Preview

Medical Immunology (Russia)

Advanced search

METABOLIC REPROGRAMMING OF MICROGLIA AND ASTROCYTES AS A FACTOR IN THE REGULATION OF NEUROINFLAMMATION IN ISCHEMIC STROKE

https://doi.org/10.15789/1563-0625-MRO-3131

Abstract

Abstract

Ischemic stroke is one of the most common diseases worldwide, with a high incidence and mortality rate. In the pathological process of ischemia of nervous tissue, neuroinflammation is an important factor that determines the functional prognosis of the outcome of the disease. During the formation of an ischemic focus, microglial cells and astrocytes are activated, which leads to the launch of a cascade of neuroinflammatory reactions that play an important role in the pathophysiology of ischemic stroke. Activated microglial cells and astrocytes are able to form a variety of phenotypes depending on the corresponding parameters of the microenvironment. These phenotypes can have both neurotoxic and neuroprotective effects. On the one hand, when nerve tissue is damaged, glial cells contribute to the removal of cellular debris, maintain ionic homeostasis, regulate the extracellular content of neurotransmitters and ensure the trophism of neurons. On the other hand, microglia and astrocytes can acquire a pro-inflammatory phenotype characterized by the secretion of inflammatory cytokines, which contributes to the progression of neuroinflammation and tissue damage. Thus, astrocytes and microglia undergo both morphological and functional rearrangements, thereby actively participating in neuroinflammation due to the release of pro-inflammatory or anti-inflammatory factors. It is important to note that these rearrangements are associated with metabolic reprogramming, which leads to a change in the activity of metabolic pathways to compensate for the lack of energy and building materials caused by impaired cerebral blood flow. The pro-inflammatory phenotype of microglia is characterized by activation of glycolysis, the pentose phosphate pathway, synthesis of fatty acids and glutamine, whereas the anti-inflammatory phenotype demonstrates increased oxidative phosphorylation and oxidation of fatty acids. Reactive astrocytes are characterized by increased glycolysis, glycogenolysis and reduced glutamate uptake. Recently, there has been increasing evidence that manipulation of glial cell homeostasis can be used to switch from a neurotoxic phenotype to a neuroprotective one. A comprehensive understanding of the basic mechanisms of switching metabolic phenotypes can potentially allow targeted reprogramming of glial cells during the pathological process, which can be used in therapeutic approaches for the treatment of the consequences of ischemic stroke. This review presents current ideas about metabolic reprogramming in astrocytes and microglial cells in the context of pathophysiological processes in cerebral ischemia.

About the Authors

Mikhail Bobrov
Sirius University of Science and Technology (Sirius University)
Russian Federation

PhD, Leading Researcher in the department of "Immunobiology and biomedicine", of the Scientific Center of Genetics and Life Sciences



Vadim Nikitin
Sirius University of Science and Technology (Sirius University)
Russian Federation
Laboratory researcher, graduate student of Sirius University


Marina Burak
Sirius University of Science and Technology (Sirius University)
Russian Federation

Laboratory researcher, graduate student of Sirius University



References

1. Li J., Abedi V., Zand R. Dissecting Polygenic Etiology of Ischemic Stroke in the Era of Precision Medicine. J. Clin. Med., 2022, Vol. 11, no. 20, p. 5980.

2. Vos T., Lim S.S., Abbafati C., Abbas K.M., et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet, 2020, Vol. 396, no. 10258, pp. 1204–1222.

3. Li B., Liu Y., Liu J., Sun H., et al. Cerebral multi-autoregulation model based enhanced external counterpulsation treatment planning for cerebral ischemic stroke. J. Cereb. Blood Flow Metab., 2023, Vol. 43, no. 10, pp. 1764–1778.

4. Wouters A., Nysten C., Thijs V., Lemmens R. Prediction of Outcome in Patients With Acute Ischemic Stroke Based on Initial Severity and Improvement in the First 24 h. Front. Neurol., 2018, Vol. 9.

5. Muraoka T., Ajioka I. Self-assembling Molecular Medicine for the Subacute Phase of Ischemic Stroke. Neurochem. Res., 2022, Vol. 47, no. 9, pp. 2488–2498.

6. Candelario-Jalil E., Dijkhuizen R.M., Magnus T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke, 2022, Vol. 53, no. 5, pp. 1473–1486.

7. Jurcau A., Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int. J. Mol. Sci., 2021, Vol. 23, no. 1, p. 14.

8. Shi K., Tian D.-C., Li Z.-G., Ducruet A.F., et al. Global brain inflammation in stroke. Lancet Neurol., 2019, Vol. 18, no. 11, pp. 1058–1066.

9. Wang J., Jiang P., Deng W., Sun Y., et al. Grafted human ESC-derived astroglia repair spinal cord injury via activation of host anti-inflammatory microglia in the lesion area. Theranostics, 2022, Vol. 12, no. 9, pp. 4288–4309.

