Preview

Медицинская иммунология

Расширенный поиск

МЕТАБОЛИЧЕСКОЕ РЕПРОГРАММИРОВАНИЕ МИКРОГЛИИ И АСТРОЦИТОВ, КАК ФАКТОР РЕГУЛЯЦИИ НЕЙРОВОСПАЛЕНИЯ ПРИ ИШЕМИЧЕСКОМ ИНСУЛЬТЕ

https://doi.org/10.15789/1563-0625-MRO-3131

Аннотация

Резюме

Ишемический инсульт является одним из самых распространенных заболеваний во всем мире, с высоким уровнем заболеваемости и смертности. В патологическом процессе ишемии нервной ткани нейровоспаление является важным фактором, который определяет функциональный прогноз исхода заболевания. При формировании ишемического очага происходит активация клеток микроглии, а также астроцитов, что приводит к запуску каскада нейровоспалительных реакций, играющих важную роль в патофизиологии ишемического инсульта. Активированные клетки микроглии и астроциты способны формировать разнообразные фенотипы в зависимости от соответствующих параметров микроокружения. Данные фенотипы могут оказывать как нейротоксическое, так и нейропротекторное действие. С одной стороны, при повреждении нервной ткани глиальные клетки способствуют удалению клеточного дебриса, поддержанию ионного гомеостаза, регулируют внеклеточное содержание нейротрансмиттеров и обеспечивают трофику нейронов. С другой стороны, микроглия и астроциты могут приобретать провоспалительный фенотип, характеризующийся секрецией воспалительных цитокинов, который способствует прогрессированию нейровоспаления и повреждению тканей. Таким образом, астроциты и микроглия претерпевают как морфологические, так и функциональные перестройки, тем самым активно участвуя в нейровоспалении за счет высвобождения провоспалительных или противовоспалительных факторов. Важно отметить, что эти перестройки сопряжены с метаболическим репрограммированием, которое приводит к изменению активности метаболических путей для компенсации дефицита энергии и строительных материалов, вызванного нарушением мозгового кровотока. Провоспалительный фенотип микроглии характеризуется активацией гликолиза, пентозофосфатного пути, синтеза жирных кислот и глутамина, тогда как противовоспалительный фенотип демонстрирует усиление окислительного фосфорилирования и окисления жирных кислот. Для реактивных астроцитов характерно усиление гликолиза, гликогенолиза и сниженное поглощение глутамата. В последнее время появляется все больше свидетельств того, что манипулирование гомеостазом глиальных клеток может быть использовано для переключения с нейротоксического фенотипа на нейропротекторный. Всестороннее понимание основных механизмов переключения метаболических фенотипов потенциально может позволить направленно репрограммировать глиальные клетки в ходе патологического процесса, что может быть использовано в терапевтических подходах для лечения последствий ишемического инсульта. В данном обзоре представлены современные представления о метаболическом репрограммировании в астроцитах и клетках микроглии в контексте патофизиологических процессов при ишемии мозга.

Об авторах

Михаил Юрьевич Бобров
АНОО ВО «Научно-технологический университет «Сириус», федеральная территория «Сириус», Россия
Россия

кандидат химических наук, ведущий научный сотрудник, направление "Иммунобиология и биомедицина", центр генетики и наук о жизни



Вадим Сергеевич Никитин
АНОО ВО «Научно-технологический университет «Сириус», федеральная территория «Сириус», Россия
Россия

лаборант-исследователь, студент магистратуры НТУ «Сириус», Направления «Иммунобиология и биомедицина»



Марина Юрьевна Бурак
АНОО ВО «Научно-технологический университет «Сириус», федеральная территория «Сириус», Россия
Россия

лаборант-исследователь, студент магистратуры НТУ «Сириус», Направления «Иммунобиология и биомедицина»



Список литературы

1. Aizawa F., Nishinaka T., Yamashita T., Nakamoto K., et al. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli. Biol. Pharm. Bull., 2016, Vol. 39, no. 7, pp. 1100–1106. - http://doi.org/10.1248/bpb.b15-01037

2. Anderson, C.M., Bridges R.J., Chamberlin A.R., Shimamoto K., et al. Differing effects of substrate and non‐substrate transport inhibitors on glutamate uptake reversal. J. Neurochem., 2001, Vol. 79, no. 6, pp. 1207–1216. - https://doi.org/10.1046/j.1471-4159.2001.00668.x

3. Baik S.H., Kang S., Lee W., Choi H., et al. A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer’s Disease. Cell Metab., 2019, Vol. 30, no. 3, pp. 493-507.e6. - http://doi.org/10.1016/j.cmet.2019.06.005

4. Bak L.K., Schousboe A., Waagepetersen H.S. The glutamate/GABA‐glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem., 2006, Vol. 98, no. 3, pp. 641–653. - http://doi.org/10.1111/j.1471-4159.2006.03913.x

5. Bak L.K., Walls A.B., Schousboe A., Waagepetersen H.S. Astrocytic glycogen metabolism in the healthy and diseased brain. J. Biol. Chem., 2018, Vol. 293, no. 19, pp. 7108–7116. - http://doi.org/10.1074/jbc.R117.803239

6. Bernier L.-P., York E.M., Kamyabi A., Choi H.B., et al. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun., 2020, Vol. 11, no. 1, p. 1559. - http://doi.org/10.1038/s41467-020-15267-z

7. Bolanos J., Garcia-Nogales P., Almeida A. Provoking Neuroprotection by Peroxynitrite. Curr. Pharm. Des., 2004, Vol. 10, no. 8, pp. 867–877. - http://doi.org/10.2174/1381612043452910

