress on thyroid diseases. Antioxidants, 2021, Vol. 10, no. 9, 1442. doi: 10.3390/antiox10091442.

31. Kroemer G., Reed J.С. Mitochondrial control of cell death. Nat. Med, 2000, Vol. 6, no. 5, pp. 513-519.

32. Kumar A.V., Mills J., Lapierre L.R. Selective autophagy receptor p62/SQSTM1, a pivotal player in stress and aging. Front. Cell Dev. Biol., 2022, Vol. 10, 793328. doi: 10.3389/fcell.2022.793328.

33. Mizushima N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr. Opin. Cell Biol., 2010, Vol. 22, no. 2, pp. 132-139.

34. Ornatowski W., Lu Q., Yegambaram M., Garcia A.E., Zemskov E.A., Maltepe E., Fineman J.R., Wang T., Black S.M. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol., 2020, Vol. 36, 101679. doi: 10.1016/j.redox.2020.101679.

35. Palazzo F.F., Hammond L.J., Goode A.W., Mirakian R. Death of the autoimmune thyrocyte: is it pushed or does it jump? Thyroid, 2000, Vol. 10, no. 7, pp. 561-572.

36. Peter C., Wesselborg S., Herrmann M., Lauber K. Dangerous attraction: phagocyte recruitment and danger signals of apoptotic and necrotic cells. Apoptosis, 2010, Vol. 15, no. 9, pp. 1007-1028.

37. Pohl S.Ö., Agostino M., Dharmarajan A., Pervaiz S. Cross talk between cellular redox state and the antiapoptotic protein Bcl-2. Antioxid. Redox Signal., 2018, Vol. 29, no. 13, pp. 1215-1236.

38. Pua H.H., Guo J., Komatsu M., He Y.W. Autophagy is essential for mitochondrial clearance in mature T lymphocytes. J. Immunol., 2009, Vol. 182, no. 7, pp. 4046-4055.

39. Pyzik A., Grywalska E., Matyjaszek-Matuszek B., Roliński J. Immune disorders in Hashimoto’s thyroiditis: what do we know so far? J. Immunol. Res., 2015, Vol. 2015, no. 1, 979167. doi: 10.1155/2015/979167.

40. Rambold A.S., Lippincott-Schwartz J. Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle, 2011, Vol. 10, no. 23, pp. 4032-4038.

41. Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol., 2002, Vol. 3, no. 12, pp. 1129-1134.

42. Roth S., Dröge W. Regulation of T-cell activation and T-cell growth factor (TCGF) production by hydrogen peroxide. Cell. Immunol., 1987, Vol. 108, no. 2, pp. 417-424.

43. Ruggeri R.M., Campennì A., Giuffrida G., Casciaro M., Barbalace M.C., Hrelia S., Trimarchi F., Cannavò S., Gangemi S. Oxidative stress as a key feature of autoimmune thyroiditis: an update. Minerva Endocrinol., 2020, Vol. 45, no. 4, pp. 326-344.

44. Rui Y.N., Le W. Selective role of autophagy in neuronal function and neurodegenerative diseases. Neurosci. Bull., 2015, Vol. 31, no. 4, 379-381.

45. Saeki K., Yuo A., Okuma E., Yazaki Y., Susin S.A., Kroemer G., Takaku F. Bcl-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ., 2000, Vol. 7, no. 12, pp. 1263-1269.

46. Santaguida M.G., Gatto I., Mangino G., Virili C., Stramazzo I., Fallahi P., Antonelli A., Segni M., Romeo G., Centanni M. BREG cells in Hashimoto’s thyroiditis isolated or associated to further organ-specific autoimmune diseases. Clin. Immunol., 2017, Vol. 184, pp. 42-47.

47. Seong S.Y., Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat. Rev. Immunol., 2004, Vol. 4, no. 6, pp. 469-478.

48. Sies H. Strategies of antioxidant defense. Eur. J. Biochem., 1993, Vol. 215. no. 2, pp. 213-219.

49. Singh R., Letai A., Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, Vol. 20, no. 3, pp. 175-193.

50. Stone J.R., Collins T. The role of hydrogen peroxide in endothelial proliferative responses. Endothelium, 2002, Vol. 9, no. 4, pp. 231-238.

51. van Parijs L., Biuckians A., Abbas A.K. Functional roles of Fas and Bcl-2-regulated apoptosis of T lymphocytes. J. Immunol., 1998, Vol. 160, no. 5, pp. 2065-2071.

52. Walsh C.M., Edinger A.L. The complex interplay between autophagy, apoptosis, and necrotic signals promotes T-cell homeostasis. Immunol. Rev., 2010, Vol. 236, no. 1, pp. 95-109.

53. Weichhart T. mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology, 2018, Vol. 64, no. 2, pp. 127-134.

54. Zitvogel L., Kepp O., Kroemer G. Decoding cell death signals in inflammation and immunity. Cell, 2010, Vol. 140, no. 6, pp. 798-804.


Supplementary files

Review

For citations:


Burtseva A.V., Tikhonova A.N., Afanasyeva Z.A., Abramova Z.I. Influence of oxidative stress on the activity of mTOR kinase in CD4+T lymphocytes in autoimmune thyroiditis. Medical Immunology (Russia). 2025;27(4):847-862. (In Russ.) https://doi.org/10.15789/1563-0625-IOO-3141

Views: 65


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)