10. Palsson‐McDermott E.M., O’Neill L.A.J. The Warburg effect then and now: From cancer to inflammatory diseases. BioEssays, 2013, Vol. 35, no. 11, pp. 965–973.

11. Cheng X., Yang Y.-L., Li W.-H., Liu M., et al. Dynamic Alterations of Brain Injury, Functional Recovery, and Metabolites Profile after Cerebral Ischemia/Reperfusion in Rats Contributes to Potential Biomarkers. J. Mol. Neurosci., 2020, Vol. 70, no. 5, pp. 667–676.

12. Lauro C., Limatola C. Metabolic Reprograming of Microglia in the Regulation of the Innate Inflammatory Response. Front. Immunol., 2020, Vol. 11.

13. Sofroniew M. V. Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol., 2020, Vol. 41, no. 9, pp. 758–770.

14. Ghosh S., Castillo E., Frias E.S., Swanson R.A. Bioenergetic regulation of microglia. Glia, 2018, Vol. 66, no. 6, pp. 1200–1212.

15. Hu X., Li P., Guo Y., Wang H., et al. Microglia/Macrophage Polarization Dynamics Reveal Novel Mechanism of Injury Expansion After Focal Cerebral Ischemia. Stroke, 2012, Vol. 43, no. 11, pp. 3063–3070.

16. Liddelow S.A., Guttenplan K.A., Clarke L.E., Bennett F.C., et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, Vol. 541, no. 7638, pp. 481–487.

17. Falkowska A., Gutowska I., Goschorska M., Nowacki P., et al. Energy Metabolism of the Brain, Including the Cooperation between Astrocytes and Neurons, Especially in the Context of Glycogen Metabolism. Int. J. Mol. Sci., 2015, Vol. 16, no. 11, pp. 25959–25981.

18. Borbor M., Yin D., Brockmeier U., Wang C., et al. Neurotoxicity of ischemic astrocytes involves STAT3 - mediated metabolic switching and depends on glycogen usage. Glia, 2023, Vol. 71, no. 6, pp. 1553–1569.

19. Cai Y., Guo H., Fan Z., Zhang X., et al. Glycogenolysis Is Crucial for Astrocytic Glycogen Accumulation and Brain Damage after Reperfusion in Ischemic Stroke. iScience, 2020, Vol. 23, no. 5, p. 101136.

20. Lanza M., Casili G., Campolo M., Paterniti I., et al. Immunomodulatory Effect of Microglia-Released Cytokines in Gliomas. Brain Sci., 2021, Vol. 11, no. 4, p. 466.

21. Marinelli S., Marrone M.C., Di Domenico M., Marinelli S. Endocannabinoid signaling in microglia. Glia, 2023, Vol. 71, no. 1, pp. 71–90.

22. Zhang Y., Lian L., Fu R., Liu J., et al. Microglia: The Hub of Intercellular Communication in Ischemic Stroke. Front. Cell. Neurosci., 2022, Vol. 16.

23. Peng L., Hu G., Yao Q., Wu J., et al. Microglia autophagy in ischemic stroke: A double-edged sword. Front. Immunol., 2022, Vol. 13.

24. Wang Y., Leak R.K., Cao G. Microglia-mediated neuroinflammation and neuroplasticity after stroke. Front. Cell. Neurosci., 2022, Vol. 16.

25. dos Santos I.C., Dias M.C., Gomes-Leal W. Microglial activation and adult neurogenesis after brain stroke. Neural Regen. Res., 2021, Vol. 16, no. 3, p. 456.

26. Zhao R., Ying M., Gu S., Yin W., et al. Cysteinyl Leukotriene Receptor 2 is Involved in Inflammation and Neuronal Damage by Mediating Microglia M1/M2 Polarization through NF-κB Pathway. Neuroscience, 2019, Vol. 422 pp. 99–118.

27. Yu Z., Su G., Zhang L., Liu G., et al. Icaritin inhibits neuroinflammation in a rat cerebral ischemia model by regulating microglial polarization through the GPER–ERK–NF-κB signaling pathway. Mol. Med., 2022, Vol. 28, no. 1, p. 142.

28. Wang D., Liu F., Zhu L., Lin P., et al. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages. J. Neuroinflammation, 2020, Vol. 17, no. 1, p. 257.

29. Lambertsen K.L., Finsen B., Clausen B.H. Post-stroke inflammation—target or tool for therapy? Acta Neuropathol., 2019, Vol. 137, no. 5, pp. 693–714.

30. Clausen B.H., Lambertsen K.L., Dagnæs-Hansen F., Babcock A.A., et al. Cell therapy centered on IL-1Ra is neuroprotective in experimental stroke. Acta Neuropathol., 2016, Vol. 131, no. 5, pp. 775–791.