8. Borbor M., Yin D., Brockmeier U., Wang C., et al. Neurotoxicity of ischemic astrocytes involves STAT3 - mediated metabolic switching and depends on glycogen usage. Glia, 2023, Vol. 71, no. 6, pp. 1553–1569. - http://doi.org/10.1002/glia.24357

9. Bröer A., Albers A., Setiawan I., Edwards R.H., et al. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J. Physiol., 2002, Vol. 539, no. 1, pp. 3–14. - http://doi.org/10.1113/jphysiol.2001.013303

10. Bröer S., Brookes N. Transfer of glutamine between astrocytes and neurons. J. Neurochem., 2001, Vol. 77, no. 3, pp. 705–719. - http://doi.org/10.1046/j.1471-4159.2001.00322.x

11. Brown A.M., Ransom B.R. Astrocyte glycogen and brain energy metabolism. Glia, 2007, Vol. 55, no. 12, pp. 1263–1271. - http://doi.org/10.1002/glia.20557

12. Brown A.M., Sickmann H.M., Fosgerau K., Lund T.M., et al. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J. Neurosci. Res., 2005, Vol. 79, no. 1–2, pp. 74–80. - http://doi.org/10.1002/jnr.20335

13. Bruce K.D., Gorkhali S., Given K., Coates A.M., et al. Lipoprotein Lipase Is a Feature of Alternatively-Activated Microglia and May Facilitate Lipid Uptake in the CNS During Demyelination. Front. Mol. Neurosci., 2018, Vol. 11. - http://doi.org/10.3389/fnmol.2018.00057

14. Button E.B., Mitchell A.S., Domingos M.M., Chung J.H. ‐J., et al. Microglial Cell Activation Increases Saturated and Decreases Monounsaturated Fatty Acid Content, but Both Lipid Species are Proinflammatory. Lipids, 2014, Vol. 49, no. 4, pp. 305–316. - https://doi.org/10.1007/s11745-014-3882-y

15. Cai Y., Guo H., Fan Z., Zhang X., et al. Glycogenolysis Is Crucial for Astrocytic Glycogen Accumulation and Brain Damage after Reperfusion in Ischemic Stroke. iScience, 2020, Vol. 23, no. 5, p. 101136. - https://doi.org/10.1016/j.isci.2020.101136

16. Candelario-Jalil E., Dijkhuizen R.M., Magnus T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke, 2022, Vol. 53, no. 5, pp. 1473–1486. - https://doi.org/10.1161/STROKEAHA.122.036946.

17. Chang J., Qian Z., Wang B., Cao J., et al. Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury. Cell Commun. Signal., 2023, Vol. 21, no. 1, p. 37. - https:// doi.org/10.1186/s12964-022-01036-6.

18. Chang P.K.-Y., Khatchadourian A., McKinney R.A., Maysinger D. Docosahexaenoic acid (DHA): a modulator of microglia activity and dendritic spine morphology. J. Neuroinflammation, 2015, Vol. 12, no. 1, p. 34. - http://doi.org/10.1186/s12974-015-0244-5

19. Chen J., Zhang D.-M., Feng X., Wang J., et al. TIGAR inhibits ischemia/reperfusion-induced inflammatory response of astrocytes. Neuropharmacology, 2018, Vol. 131 pp. 377–388. - http://doi.org/10.1016/j.neuropharm.2018.01.012

20. Chen S.-F., Pan M.-X., Tang J.-C., Cheng J., et al. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol. Brain, 2020, Vol. 13, no. 1, p. 63. - http://doi.org/10.1186/s13041-020-00601-9

21. Chen S., Dong Z., Cheng M., Zhao Y., et al. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J. Neuroinflammation, 2017, Vol. 14, no. 1, p. 187. - http://doi.org/10.1186/s12974-017-0963-x

22. Cheng S.-C., Quintin J., Cramer R.A., Shepardson K.M., et al. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science (80-. )., 2014, Vol. 345, no. 6204,. - http://doi.org/10.1126/science.1250684

23. Cheng X., Yang Y.-L., Li W.-H., Liu M., et al. Dynamic Alterations of Brain Injury, Functional Recovery, and Metabolites Profile after Cerebral Ischemia/Reperfusion in Rats Contributes to Potential Biomarkers. J. Mol. Neurosci., 2020, Vol. 70, no. 5, pp. 667–676. - http://doi.org/10.1007/s12031-019-01474-x

24. Cherry J.D., Olschowka J.A., O’Banion M.K. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation, 2014, Vol. 11, no. 1, p. 98. - https://doi.org/10.1186/1742-2094-11-98

25. Chu K., Lee S.-T., Sinn D.-I., Ko S.-Y., et al. Pharmacological Induction of Ischemic Tolerance by Glutamate Transporter-1 (EAAT2) Upregulation. Stroke, 2007, Vol. 38, no. 1, pp. 177–182. - http://doi.org/10.1161/01.STR.0000252091.36912.65

26. Clausen B.H., Lambertsen K.L., Dagnæs-Hansen F., Babcock A.A., et al. Cell therapy centered on IL-1Ra is neuroprotective in experimental stroke. Acta Neuropathol., 2016, Vol. 131, no. 5, pp. 775–791. - https://doi.org/10.1007/s00401-016-1541-5.

