Preview

Медицинская иммунология

Расширенный поиск

ТРОМБОЦИТЫ И ИХ МИКРОВЕЗИКУЛЫ: ФЕНОТИП, СОСТАВ, ВЛИЯНИЕ НА ЭНДОТЕЛИЙ

https://doi.org/10.15789/1563-0625-PAP-3008

Аннотация

Тромбоциты – это небольшие постклеточные элементы мегакариоцитов, циркулирующие в крови. На их поверхности представлены молекулы межклеточной адгезии, Toll-подобные рецепторы, рецепторы хемокинов и цитокинов и другие. Тромбоциты содержат соединения с разнообразной биологической функцией, в том числе хемокины, цитокины и ростовые факторы. Благодаря особенностям цитологического строения – мембранной системе и секреторным гранулам – тромбоциты способны быстро активироваться и вступать во взаимодействие с другими клетками. Тромбоциты участвуют в гемостазе, иммунных реакциях, ангиогенезе. Активация, необходимая тромбоцитам для выполнения своих функций, опосредуется через ионы кальция и может инициироваться компонентами субэндотелия, белками системы комплемента, продуктами секреции других тромбоцитов. При активации тромбоциты высвобождают секреторные гранулы, изменяют морфологию. Помимо этого, тромбоциты, подобно другим клеткам организма, в норме и при патологии продуцируют микровезикулы – сравнительно новый объект, интенсивное изучение которого ведется в настоящее время.

Целью настоящего обзора явилось сравнительное описание тромбоцитов и их микровезикул, которым тромбоциты делегируют некоторые свои функции как посредникам коммуникации с другими клетками, в том числе эндотелиоцитами. Микровезикулы являются перспективным объектом исследования, изучается возможность их использования в качестве диагностического и терапевтического агента. Наибольшая часть микровезикул, циркулирующих в периферической крови, имеют тромбоцитарное происхождение. В составе микровезикул тромбоцитов присутствуют цитокины и другие белки, липиды и нуклеиновые кислоты (ДНК, мРНК, микроРНК). На поверхности микровезикул тромбоцитов сохраняются поверхностные маркеры родительских клеток; на их мембране представлен фосфатидилсерин, который дополнительно участвует в тромбообразовании за счет аккумулирования факторов коагуляции. Под влиянием сигналов микроокружения состав, фенотип тромбоцитарных микровезикул, а также их функциональная направленность в отношении эндотелия может варьировать в зависимости от стимула. Эффект, оказываемый ими на ангиогенез и регенерацию недостаточно изучен, экспериментальные данные демонстрируют как положительное, так и отрицательное влияние. При различных патологиях, сопровождающихся эндотелиальной дисфункцией (сердечно-сосудистые патологии, преэклампсия, диабет), наблюдается повышение уровня тромбоцитарных микровезикул, что указывает на их возможное участие в патогенезе заболеваний. Тем не менее, влияние тромбоцитов и их микровезикул на эндотелий, в том числе активации в эндотелии различных сигнальных путей, остается предметом дальнейших исследований.

Об авторах

Ольга Игоревна Степанова
ФГБНУ "НИИ АГиР им. Д.О. Отта"
Россия


Марина Алексеевна Перевязкина
ФГБНУ "НИИ АГиР им. Д.О. Отта"
Россия

лаборант-исследователь, Отдел иммунологии и межклеточных взаимодействий



Маркова Львовна Ксения
ФГБНУ "НИИ АГиР им. Д.О. Отта"
Россия


Сергей Алексеевич Сельков
ФГБНУ "НИИ АГиР им. Д.О. Отта"
Россия

д.м.н., профессор, з.д.н. РФ, зав.отделом иммунологии и межклеточных взаимодействий ФГБНУ «НИИ АГиР им. Д.О.Отта



Дмитрий Игоревич Соколов
ФГБНУ "НИИ АГиР им. Д.О. Отта", ФБУН НИИ эпидемиологии и микробиологии имени Пастера
Россия

доцент, д.б.н., ведущий научный сотрудник лаборатории межклеточных взаимодействий ФГБНУ «НИИ АГиР им. Д.О.Отта»., лаборатории молекулярной иммунологии ФБУН НИИ эпидемиологии и микробиологии имени Пастера



Список литературы

1. Aatonen M., Gronholm M.,Siljander P.R. Platelet-derived microvesicles: multitalented participants in intercellular communication. Semin Thromb Hemost, 2012, Vol.38, no 1, pp. 102-13.

2. Abi-Younes S., Sauty A., Mach F., Sukhova G.K., Libby P.,Luster A.D. The stromal cell-derived factor-1 chemokine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ Res, 2000, Vol.86, no 2, pp. 131-8.

3. Adams T.E., Epa V.C., Garrett T.P.,Ward C.W. Structure and function of the type 1 insulin-like growth factor receptor. Cell Mol Life Sci, 2000, Vol.57, no 7, pp. 1050-93.