31. Xie L., Liu Y., Zhang N., Li C., et al. Electroacupuncture Improves M2 Microglia Polarization and Glia Anti-inflammation of Hippocampus in Alzheimer’s Disease. Front. Neurosci., 2021, Vol. 15.

32. Li H., Liu P., Zhang B., Yuan Z., et al. Acute ischemia induces spatially and transcriptionally distinct microglial subclusters. Genome Med., 2023, Vol. 15, no. 1, p. 109.

33. Ransohoff R.M. A polarizing question: do M1 and M2 microglia exist? Nat. Neurosci., 2016, Vol. 19, no. 8, pp. 987–991.

34. Escartin C., Galea E., Lakatos A., O’Callaghan J.P., et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci., 2021, Vol. 24, no. 3, pp. 312–325.

35. Murphy-Royal C., Johnston A.D., Boyce A.K.J., Diaz-Castro B., et al. Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nat. Commun., 2020, Vol. 11, no. 1, p. 2014.

36. Wang F., Smith N.A., Xu Q., Fujita T., et al. Astrocytes Modulate Neural Network Activity by Ca 2+ -Dependent Uptake of Extracellular K +. Sci. Signal., 2012, Vol. 5, no. 218,.

37. Kofuji P., Araque A. Astrocytes and Behavior. Annu. Rev. Neurosci., 2021, Vol. 44, no. 1, pp. 49–67.

38. Li T., Chen X., Zhang C., Zhang Y., et al. An update on reactive astrocytes in chronic pain. J. Neuroinflammation, 2019, Vol. 16, no. 1, p. 140.

39. Zhou M., Zhang T., Zhang X., Zhang M., et al. Effect of Tetrahedral Framework Nucleic Acids on Neurological Recovery via Ameliorating Apoptosis and Regulating the Activation and Polarization of Astrocytes in Ischemic Stroke. ACS Appl. Mater. Interfaces, 2022, Vol. 14, no. 33, pp. 37478–37492.

40. Wang L., Yao Y., He R., Meng Y., et al. Methane ameliorates spinal cord ischemia-reperfusion injury in rats: Antioxidant, anti-inflammatory and anti-apoptotic activity mediated by Nrf2 activation. Free Radic. Biol. Med., 2017, Vol. 103 pp. 69–86.

41. Liu M., Xu Z., Wang L., Zhang L., et al. Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J. Neuroinflammation, 2020, Vol. 17, no. 1, p. 270.

42. Zhang H.-Y., Wang Y., He Y., Wang T., et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J. Neuroinflammation, 2020, Vol. 17, no. 1, p. 200.

43. Xie Y., Kuan A.T., Wang W., Herbert Z.T., et al. Astrocyte-neuron crosstalk through Hedgehog signaling mediates cortical synapse development. Cell Rep., 2022, Vol. 38, no. 8, p. 110416.

44. Morizawa Y.M., Hirayama Y., Ohno N., Shibata S., et al. Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway. Nat. Commun., 2017, Vol. 8, no. 1, p. 28.

45. Chang J., Qian Z., Wang B., Cao J., et al. Transplantation of A2 type astrocytes promotes neural repair and remyelination after spinal cord injury. Cell Commun. Signal., 2023, Vol. 21, no. 1, p. 37.

46. Patel M.R., Weaver A.M. Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep., 2021, Vol. 34, no. 10, p. 108829.

47. Jiang T., Luo J., Pan X., Zheng H., et al. Physical exercise modulates the astrocytes polarization, promotes myelin debris clearance and remyelination in chronic cerebral hypoperfusion rats. Life Sci., 2021, Vol. 278 p. 119526.

48. Zong X., Li Y., Liu C., Qi W., et al. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization. Theranostics, 2020, Vol. 10, no. 26, pp. 12090–12110.

49. Zhang Y., Chen K., Sloan S.A., Bennett M.L., et al. An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex. J. Neurosci., 2014, Vol. 34, no. 36, pp. 11929–11947.

50. Kelly B., O’Neill L.A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res., 2015, Vol. 25, no. 7, pp. 771–784.

51. Van den Bossche J., Baardman J., Otto N.A., van der Velden S., et al. Mitochondrial Dysfunction Prevents Repolarization of Inflammatory Macrophages. Cell Rep., 2016, Vol. 17, no. 3, pp. 684–696.

52. Mills E.L., Kelly B., Logan A., Costa A.S.H., et al. Succinate Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive Inflammatory Macrophages. Cell, 2016, Vol. 167, no. 2, pp. 457-470.e13.

53. Klimaszewska‐Łata J., Gul‐Hinc S., Bielarczyk H., Ronowska A., et al. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells. J. Neurochem., 2015, Vol. 133, no. 2, pp. 284–297.