27. De Simone R., Vissicchio F., Mingarelli C., De Nuccio C., et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta - Mol. Basis Dis., 2013, Vol. 1832, no. 5, pp. 650–659. - http://doi.org/10.1016/j.bbadis.2013.02.001

28. Denko N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer, 2008, Vol. 8, no. 9, pp. 705–713. - http://doi.org/10.1038/nrc2468

29. Dodson M., de la Vega M.R., Cholanians A.B., Schmidlin C.J., et al. Modulating NRF2 in Disease: Timing Is Everything. Annu. Rev. Pharmacol. Toxicol., 2019, Vol. 59, no. 1, pp. 555–575. - http://doi.org/10.1146/annurev-pharmtox-010818-021856

30. dos Santos I.C., Dias M.C., Gomes-Leal W. Microglial activation and adult neurogenesis after brain stroke. Neural Regen. Res., 2021, Vol. 16, no. 3, p. 456. - https://doi.org/10.4103/1673-5374.291383.

31. Duffy C.M., Xu H., Nixon J.P., Bernlohr D.A., et al. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation. Mol. Cell. Neurosci., 2017, Vol. 80 pp. 52–57. - http://doi.org/10.1016/j.mcn.2017.02.004

32. Duffy C.M., Yuan C., Wisdorf L.E., Billington C.J., et al. Role of orexin A signaling in dietary palmitic acid-activated microglial cells. Neurosci. Lett., 2015, Vol. 606 pp. 140–144. - http://doi.org/10.1016/j.neulet.2015.08.033

33. Dwivedi D., Megha K., Mishra R., Mandal P.K. Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem. Res., 2020, Vol. 45, no. 7, pp. 1461–1480. - http://doi.org/10.1007/s11064-020-03030-1

34. Ebert D., Haller R.G., Walton M.E. Energy Contribution of Octanoate to Intact Rat Brain Metabolism Measured by 13 C Nuclear Magnetic Resonance Spectroscopy. J. Neurosci., 2003, Vol. 23, no. 13, pp. 5928–5935. - http://doi.org/10.1523/JNEUROSCI.23-13-05928.2003

35. Ebrahimi M., Yamamoto Y., Sharifi K., Kida H., et al. Astrocyte‐expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons. Glia, 2016, Vol. 64, no. 1, pp. 48–62. - https://doi.org/10.1002/glia.22902

36. Escartin C., Galea E., Lakatos A., O’Callaghan J.P., et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci., 2021, Vol. 24, no. 3, pp. 312–325. - https://doi.org/10.1038/s41593-020-00783-4

37. Falkowska A., Gutowska I., Goschorska M., Nowacki P., et al. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int. J. Mol. Sci., 2015, Vol. 16, no. 11, pp. 25959–25981. - http://doi.org/10.3390/ijms161125939

38. Foster D.W. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest., 2012, Vol. 122, no. 6, pp. 1958–1959. - http://doi.org/10.1172/JCI63967

39. Gaber T., Strehl C., Buttgereit F. Metabolic regulation of inflammation. Nat. Rev. Rheumatol., 2017, Vol. 13, no. 5, pp. 267–279. - http://doi.org/10.1038/nrrheum.2017.37

40. Gao G., Li C., Zhu J., Wang Y., et al. Glutaminase 1 Regulates Neuroinflammation After Cerebral Ischemia Through Enhancing Microglial Activation and Pro-Inflammatory Exosome Release. Front. Immunol., 2020, Vol. 11. - https://doi.org/10.3389/fimmu.2020.00161

41. Ghosh S., Castillo E., Frias E.S., Swanson R.A. Bioenergetic regulation of microglia. Glia, 2018, Vol. 66, no. 6, pp. 1200–1212. - http://doi.org/10.1002/glia.23271

42. Gill E.L., Raman S., Yost R.A., Garrett T.J., et al. l-Carnitine Inhibits Lipopolysaccharide-Induced Nitric Oxide Production of SIM-A9 Microglia Cells. ACS Chem. Neurosci., 2018, Vol. 9, no. 5, pp. 901–905. - https://doi.org/10.1021/acschemneuro.7b00468

43. Gimeno‐Bayón J., López‐López A., Rodríguez M.J., Mahy N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J. Neurosci. Res., 2014, Vol. 92, no. 6, pp. 723–731. - http://doi.org/10.1002/jnr.23356

44. Guo H., Fan Z., Wang S., Ma L., et al. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J. Neuroinflammation, 2021, Vol. 18, no. 1, p. 230. - http://doi.org/10.1186/s12974-021-02284-y

45. Hardie D.G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol., 2007, Vol. 8, no. 10, pp. 774–785. - http://doi.org/10.1038/nrm2249

46. He C., Zhou C., Kennedy B.K. The yeast replicative aging model. Biochim. Biophys. Acta - Mol. Basis Dis., 2018, Vol. 1864, no. 9, pp. 2690–2696. - http://doi.org/10.1016/j.bbadis.2018.02.023

47. Holland R., McIntosh A.L., Finucane O.M., Mela V., et al. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain. Behav. Immun., 2018, Vol. 68 pp. 183–196. - http://doi.org/10.1016/j.bbi.2017.10.017

48. Hu J., Baydyuk M., Huang J.K. Impact of amino acids on microglial activation and CNS remyelination. Curr. Opin. Pharmacol., 2022, Vol. 66 p. 102287. - https://doi.org/10.1016/j.coph.2022.102287

49. Hu X., Li P., Guo Y., Wang H., et al. Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia. Stroke, 2012, Vol. 43, no. 11, pp. 3063–3070. - http://doi.org/10.1161/STROKEAHA.112.659656

50. Hu Y., Mai W., Chen L., Cao K., et al. mTOR‐mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia, 2020, Vol. 68, no. 5, pp. 1031–1045. - http://doi.org/10.1002/glia.23760