4. Ager A.,Gordon J.L. Influence of human beta-thromboglobulin on prostaglandin production by pig aortic endothelial cells in culture. Thromb Res, 1981, Vol.24, no 1-2, pp. 95-103.

5. Ahmed T., Ramonett A., Kwak E.A., Kumar S., Flores P.C., Ortiz H.R., Langlais P.R., Hund T.J., Mythreye K.,Lee N.Y. Endothelial tip/stalk cell selection requires BMP9-induced beta(IV)-spectrin expression during sprouting angiogenesis. Mol Biol Cell, 2023, Vol.34, no 7, pp. ar72.

6. Alasztics B., Kovacs A.F., Molvarec A., Koller A., Szabo G., Fekete N., Buzas E.I., Pallinger E.,Rigo J., Jr. Platelet-derived extracellular vesicles may contribute to the hypercoagulable state in preeclampsia. J Reprod Immunol, 2021, Vol.148, no, pp. 103380.

7. Albini A., Brigati C., Ventura A., Lorusso G., Pinter M., Morini M., Mancino A., Sica A.,Noonan D.M. Angiostatin anti-angiogenesis requires IL-12: the innate immune system as a key target. J Transl Med, 2009, Vol.7, no, pp. 5.

8. Andre P., Nannizzi-Alaimo L., Prasad S.K.,Phillips D.R. Platelet-derived CD40L: the switch-hitting player of cardiovascular disease. Circulation, 2002, Vol.106, no 8, pp. 896-9.

9. Andre P., Prasad K.S., Denis C.V., He M., Papalia J.M., Hynes R.O., Phillips D.R.,Wagner D.D. CD40L stabilizes arterial thrombi by a beta3 integrin--dependent mechanism. Nat Med, 2002, Vol.8, no 3, pp. 247-52.

10. Antich-Rossello M., Forteza-Genestra M.A., Monjo M.,Ramis J.M. Platelet-Derived Extracellular Vesicles for Regenerative Medicine. Int J Mol Sci, 2021, Vol.22, no 16.

11. Aquino-Dominguez A.S., Romero-Tlalolini M.L.A., Torres-Aguilar H.,Aguilar-Ruiz S.R. Recent Advances in the Discovery and Function of Antimicrobial Molecules in Platelets. Int J Mol Sci, 2021, Vol.22, no 19.

12. Arefieva T.I., Kukhtina N.B., Antonova O.A.,Krasnikova T.L. MCP-1-stimulated chemotaxis of monocytic and endothelial cells is dependent on activation of different signaling cascades. Cytokine, 2005, Vol.31, no 6, pp. 439-46.

13. Assoian R.K., Komoriya A., Meyers C.A., Miller D.M.,Sporn M.B. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem, 1983, Vol.258, no 11, pp. 7155-60.

14. Bach L.A. Endothelial cells and the IGF system. J Mol Endocrinol, 2015, Vol.54, no 1, pp. R1-13.

15. Badimon L., Suades R., Fuentes E., Palomo I.,Padro T. Role of Platelet-Derived Microvesicles As Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis. Front Pharmacol, 2016, Vol.7, no, pp. 293.

16. Baj-Krzyworzeka M., Majka M., Pratico D., Ratajczak J., Vilaire G., Kijowski J., Reca R., Janowska-Wieczorek A.,Ratajczak M.Z. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp Hematol, 2002, Vol.30, no 5, pp. 450-9.

17. Balaphas A., Meyer J., Perozzo R., Zeisser-Labouebe M., Berndt S., Turzi A., Fontana P., Scapozza L., Gonelle-Gispert C.,Buhler L.H. Platelet Transforming Growth Factor-beta1 Induces Liver Sinusoidal Endothelial Cells to Secrete Interleukin-6. Cells, 2020, Vol.9, no 5.

18. Bao H., Chen Y.X., Huang K., Zhuang F., Bao M., Han Y., Chen X.H., Shi Q., Yao Q.P.,Qi Y.X. Platelet-derived microparticles promote endothelial cell proliferation in hypertension via miR-142-3p. FASEB J, 2018, Vol.32, no 7, pp. 3912-3923.

19. Barale C., Frascaroli C., Senkeev R., Cavalot F.,Russo I. Simvastatin Effects on Inflammation and Platelet Activation Markers in Hypercholesterolemia. Biomed Res Int, 2018, Vol.2018, no, pp. 6508709.

20. Becker R.C., Sexton T.,Smyth S.S. Translational Implications of Platelets as Vascular First Responders. Circ Res, 2018, Vol.122, no 3, pp. 506-522.

21. Behzadian M.A., Wang X.L., Windsor L.J., Ghaly N.,Caldwell R.B. TGF-beta increases retinal endothelial cell permeability by increasing MMP-9: possible role of glial cells in endothelial barrier function. Invest Ophthalmol Vis Sci, 2001, Vol.42, no 3, pp. 853-9.

22. Bendas G.,Schlesinger M. The GPIb-IX complex on platelets: insight into its novel physiological functions affecting immune surveillance, hepatic thrombopoietin generation, platelet clearance and its relevance for cancer development and metastasis. Exp Hematol Oncol, 2022, Vol.11, no 1, pp. 19.