54. Bolanos J., Garcia-Nogales P., Almeida A. Provoking Neuroprotection by Peroxynitrite. Curr. Pharm. Des., 2004, Vol. 10, no. 8, pp. 867–877.

55. West A.P., Brodsky I.E., Rahner C., Woo D.K., et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature, 2011, Vol. 472, no. 7344, pp. 476–480.

56. Wang L., Pavlou S., Du X., Bhuckory M., et al. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol. Neurodegener., 2019, Vol. 14, no. 1, p. 2.

57. Nair S., Sobotka K.S., Joshi P., Gressens P., et al. Lipopolysaccharide‐induced alteration of mitochondrial morphology induces a metabolic shift in microglia modulating the inflammatory response in vitro and in vivo. Glia, 2019, Vol. 67, no. 6, pp. 1047–1061.

58. Mela V., Mota B.C., Milner M., McGinley A., et al. Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain. Behav. Immun., 2020, Vol. 87 pp. 413–428.

59. Tan L.-L., Jiang X.-L., Xu L.-X., Li G., et al. TP53-induced glycolysis and apoptosis regulator alleviates hypoxia/ischemia-induced microglial pyroptosis and ischemic brain damage. Neural Regen. Res., 2021, Vol. 16, no. 6, p. 1037.

60. Hu Y., Mai W., Chen L., Cao K., et al. mTOR‐mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and ATP. Glia, 2020, Vol. 68, no. 5, pp. 1031–1045.

61. He C., Zhou C., Kennedy B.K. The yeast replicative aging model. Biochim. Biophys. Acta - Mol. Basis Dis., 2018, Vol. 1864, no. 9, pp. 2690–2696.

62. Hardie D.G. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat. Rev. Mol. Cell Biol., 2007, Vol. 8, no. 10, pp. 774–785.

63. Baik S.H., Kang S., Lee W., Choi H., et al. A Breakdown in Metabolic Reprogramming Causes Microglia Dysfunction in Alzheimer’s Disease. Cell Metab., 2019, Vol. 30, no. 3, pp. 493-507.e6.

64. Cheng S.-C., Quintin J., Cramer R.A., Shepardson K.M., et al. mTOR- and HIF-1α–mediated aerobic glycolysis as metabolic basis for trained immunity. Science (80-. )., 2014, Vol. 345, no. 6204,.

65. Denko N.C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat. Rev. Cancer, 2008, Vol. 8, no. 9, pp. 705–713.

66. Gimeno‐Bayón J., López‐López A., Rodríguez M.J., Mahy N. Glucose pathways adaptation supports acquisition of activated microglia phenotype. J. Neurosci. Res., 2014, Vol. 92, no. 6, pp. 723–731.

67. Yalcin A., Clem B.F., Imbert-Fernandez Y., Ozcan S.C., et al. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis., 2014, Vol. 5, no. 7, pp. e1337–e1337.

68. Ros S., Schulze A. Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism. Cancer Metab., 2013, Vol. 1, no. 1, p. 8.

69. Holland R., McIntosh A.L., Finucane O.M., Mela V., et al. Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain. Behav. Immun., 2018, Vol. 68 pp. 183–196.

70. Rubio-Araiz A., Finucane O.M., Keogh S., Lynch M.A. Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of β-amyloid. J. Neuroinflammation, 2018, Vol. 15, no. 1, p. 247.

71. McIntosh A., Mela V., Harty C., Minogue A.M., et al. Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathol., 2019, Vol. 29, no. 5, pp. 606–621.

72. Qiao H., He X., Zhang Q., Yuan H., et al. Alpha-synuclein induces microglial migration via PKM2-dependent glycolysis. Int. J. Biol. Macromol., 2019, Vol. 129 pp. 601–607.

73. Orihuela R., McPherson C.A., Harry G.J. Microglial M1/M2 polarization and metabolic states. Br. J. Pharmacol., 2016, Vol. 173, no. 4, pp. 649–665.

74. Takahashi S. Neuroprotective Function of High Glycolytic Activity in Astrocytes: Common Roles in Stroke and Neurodegenerative Diseases. Int. J. Mol. Sci., 2021, Vol. 22, no. 12, p. 6568.

75. Magistretti P.J., Allaman I. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci., 2018, Vol. 19, no. 4, pp. 235–249.

76. Pellerin L., Magistretti P.J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci., 1994, Vol. 91, no. 22, pp. 10625–10629.

77. Brown A.M., Sickmann H.M., Fosgerau K., Lund T.M., et al. Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter. J. Neurosci. Res., 2005, Vol. 79, no. 1–2, pp. 74–80.