51. Iizumi T., Takahashi S., Mashima K., Minami K., et al. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J. Neuroinflammation, 2016, Vol. 13, no. 1, p. 99. - http://doi.org/10.1186/s12974-016-0564-0

52. Infantino V., Convertini P., Cucci L., Panaro M.A., et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J., 2011, Vol. 438, no. 3, pp. 433–436. - http://doi.org/10.1042/BJ20111275

53. Ioannou M.S., Jackson J., Sheu S.-H., Chang C.-L., et al. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell, 2019, Vol. 177, no. 6, pp. 1522-1535.e14. - https://doi.org/10.1016/j.cell.2019.04.001

54. Jiang T., Luo J., Pan X., Zheng H., et al. Physical exercise modulates the astrocytes polarization, promotes myelin debris clearance and remyelination in chronic cerebral hypoperfusion rats. Life Sci., 2021, Vol. 278 p. 119526. - https://doi.org/10.1016/j.lfs.2021.119526.

55. Jiang X., Pu H., Hu X., Wei Z., et al. A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Transl. Stroke Res., 2016, Vol. 7, no. 6, pp. 548–561. - http://doi.org/10.1007/s12975-016-0502-6

56. Jobgen W.S., Fried S.K., Fu W.J., Meininger C.J., et al. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem., 2006, Vol. 17, no. 9, pp. 571–588. - http://doi.org/10.1016/j.jnutbio.2005.12.001

57. Jump D.B., Clarke S.D. Regulation of gene expression by dietary fat. Annu. Rev. Nutr., 1999, Vol. 19, no. 1, pp. 63–90. - http://doi.org/10.1146/annurev.nutr.19.1.63

58. Jurcau A., Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int. J. Mol. Sci., 2021, Vol. 23, no. 1, p. 14. - https://doi.org/10.3390/ijms23010014.

59. Jurga A.M., Paleczna M., Kuter K.Z. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front. Cell. Neurosci., 2020, Vol. 14. - http://doi.org/10.3389/fncel.2020.00198

60. Kagawa Y., Yasumoto Y., Sharifi K., Ebrahimi M., et al. Fatty acid‐binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin‐1. Glia, 2015, Vol. 63, no. 5, pp. 780–794. - https://doi.org/10.1002/glia.22784

61. Kaushik D.K., Yong V.W. Metabolic needs of brain‐infiltrating leukocytes and microglia in multiple sclerosis. J. Neurochem., 2021, Vol. 158, no. 1, pp. 14–24. - http://doi.org/10.1111/jnc.15206

62. Kelly B., O’Neill L.A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res., 2015, Vol. 25, no. 7, pp. 771–784. - http://doi.org/10.1038/cr.2015.68

63. Killoy K.M., Harlan B.A., Pehar M., Vargas M.R. FABP7 upregulation induces a neurotoxic phenotype in astrocytes. Glia, 2020, Vol. 68, no. 12, pp. 2693–2704. - https://doi.org/10.1002/glia.23879

64. Klimaszewska‐Łata J., Gul‐Hinc S., Bielarczyk H., Ronowska A., et al. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells. J. Neurochem., 2015, Vol. 133, no. 2, pp. 284–297. - http://doi.org/10.1111/jnc.12979

65. Kofuji P., Araque A. Astrocytes and Behavior. Annu. Rev. Neurosci., 2021, Vol. 44, no. 1, pp. 49–67. - https://doi.org/10.1146/annurev-neuro-101920-112225

66. Kunze R., Urrutia A., Hoffmann A., Liu H., et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood–brain barrier integrity. Exp. Neurol., 2015, Vol. 266 pp. 99–111. - http://doi.org/10.1016/j.expneurol.2015.02.022

67. Lai T.W., Zhang S., Wang Y.T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog. Neurobiol., 2014, Vol. 115 pp. 157–188. - https://doi.org/10.1016/j.pneurobio.2013.11.006

68. Lambertsen K.L., Finsen B., Clausen B.H. Post-stroke inflammation—target or tool for therapy? Acta Neuropathol., 2019, Vol. 137, no. 5, pp. 693–714. - https://doi.org/10.1007/s00401-018-1930-z.

69. Lanza M., Casili G., Campolo M., Paterniti I., et al. Immunomodulatory Effect of Microglia-Released Cytokines in Gliomas. Brain Sci., 2021, Vol. 11, no. 4, p. 466. - https://doi.org/10.3390/brainsci11040466.

70. Lauro C., Limatola C. Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Front. Immunol., 2020, Vol. 11. - http://doi.org/10.3389/fimmu.2020.00493

71. Lee E.Y., Sidoryk M., Jiang H., Yin Z., et al. Estrogen and tamoxifen reverse manganese‐induced glutamate transporter impairment in astrocytes. J. Neurochem., 2009, Vol. 110, no. 2, pp. 530–544. - http://doi.org/10.1111/j.1471-4159.2009.06105.x

72. Li B., Liu Y., Liu J., Sun H., et al. Cerebral multi-autoregulation model based enhanced external counterpulsation treatment planning for cerebral ischemic stroke. J. Cereb. Blood Flow Metab., 2023, Vol. 43, no. 10, pp. 1764–1778. - https://doi.org/10.1177/ 0271678X231179542.

73. Li H., Liu P., Zhang B., Yuan Z., et al. Acute ischemia induces spatially and transcriptionally distinct microglial subclusters. Genome Med., 2023, Vol. 15, no. 1, p. 109. - https://doi.org/10.1186/s13073-023-01257-5

74. Li J., Abedi V., Zand R. Dissecting Polygenic Etiology of Ischemic Stroke in the Era of Precision Medicine. J. Clin. Med., 2022, Vol. 11, no. 20, p. 5980. - https://doi.org/10.3390/ jcm11205980.

75. Li T., Chen X., Zhang C., Zhang Y., et al. An update on reactive astrocytes in chronic pain. J. Neuroinflammation, 2019, Vol. 16, no. 1, p. 140. - https://doi.org/10.1186/s12974- 019-1524-2.

76. Liddelow S.A., Guttenplan K.A., Clarke L.E., Bennett F.C., et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, Vol. 541, no. 7638, pp. 481–487. - https://doi.org/10.1038/nature21029.

77. Lin-Holderer J., Li L., Gruneberg D., Marti H.H., et al. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology, 2016, Vol. 105 pp. 228–240. - http://doi.org/10.1016/j.neuropharm.2016.01.023

78. Liu M., Xu Z., Wang L., Zhang L., et al. Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J. Neuroinflammation, 2020, Vol. 17, no. 1, p. 270. - https://doi.org/10.1186/s12974-020-01946-7.

79. Liu R., Liao X.-Y., Pan M.-X., Tang J.-C., et al. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-κB p65/Hif-1α Signaling Pathway. J. Immunol., 2019, Vol. 202, no. 6, pp. 1704–1714. - http://doi.org/10.4049/jimmunol.1801166

80. Magistretti P.J., Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci., 2018, Vol. 19, no. 4, pp. 235–249. - http://doi.org/10.1038/nrn.2018.19

81. Mantovani A., Biswas S.K., Galdiero M.R., Sica A., et al. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol., 2013, Vol. 229, no. 2, pp. 176–185. - http://doi.org/10.1002/path.4133

82. Marcoux J., McArthur D.A., Miller C., Glenn T.C., et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury*. Crit. Care Med., 2008, Vol. 36, no. 10, pp. 2871–2877. - http://doi.org/10.1097/CCM.0b013e318186a4a0

83. Marinelli S., Marrone M.C., Di Domenico M., Marinelli S. Endocannabinoid signaling in microglia. Glia, 2023, Vol. 71, no. 1, pp. 71–90. - https://doi.org/10.1002/glia.24281

84. McIntosh A., Mela V., Harty C., Minogue A.M., et al. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol., 2019, Vol. 29, no. 5, pp. 606–621. - http://doi.org/10.1111/bpa.12704

85. McKenna M.C. The glutamate‐glutamine cycle is not stoichiometric: Fates of glutamate in brain. J. Neurosci. Res., 2007, Vol. 85, no. 15, pp. 3347–3358. - http://doi.org/10.1002/jnr.21444

86. McKenna M.C., Sonnewald U., Huang X., Stevenson J., et al. Exogenous Glutamate Concentration Regulates the Metabolic Fate of Glutamate in Astrocytes. J. Neurochem., 1996, Vol. 66, no. 1, pp. 386–393. - http://doi.org/10.1046/j.1471-4159.1996.66010386.x

87. Mehla K., Singh P.K. Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 2019, Vol. 5, no. 12, pp. 822–834. - http://doi.org/10.1016/j.trecan.2019.10.007

88. Mela V., Mota B.C., Milner M., McGinley A., et al. Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain. Behav. Immun., 2020, Vol. 87 pp. 413–428. - http://doi.org/10.1016/j.bbi.2020.01.012

89. Mills E.L., Kelly B., Logan A., Costa A.S.H., et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, Vol. 167, no. 2, pp. 457-470.e13. - http://doi.org/10.1016/j.cell.2016.08.064

90. Morizawa Y.M., Hirayama Y., Ohno N., Shibata S., et al. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun., 2017, Vol. 8, no. 1, p. 28. - https://doi. org/10.1038/s41467-017-00037-1.

91. Munder M. Arginase: an emerging key player in the mammalian immune system. Br. J. Pharmacol., 2009, Vol. 158, no. 3, pp. 638–651. - https://doi.org/10.1111/j.1476-5381.2009.00291.x

92. Muraoka T., Ajioka I. Self-assembling Molecular Medicine for the Subacute Phase of Ischemic Stroke. Neurochem. Res., 2022, Vol. 47, no. 9, pp. 2488–2498. - https://doi.org/ 10.1007/s11064-022-03638-5.

93. Murphy-Royal C., Johnston A.D., Boyce A.K.J., Diaz-Castro B., et al. Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nat. Commun., 2020, Vol. 11, no. 1, p. 2014. - https://doi.org/10.1038/s41467-020-16668-w

94. Nadjar A. Role of metabolic programming in the modulation of microglia phagocytosis by lipids. Prostaglandins, Leukot. Essent. Fat. Acids, 2018, Vol. 135 pp. 63–73. - http://doi.org/10.1016/j.plefa.2018.07.006

95. Nair S., Sobotka K.S., Joshi P., Gressens P., et al. Lipopolysaccharide‐induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, Vol. 67, no. 6, pp. 1047–1061. - http://doi.org/10.1002/glia.23587

96. Nakajima K., Kanamatsu T., Koshimoto M., Kohsaka S. Microglia derived from the axotomized adult rat facial nucleus uptake glutamate and metabolize it to glutamine in vitro. Neurochem. Int., 2017, Vol. 102 pp. 1–12. - https://doi.org/10.1016/j.neuint.2016.10.015

97. Olzmann J.A., Carvalho P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol., 2019, Vol. 20, no. 3, pp. 137–155. - https://doi.org/10.1038/s41580-018-0085-z