78. Brown A.M., Ransom B.R. Astrocyte glycogen and brain energy metabolism. Glia, 2007, Vol. 55, no. 12, pp. 1263–1271.

79. Schurr A., Payne R.S. Lactate, not pyruvate, is neuronal aerobic glycolysis end product: An in vitro electrophysiological study. Neuroscience, 2007, Vol. 147, no. 3, pp. 613–619.

80. Schurr A., Payne R.S., Miller J.J., Rigor B.M. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vitro study. Brain Res., 1997, Vol. 744, no. 1, pp. 105–111.

81. Marcoux J., McArthur D.A., Miller C., Glenn T.C., et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury*. Crit. Care Med., 2008, Vol. 36, no. 10, pp. 2871–2877.

82. Wiesinger H., Hamprecht B., Dringen R. Metabolic pathways for glucose in astrocytes. Glia, 1997, Vol. 21, no. 1, pp. 22–34.

83. Rossi D.J., Brady J.D., Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat. Neurosci., 2007, Vol. 10, no. 11, pp. 1377–1386.

84. Bak L.K., Walls A.B., Schousboe A., Waagepetersen H.S. Astrocytic glycogen metabolism in the healthy and diseased brain. J. Biol. Chem., 2018, Vol. 293, no. 19, pp. 7108–7116.

85. Zois C.E., Harris A.L. Glycogen metabolism has a key role in the cancer microenvironment and provides new targets for cancer therapy. J. Mol. Med., 2016, Vol. 94, no. 2, pp. 137–154.

86. Ramagiri S., Taliyan R. Remote limb ischemic post conditioning during early reperfusion alleviates cerebral ischemic reperfusion injury via GSK-3β/CREB/ BDNF pathway. Eur. J. Pharmacol., 2017, Vol. 803 pp. 84–93.

87. Pederson B.A. Structure and Regulation of Glycogen Synthase in the Brain 2019, pp. 83–123.

88. Bernier L.-P., York E.M., Kamyabi A., Choi H.B., et al. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma. Nat. Commun., 2020, Vol. 11, no. 1, p. 1559.

89. Mehla K., Singh P.K. Metabolic Regulation of Macrophage Polarization in Cancer. Trends in Cancer, 2019, Vol. 5, no. 12, pp. 822–834.

90. Kaushik D.K., Yong V.W. Metabolic needs of brain‐infiltrating leukocytes and microglia in multiple sclerosis. J. Neurochem., 2021, Vol. 158, no. 1, pp. 14–24.

91. Sun H.-N., Kim S.-U., Lee M.-S., Kim S.-K., et al. Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase-Dependent Activation of Phosphoinositide 3-Kinase and p38 Mitogen-Activated Protein Kinase Signal Pathways Is Required for Lipopolysaccharide-Induced Microglial Phagocytosis. Biol. Pharm. Bull., 2008, Vol. 31, no. 9, pp. 1711–1715.

92. Zhai L., Ruan S., Wang J., Guan Q., et al. NADPH oxidase 4 regulate the glycolytic metabolic reprogramming of microglial cells to promote M1 polarization. J. Biochem. Mol. Toxicol., 2023, Vol. 37, no. 5,.

93. Tu D., Gao Y., Yang R., Guan T., et al. The pentose phosphate pathway regulates chronic neuroinflammation and dopaminergic neurodegeneration. J. Neuroinflammation, 2019, Vol. 16, no. 1, p. 255.

94. Iizumi T., Takahashi S., Mashima K., Minami K., et al. A possible role of microglia-derived nitric oxide by lipopolysaccharide in activation of astroglial pentose-phosphate pathway via the Keap1/Nrf2 system. J. Neuroinflammation, 2016, Vol. 13, no. 1, p. 99.

95. Tang B.L. Neuroprotection by glucose‐6‐phosphate dehydrogenase and the pentose phosphate pathway. J. Cell. Biochem., 2019, Vol. 120, no. 9, pp. 14285–14295.

96. Dwivedi D., Megha K., Mishra R., Mandal P.K. Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem. Res., 2020, Vol. 45, no. 7, pp. 1461–1480.

97. Takahashi S., Izawa Y., Suzuki N. Astrogliopathy as a loss of astroglial protective function against glycoxidative stress under hyperglycemia. Rinsho Shinkeigaku, 2012, Vol. 52, no. 1, pp. 41–51.

98. Chen J., Zhang D.-M., Feng X., Wang J., et al. TIGAR inhibits ischemia/reperfusion-induced inflammatory response of astrocytes. Neuropharmacology, 2018, Vol. 131 pp. 377–388.

99. Owjfard M., Karimi F., Mallahzadeh A., Nabavizadeh S.A., et al. Mechanism of action and therapeutic potential of dimethyl fumarate in ischemic stroke. J. Neurosci. Res., 2023, Vol. 101, no. 9, pp. 1433–1446.