98. Orihuela R., McPherson C.A., Harry G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol., 2016, Vol. 173, no. 4, pp. 649–665. - http://doi.org/10.1111/bph.13139

99. Owjfard M., Karimi F., Mallahzadeh A., Nabavizadeh S.A., et al. Mechanism of action and therapeutic potential of dimethyl fumarate in ischemic stroke. J. Neurosci. Res., 2023, Vol. 101, no. 9, pp. 1433–1446. - http://doi.org/10.1002/jnr.25202

100. Palmieri E.M., Menga A., Lebrun A., Hooper D.C., et al. Blockade of Glutamine Synthetase Enhances Inflammatory Response in Microglial Cells. Antioxid. Redox Signal., 2017, Vol. 26, no. 8, pp. 351–363. - https://doi.org/10.1089/ars.2016.6715

101. Palsson‐McDermott E.M., O’Neill L.A.J. The Warburg effect then and now: From cancer to inflammatory diseases. BioEssays, 2013, Vol. 35, no. 11, pp. 965–973. - http://doi.org/10.1002/bies.201300084

102. Patel M.R., Weaver A.M. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep., 2021, Vol. 34, no. 10, p. 108829. - https://doi.org/10.1016/j.celrep.2021.108829

103. Pederson B.A. Structure and Regulation of Glycogen Synthase in the Brain 2019, pp. 83–123. - http://doi.org/10.1007/978-3-030-27480-1_3

104. Pellerin L., Magistretti P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci., 1994, Vol. 91, no. 22, pp. 10625–10629. - http://doi.org/10.1073/pnas.91.22.10625

105. Peng L., Hu G., Yao Q., Wu J., et al. Microglia autophagy in ischemic stroke: A double-edged sword. Front. Immunol., 2022, Vol. 13. - https://doi.org/10.3389/fimmu.2022.1013311

106. Qiao H., He X., Zhang Q., Yuan H., et al. Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int. J. Biol. Macromol., 2019, Vol. 129 pp. 601–607. - https://doi.org/10.1016/j.ijbiomac.2019.02.029

107. Ramagiri S., Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/ BDNF pathway. Eur. J. Pharmacol., 2017, Vol. 803 pp. 84–93. - http://doi.org/10.1016/j.ejphar.2017.03.028

108. Ransohoff R.M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci., 2016, Vol. 19, no. 8, pp. 987–991. - https://doi.org/10.1038/nn.4338

109. Ros S., Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab., 2013, Vol. 1, no. 1, p. 8. - http://doi.org/10.1186/2049-3002-1-8

110. Rossi D.J., Brady J.D., Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci., 2007, Vol. 10, no. 11, pp. 1377–1386. - http://doi.org/10.1038/nn2004

111. Rothstein J.D., Patel S., Regan M.R., Haenggeli C., et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, Vol. 433, no. 7021, pp. 73–77. - http://doi.org/10.1038/nature03180

112. Rubio-Araiz A., Finucane O.M., Keogh S., Lynch M.A. Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of β-amyloid. J. Neuroinflammation, 2018, Vol. 15, no. 1, p. 247. - http://doi.org/10.1186/s12974-018-1281-7

113. Sayre N.L., Sifuentes M., Holstein D., Cheng S., et al. Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J. Cereb. Blood Flow Metab., 2017, Vol. 37, no. 2, pp. 514–527. - http://doi.org/10.1177/0271678X16629153

114. Schurr A., Payne R.S. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: An in vitro electrophysiological study. Neuroscience, 2007, Vol. 147, no. 3, pp. 613–619. - http://doi.org/10.1016/j.neuroscience.2007.05.002

115. Schurr A., Payne R.S., Miller J.J., Rigor B.M. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res., 1997, Vol. 744, no. 1, pp. 105–111. - http://doi.org/10.1016/S0006-8993(96)01106-7

116. Scuderi S.A., Ardizzone A., Paterniti I., Esposito E., et al. Antioxidant and Anti-inflammatory Effect of Nrf2 Inducer Dimethyl Fumarate in Neurodegenerative Diseases. Antioxidants, 2020, Vol. 9, no. 7, p. 630. - http://doi.org/10.3390/antiox9070630

117. Shi K., Tian D.-C., Li Z.-G., Ducruet A.F., et al. Global brain inflammation in stroke. Lancet Neurol., 2019, Vol. 18, no. 11, pp. 1058–1066. - https://doi.org/10.1016/S1474-4422(19)30078-X.

118. Sofroniew M. V. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol., 2020, Vol. 41, no. 9, pp. 758–770. - http://doi.org/10.1016/j.it.2020.07.004

119. Sofroniew M. V., Vinters H. V. Astrocytes: biology and pathology. Acta Neuropathol., 2010, Vol. 119, no. 1, pp. 7–35. - http://doi.org/10.1007/s00401-009-0619-8

120. Subedi L., Yumnam S. Terpenoids from Abies holophylla Attenuate LPS-Induced Neuroinflammation in Microglial Cells by Suppressing the JNK-Related Signaling Pathway. Int. J. Mol. Sci., 2021, Vol. 22, no. 2, p. 965. - https://doi.org/10.3390/ijms22020965

121. Sun H.-N., Kim S.-U., Lee M.-S., Kim S.-K., et al. Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase-Dependent Activation of Phosphoinositide 3-Kinase and p38 Mitogen-Activated Protein Kinase Signal Pathways Is Required for Lipopolysaccharide-Induced Microglial Phagocytosis. Biol. Pharm. Bull., 2008, Vol. 31, no. 9, pp. 1711–1715. - http://doi.org/10.1248/bpb.31.1711

122. Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology, 2020, Vol. 40, no. 2, pp. 121–137. - http://doi.org/10.1111/neup.12639

123. Takahashi S. Neuroprotective Function of High Glycolytic Activity in Astrocytes: Common Roles in Stroke and Neurodegenerative Diseases. Int. J. Mol. Sci., 2021, Vol. 22, no. 12, p. 6568. - http://doi.org/10.3390/ijms22126568

124. Takahashi S., Izawa Y., Suzuki N. Astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia. Rinsho Shinkeigaku, 2012, Vol. 52, no. 1, pp. 41–51. - http://doi.org/10.5692/clinicalneurol.52.41

125. Tan L.-L., Jiang X.-L., Xu L.-X., Li G., et al. TP53-induced glycolysis and apoptosis regulator alleviates hypoxia/ischemia-induced microglial pyroptosis and ischemic brain damage. Neural Regen. Res., 2021, Vol. 16, no. 6, p. 1037. - https://doi.org/10.4103/1673-5374.300453

126. Tang B.L. Neuroprotection by glucose‐6‐phosphate dehydrogenase and the pentose phosphate pathway. J. Cell. Biochem., 2019, Vol. 120, no. 9, pp. 14285–14295. - http://doi.org/10.1002/jcb.29004

127. Tani H., Dulla C.G., Farzampour Z., Taylor-Weiner A., et al. A Local Glutamate-Glutamine Cycle Sustains Synaptic Excitatory Transmitter Release. Neuron, 2014, Vol. 81, no. 4, pp. 888–900. - http://doi.org/10.1016/j.neuron.2013.12.026

128. Tannahill G.M., Curtis A.M., Adamik J., Palsson-McDermott E.M., et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, Vol. 496, no. 7444, pp. 238–242. - http://doi.org/10.1038/nature11986

129. Tretter L., Patocs A., Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta - Bioenerg., 2016, Vol. 1857, no. 8, pp. 1086–1101. - http://doi.org/10.1016/j.bbabio.2016.03.012

130. Tu D., Gao Y., Yang R., Guan T., et al. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflammation, 2019, Vol. 16, no. 1, p. 255. - http://doi.org/10.1186/s12974-019-1659-1

131. Van den Bossche J., Baardman J., Otto N.A., van der Velden S., et al. Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Rep., 2016, Vol. 17, no. 3, pp. 684–696. - http://doi.org/10.1016/j.celrep.2016.09.008

132. Vos T., Lim S.S., Abbafati C., Abbas K.M., et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, Vol. 396, no. 10258, pp. 1204–1222. - https://doi.org/10.1016/s0140-6736(20)30925-9

133. Wang D., Liu F., Zhu L., Lin P., et al. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J. Neuroinflammation, 2020, Vol. 17, no. 1, p. 257. - https://doi.org/10.1186/s12974-020-01921-2

134. Wang F., Smith N.A., Xu Q., Fujita T., et al. Astrocytes Modulate Neural Network Activity by Ca 2+ -Dependent Uptake of Extracellular K +. Sci. Signal., 2012, Vol. 5, no. 218,. - https://doi.org/10.1126/scisignal.2002334

135. Wang J., Jiang P., Deng W., Sun Y., et al. Grafted human ESC-derived astroglia repair spinal cord injury via activation of host anti-inflammatory microglia in the lesion area. Theranostics, 2022, Vol. 12, no. 9, pp. 4288–4309. - https://doi.org/10.7150/ thno.70929.

136. Wang L., Pavlou S., Du X., Bhuckory M., et al. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol. Neurodegener., 2019, Vol. 14, no. 1, p. 2. - http://doi.org/10.1186/s13024-019-0305-9

137. Wang L., Yao Y., He R., Meng Y., et al. Methane ameliorates spinal cord ischemia-reperfusion injury in rats: Antioxidant, anti-inflammatory and anti-apoptotic activity mediated by Nrf2 activation. Free Radic. Biol. Med., 2017, Vol. 103 pp. 69–86. - https://doi.org/10.1016/j. freeradbiomed.2016.12.014.

138. Wang Y., Leak R.K., Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front. Cell. Neurosci., 2022, Vol. 16. - https://doi.org/10.3389/fncel.2022.980722

139. Wang Z., Liu D., Wang F., Liu S., et al. Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling. Br. J. Nutr., 2012, Vol. 107, no. 2, pp. 229–241. - http://doi.org/10.1017/S0007114511002868

140. West A.P., Brodsky I.E., Rahner C., Woo D.K., et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011, Vol. 472, no. 7344, pp. 476–480. - http://doi.org/10.1038/nature09973

141. White C.J., Lee J., Choi J., Chu T., et al. Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System. Mol. Cell. Biol., 2020, Vol. 40, no. 10,. - http://doi.org/10.1128/MCB.00037-20

142. Wiesinger H., Hamprecht B., Dringen R. Metabolic pathways for glucose in astrocytes. Glia, 1997, Vol. 21, no. 1, pp. 22–34. - http://doi.org/10.1002/(SICI)1098-1136(199709)21:1<22::AIDGLIA3> 3.0.CO;2-3

143. Wouters A., Nysten C., Thijs V., Lemmens R. Prediction of Outcome in Patients With Acute Ischemic Stroke Based on Initial Severity and Improvement in the First 24 h. Front. Neurol., 2018, Vol. 9. - https://doi.org/10.3389/fneur.2018.00308.