100. Dodson M., de la Vega M.R., Cholanians A.B., Schmidlin C.J., et al. Modulating NRF2 in Disease: Timing Is Everything. Annu. Rev. Pharmacol. Toxicol., 2019, Vol. 59, no. 1, pp. 555–575.

101. Scuderi S.A., Ardizzone A., Paterniti I., Esposito E., et al. Antioxidant and Anti-inflammatory Effect of Nrf2 Inducer Dimethyl Fumarate in Neurodegenerative Diseases. Antioxidants, 2020, Vol. 9, no. 7, p. 630.

102. Guo H., Fan Z., Wang S., Ma L., et al. Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J. Neuroinflammation, 2021, Vol. 18, no. 1, p. 230.

103. Kunze R., Urrutia A., Hoffmann A., Liu H., et al. Dimethyl fumarate attenuates cerebral edema formation by protecting the blood–brain barrier integrity. Exp. Neurol., 2015, Vol. 266 pp. 99–111.

104. Lin-Holderer J., Li L., Gruneberg D., Marti H.H., et al. Fumaric acid esters promote neuronal survival upon ischemic stress through activation of the Nrf2 but not HIF-1 signaling pathway. Neuropharmacology, 2016, Vol. 105 pp. 228–240.

105. White C.J., Lee J., Choi J., Chu T., et al. Determining the Bioenergetic Capacity for Fatty Acid Oxidation in the Mammalian Nervous System. Mol. Cell. Biol., 2020, Vol. 40, no. 10,.

106. Infantino V., Convertini P., Cucci L., Panaro M.A., et al. The mitochondrial citrate carrier: a new player in inflammation. Biochem. J., 2011, Vol. 438, no. 3, pp. 433–436.

107. Gaber T., Strehl C., Buttgereit F. Metabolic regulation of inflammation. Nat. Rev. Rheumatol., 2017, Vol. 13, no. 5, pp. 267–279.

108. Foster D.W. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest., 2012, Vol. 122, no. 6, pp. 1958–1959.

109. Gill E.L., Raman S., Yost R.A., Garrett T.J., et al. l-Carnitine Inhibits Lipopolysaccharide-Induced Nitric Oxide Production of SIM-A9 Microglia Cells. ACS Chem. Neurosci., 2018, Vol. 9, no. 5, pp. 901–905.

110. Wang Z., Liu D., Wang F., Liu S., et al. Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling. Br. J. Nutr., 2012, Vol. 107, no. 2, pp. 229–241.

111. Duffy C.M., Xu H., Nixon J.P., Bernlohr D.A., et al. Identification of a fatty acid binding protein4-UCP2 axis regulating microglial mediated neuroinflammation. Mol. Cell. Neurosci., 2017, Vol. 80 pp. 52–57.

112. Duffy C.M., Yuan C., Wisdorf L.E., Billington C.J., et al. Role of orexin A signaling in dietary palmitic acid-activated microglial cells. Neurosci. Lett., 2015, Vol. 606 pp. 140–144.

113. Button E.B., Mitchell A.S., Domingos M.M., Chung J.H. ‐J., et al. Microglial Cell Activation Increases Saturated and Decreases Monounsaturated Fatty Acid Content, but Both Lipid Species are Proinflammatory. Lipids, 2014, Vol. 49, no. 4, pp. 305–316.

114. Bruce K.D., Gorkhali S., Given K., Coates A.M., et al. Lipoprotein Lipase Is a Feature of Alternatively-Activated Microglia and May Facilitate Lipid Uptake in the CNS During Demyelination. Front. Mol. Neurosci., 2018, Vol. 11.

115. Munder M. Arginase: an emerging key player in the mammalian immune system. Br. J. Pharmacol., 2009, Vol. 158, no. 3, pp. 638–651.

116. Cherry J.D., Olschowka J.A., O’Banion M.K. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation, 2014, Vol. 11, no. 1, p. 98.

117. Nadjar A. Role of metabolic programming in the modulation of microglia phagocytosis by lipids. Prostaglandins, Leukot. Essent. Fat. Acids, 2018, Vol. 135 pp. 63–73.

118. Jump D.B., Clarke S.D. Regulation of gene expression by dietary fat. Annu. Rev. Nutr., 1999, Vol. 19, no. 1, pp. 63–90.

119. Jiang X., Pu H., Hu X., Wei Z., et al. A Post-stroke Therapeutic Regimen with Omega-3 Polyunsaturated Fatty Acids that Promotes White Matter Integrity and Beneficial Microglial Responses after Cerebral Ischemia. Transl. Stroke Res., 2016, Vol. 7, no. 6, pp. 548–561.

120. Chang P.K.-Y., Khatchadourian A., McKinney R.A., Maysinger D. Docosahexaenoic acid (DHA): a modulator of microglia activity and dendritic spine morphology. J. Neuroinflammation, 2015, Vol. 12, no. 1, p. 34.