144. Xie L., Liu Y., Zhang N., Li C., et al. Electroacupuncture Improves M2 Microglia Polarization and Glia Anti-inflammation of Hippocampus in Alzheimer’s Disease. Front. Neurosci., 2021, Vol. 15. - https://doi.org/10.3389/fnins.2021.689629

145. Xie Y., Kuan A.T., Wang W., Herbert Z.T., et al. Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development. Cell Rep., 2022, Vol. 38, no. 8, p. 110416. - https://doi.org/ 10.1016/j.celrep.2022.110416.

146. Yalcin A., Clem B.F., Imbert-Fernandez Y., Ozcan S.C., et al. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis., 2014, Vol. 5, no. 7, pp. e1337–e1337. - http://doi.org/10.1038/cddis.2014.292

147. Yamada T., Kawahara K., Kosugi T., Tanaka M. Nitric Oxide Produced During Sublethal Ischemia Is Crucial for the Preconditioning-Induced Down-Regulation of Glutamate Transporter GLT-1 in Neuron/Astrocyte Co-Cultures. Neurochem. Res., 2006, Vol. 31, no. 1, pp. 49–56. - http://doi.org/10.1007/s11064-005-9077-4

148. Yang X., Yu H., Li J., Li N., et al. Excitotoxic Storms of Ischemic Stroke: A Non-neuronal Perspective. Mol. Neurobiol., 2024,. - https://doi.org/10.1007/s12035-024-04184-7

149. Yu Z., Su G., Zhang L., Liu G., et al. Icaritin inhibits neuroinflammation in a rat cerebral ischemia model by regulating microglial polarization through the GPER–ERK–NF-κB signaling pathway. Mol. Med., 2022, Vol. 28, no. 1, p. 142. - https://doi.org/10.1186/s10020-022-00573-7

150. Zendedel A., Habib P., Dang J., Lammerding L., et al. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia. J. Neuroimmunol., 2015, Vol. 278 pp. 200–211. - https://doi.org/10.1016/j.jneuroim.2014.11.007

151. Zhai L., Ruan S., Wang J., Guan Q., et al. NADPH oxidase 4 regulate the glycolytic metabolic reprogramming of microglial cells to promote M1 polarization. J. Biochem. Mol. Toxicol., 2023, Vol. 37, no. 5,. - http://doi.org/10.1002/jbt.23318

152. Zhang H.-Y., Wang Y., He Y., Wang T., et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J. Neuroinflammation, 2020, Vol. 17, no. 1, p. 200. - https://doi.org/10.1186/s12974-020- 01871-9.

153. Zhang Y., Chen K., Sloan S.A., Bennett M.L., et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J. Neurosci., 2014, Vol. 34, no. 36, pp. 11929–11947. - http://doi.org/10.1523/JNEUROSCI.1860-14.2014

154. Zhang Y., Lian L., Fu R., Liu J., et al. Microglia: The Hub of Intercellular Communication in Ischemic Stroke. Front. Cell. Neurosci., 2022, Vol. 16. - https://doi.org/10.3389/fncel.2022.889442

155. Zhao D., Chen J., Zhang Y., Liao H.-B., et al. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem. Biophys. Res. Commun., 2018, Vol. 501, no. 1, pp. 85–91. - http://doi.org/10.1016/j.bbrc.2018.04.171

156. Zhao R., Ying M., Gu S., Yin W., et al. Cysteinyl Leukotriene Receptor 2 is Involved in Inflammation and Neuronal Damage by Mediating Microglia M1/M2 Polarization through NF-κB Pathway. Neuroscience, 2019, Vol. 422 pp. 99–118. - https://doi.org/10.1016/j.neuroscience.2019.10.048

157. Zhou M., Zhang T., Zhang X., Zhang M., et al. Effect of Tetrahedral Framework Nucleic Acids on Neurological Recovery via Ameliorating Apoptosis and Regulating the Activation and Polarization of Astrocytes in Ischemic Stroke. ACS Appl. Mater. Interfaces, 2022, Vol. 14, no. 33, pp. 37478–37492. - https://doi.org/10.1021/acsami.2c10364.

158. Zois C.E., Harris A.L. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J. Mol. Med., 2016, Vol. 94, no. 2, pp. 137–154. - http://doi.org/10.1007/s00109-015-1377-9

159. Zong X., Li Y., Liu C., Qi W., et al. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization. Theranostics, 2020, Vol. 10, no. 26, pp. 12090–12110. - https://doi.org/10.7150/thno.51573


Дополнительные файлы

1. Неозаглавлен
Тема
Тип Прочее
Скачать (956KB)    
Метаданные ▾
2. 3131
Тема
Тип Прочее
Скачать (1MB)    
Метаданные ▾

Рецензия

Для цитирования:


Бобров М.Ю., Никитин В.С., Бурак М.Ю. МЕТАБОЛИЧЕСКОЕ РЕПРОГРАММИРОВАНИЕ МИКРОГЛИИ И АСТРОЦИТОВ, КАК ФАКТОР РЕГУЛЯЦИИ НЕЙРОВОСПАЛЕНИЯ ПРИ ИШЕМИЧЕСКОМ ИНСУЛЬТЕ. Медицинская иммунология. https://doi.org/10.15789/1563-0625-MRO-3131

For citation:


Bobrov M., Nikitin V., Burak M. METABOLIC REPROGRAMMING OF MICROGLIA AND ASTROCYTES AS A FACTOR IN THE REGULATION OF NEUROINFLAMMATION IN ISCHEMIC STROKE. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-MRO-3131

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)