121. Ebert D., Haller R.G., Walton M.E. Energy Contribution of Octanoate to Intact Rat Brain Metabolism Measured by 13 C Nuclear Magnetic Resonance Spectroscopy. J. Neurosci., 2003, Vol. 23, no. 13, pp. 5928–5935.

122. Sayre N.L., Sifuentes M., Holstein D., Cheng S., et al. Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J. Cereb. Blood Flow Metab., 2017, Vol. 37, no. 2, pp. 514–527.

123. Killoy K.M., Harlan B.A., Pehar M., Vargas M.R. FABP7 upregulation induces a neurotoxic phenotype in astrocytes. Glia, 2020, Vol. 68, no. 12, pp. 2693–2704.

124. Kagawa Y., Yasumoto Y., Sharifi K., Ebrahimi M., et al. Fatty acid‐binding protein 7 regulates function of caveolae in astrocytes through expression of caveolin‐1. Glia, 2015, Vol. 63, no. 5, pp. 780–794.

125. Ebrahimi M., Yamamoto Y., Sharifi K., Kida H., et al. Astrocyte‐expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons. Glia, 2016, Vol. 64, no. 1, pp. 48–62.

126. Olzmann J.A., Carvalho P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol., 2019, Vol. 20, no. 3, pp. 137–155.

127. Ioannou M.S., Jackson J., Sheu S.-H., Chang C.-L., et al. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell, 2019, Vol. 177, no. 6, pp. 1522-1535.e14.

128. Aizawa F., Nishinaka T., Yamashita T., Nakamoto K., et al. Astrocytes Release Polyunsaturated Fatty Acids by Lipopolysaccharide Stimuli. Biol. Pharm. Bull., 2016, Vol. 39, no. 7, pp. 1100–1106.

129. Zendedel A., Habib P., Dang J., Lammerding L., et al. Omega-3 polyunsaturated fatty acids ameliorate neuroinflammation and mitigate ischemic stroke damage through interactions with astrocytes and microglia. J. Neuroimmunol., 2015, Vol. 278 pp. 200–211.

130. Hu J., Baydyuk M., Huang J.K. Impact of amino acids on microglial activation and CNS remyelination. Curr. Opin. Pharmacol., 2022, Vol. 66 p. 102287.

131. Sofroniew M. V., Vinters H. V. Astrocytes: biology and pathology. Acta Neuropathol., 2010, Vol. 119, no. 1, pp. 7–35.

132. Jurga A.M., Paleczna M., Kuter K.Z. Overview of General and Discriminating Markers of Differential Microglia Phenotypes. Front. Cell. Neurosci., 2020, Vol. 14.

133. Mantovani A., Biswas S.K., Galdiero M.R., Sica A., et al. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol., 2013, Vol. 229, no. 2, pp. 176–185.

134. Chen S.-F., Pan M.-X., Tang J.-C., Cheng J., et al. Arginine is neuroprotective through suppressing HIF-1α/LDHA-mediated inflammatory response after cerebral ischemia/reperfusion injury. Mol. Brain, 2020, Vol. 13, no. 1, p. 63.

135. Jobgen W.S., Fried S.K., Fu W.J., Meininger C.J., et al. Regulatory role for the arginine–nitric oxide pathway in metabolism of energy substrates. J. Nutr. Biochem., 2006, Vol. 17, no. 9, pp. 571–588.

136. Subedi L., Yumnam S. Terpenoids from Abies holophylla Attenuate LPS-Induced Neuroinflammation in Microglial Cells by Suppressing the JNK-Related Signaling Pathway. Int. J. Mol. Sci., 2021, Vol. 22, no. 2, p. 965.

137. Zhao D., Chen J., Zhang Y., Liao H.-B., et al. Glycine confers neuroprotection through PTEN/AKT signal pathway in experimental intracerebral hemorrhage. Biochem. Biophys. Res. Commun., 2018, Vol. 501, no. 1, pp. 85–91.

138. Liu R., Liao X.-Y., Pan M.-X., Tang J.-C., et al. Glycine Exhibits Neuroprotective Effects in Ischemic Stroke in Rats through the Inhibition of M1 Microglial Polarization via the NF-κB p65/Hif-1α Signaling Pathway. J. Immunol., 2019, Vol. 202, no. 6, pp. 1704–1714.

139. Chen S., Dong Z., Cheng M., Zhao Y., et al. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J. Neuroinflammation, 2017, Vol. 14, no. 1, p. 187.

140. De Simone R., Vissicchio F., Mingarelli C., De Nuccio C., et al. Branched-chain amino acids influence the immune properties of microglial cells and their responsiveness to pro-inflammatory signals. Biochim. Biophys. Acta - Mol. Basis Dis., 2013, Vol. 1832, no. 5, pp. 650–659.

141. Tannahill G.M., Curtis A.M., Adamik J., Palsson-McDermott E.M., et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, Vol. 496, no. 7444, pp. 238–242.

142. Tretter L., Patocs A., Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim. Biophys. Acta - Bioenerg., 2016, Vol. 1857, no. 8, pp. 1086–1101.

143. McKenna M.C. The glutamate‐glutamine cycle is not stoichiometric: Fates of glutamate in brain. J. Neurosci. Res., 2007, Vol. 85, no. 15, pp. 3347–3358.

144. Tani H., Dulla C.G., Farzampour Z., Taylor-Weiner A., et al. A Local Glutamate-Glutamine Cycle Sustains Synaptic Excitatory Transmitter Release. Neuron, 2014, Vol. 81, no. 4, pp. 888–900.

145. Bak L.K., Schousboe A., Waagepetersen H.S. The glutamate/GABA‐glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J. Neurochem., 2006, Vol. 98, no. 3, pp. 641–653.

146. Lai T.W., Zhang S., Wang Y.T. Excitotoxicity and stroke: Identifying novel targets for neuroprotection. Prog. Neurobiol., 2014, Vol. 115 pp. 157–188.

147. Yang X., Yu H., Li J., Li N., et al. Excitotoxic Storms of Ischemic Stroke: A Non-neuronal Perspective. Mol. Neurobiol., 2024,.

148. Nakajima K., Kanamatsu T., Koshimoto M., Kohsaka S. Microglia derived from the axotomized adult rat facial nucleus uptake glutamate and metabolize it to glutamine in vitro. Neurochem. Int., 2017, Vol. 102 pp. 1–12.

149. Palmieri E.M., Menga A., Lebrun A., Hooper D.C., et al. Blockade of Glutamine Synthetase Enhances Inflammatory Response in Microglial Cells. Antioxid. Redox Signal., 2017, Vol. 26, no. 8, pp. 351–363.

150. Gao G., Li C., Zhu J., Wang Y., et al. Glutaminase 1 Regulates Neuroinflammation After Cerebral Ischemia Through Enhancing Microglial Activation and Pro-Inflammatory Exosome Release. Front. Immunol., 2020, Vol. 11.

151. Anderson, C.M., Bridges R.J., Chamberlin A.R., Shimamoto K., et al. Differing effects of substrate and non‐substrate transport inhibitors on glutamate uptake reversal. J. Neurochem., 2001, Vol. 79, no. 6, pp. 1207–1216.

152. Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit. Neuropathology, 2020, Vol. 40, no. 2, pp. 121–137.

153. Bröer S., Brookes N. Transfer of glutamine between astrocytes and neurons. J. Neurochem., 2001, Vol. 77, no. 3, pp. 705–719.

154. Bröer A., Albers A., Setiawan I., Edwards R.H., et al. Regulation of the glutamine transporter SN1 by extracellular pH and intracellular sodium ions. J. Physiol., 2002, Vol. 539, no. 1, pp. 3–14.

155. McKenna M.C., Sonnewald U., Huang X., Stevenson J., et al. Exogenous Glutamate Concentration Regulates the Metabolic Fate of Glutamate in Astrocytes. J. Neurochem., 1996, Vol. 66, no. 1, pp. 386–393.

156. Yamada T., Kawahara K., Kosugi T., Tanaka M. Nitric Oxide Produced During Sublethal Ischemia Is Crucial for the Preconditioning-Induced Down-Regulation of Glutamate Transporter GLT-1 in Neuron/Astrocyte Co-Cultures. Neurochem. Res., 2006, Vol. 31, no. 1, pp. 49–56.

157. Chu K., Lee S.-T., Sinn D.-I., Ko S.-Y., et al. Pharmacological Induction of Ischemic Tolerance by Glutamate Transporter-1 (EAAT2) Upregulation. Stroke, 2007, Vol. 38, no. 1, pp. 177–182.

158. Rothstein J.D., Patel S., Regan M.R., Haenggeli C., et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature, 2005, Vol. 433, no. 7021, pp. 73–77.

159. Lee E.Y., Sidoryk M., Jiang H., Yin Z., et al. Estrogen and tamoxifen reverse manganese‐induced glutamate transporter impairment in astrocytes. J. Neurochem., 2009, Vol. 110, no. 2, pp. 530–544.


Supplementary files

1. Неозаглавлен
Subject
Type Other
Download (956KB)    
Indexing metadata ▾
2. 3131
Subject
Type Other
Download (1MB)    
Indexing metadata ▾

Review

For citations:


Bobrov M., Nikitin V., Burak M. METABOLIC REPROGRAMMING OF MICROGLIA AND ASTROCYTES AS A FACTOR IN THE REGULATION OF NEUROINFLAMMATION IN ISCHEMIC STROKE. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-MRO-3131

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)