23. Bikfalvi A. Platelet factor 4: an inhibitor of angiogenesis. Semin Thromb Hemost, 2004, Vol.30, no 3, pp. 379-85.

24. Blair P., Rex S., Vitseva O., Beaulieu L., Tanriverdi K., Chakrabarti S., Hayashi C., Genco C.A., Iafrati M.,Freedman J.E. Stimulation of Toll-like receptor 2 in human platelets induces a thromboinflammatory response through activation of phosphoinositide 3-kinase. Circ Res, 2009, Vol.104, no 3, pp. 346-54.

25. Blakytny R., Ludlow A., Martin G.E., Ireland G., Lund L.R., Ferguson M.W.,Brunner G. Latent TGF-beta1 activation by platelets. J Cell Physiol, 2004, Vol.199, no 1, pp. 67-76.

26. Blann A.D., Nadar S.K.,Lip G.Y. The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J, 2003, Vol.24, no 24, pp. 2166-79.

27. Boehlen F.,Clemetson K.J. Platelet chemokines and their receptors: what is their relevance to platelet storage and transfusion practice? Transfus Med, 2001, Vol.11, no 6, pp. 403-17.

28. Borst O., Munzer P., Gatidis S., Schmidt E.M., Schonberger T., Schmid E., Towhid S.T., Stellos K., Seizer P., May A.E., Lang F.,Gawaz M. The inflammatory chemokine CXC motif ligand 16 triggers platelet activation and adhesion via CXC motif receptor 6-dependent phosphatidylinositide 3-kinase/Akt signaling. Circ Res, 2012, Vol.111, no 10, pp. 1297-307.

29. Brambilla M., Talmon M., Canzano P., Fresu L.G., Brunelleschi S., Tremoli E.,Camera M. Different Contribution of Monocyte- and Platelet-Derived Microvesicles to Endothelial Behavior. Int J Mol Sci, 2022, Vol.23, no 9.

30. Brat D.J., Bellail A.C.,Van Meir E.G. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol, 2005, Vol.7, no 2, pp. 122-33.

31. Brill A., Dashevsky O., Rivo J., Gozal Y.,Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res, 2005, Vol.67, no 1, pp. 30-8.

32. Brill A., Elinav H.,Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res, 2004, Vol.63, no 2, pp. 226-35.

33. Broos K., Feys H.B., De Meyer S.F., Vanhoorelbeke K.,Deckmyn H. Platelets at work in primary hemostasis. Blood Rev, 2011, Vol.25, no 4, pp. 155-67.

34. Brown G.T.,McIntyre T.M. Lipopolysaccharide signaling without a nucleus: kinase cascades stimulate platelet shedding of proinflammatory IL-1beta-rich microparticles. J Immunol, 2011, Vol.186, no 9, pp. 5489-96.

35. Burger D., Schock S., Thompson C.S., Montezano A.C., Hakim A.M.,Touyz R.M. Microparticles: biomarkers and beyond. Clin Sci (Lond), 2013, Vol.124, no 7, pp. 423-41.

36. Cai S., Yang Q., Cao Y., Li Y., Liu J., Wang J., Zhang X., Liu L., Li X.,Zhang Y. PF4 antagonizes retinal neovascularization via inhibiting PRAS40 phosphorylation in a mouse model of oxygen-induced retinopathy. Biochim Biophys Acta Mol Basis Dis, 2020, Vol.1866, no 3, pp. 165604.

37. Cao R., Eriksson A., Kubo H., Alitalo K., Cao Y.,Thyberg J. Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res, 2004, Vol.94, no 5, pp. 664-70.

38. Caunt M., Hu L., Tang T., Brooks P.C., Ibrahim S.,Karpatkin S. Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res, 2006, Vol.66, no 8, pp. 4125-32.

39. Chakrabarti S., Rizvi M., Morin K., Garg R.,Freedman J.E. The role of CD40L and VEGF in the modulation of angiogenesis and inflammation. Vascul Pharmacol, 2010, Vol.53, no 3-4, pp. 130-7.

40. Chatterjee M.,Gawaz M. Platelet-derived CXCL12 (SDF-1alpha): basic mechanisms and clinical implications. J Thromb Haemost, 2013, Vol.11, no 11, pp. 1954-67.

41. Chatterjee M., Rath D.,Gawaz M. Role of chemokine receptors CXCR4 and CXCR7 for platelet function. Biochem Soc Trans, 2015, Vol.43, no 4, pp. 720-6.

42. Chavakis E.,Dimmeler S. Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol, 2002, Vol.22, no 6, pp. 887-93.

43. Chen C., Xu Z.-Q., Zong Y.-P., Ou B.-C., Shen X.-H., Feng H., Zheng M.-H., Zhao J.-K.,Lu A.-G. CXCL5 induces tumor angiogenesis via enhancing the expression of FOXD1 mediated by the AKT/NF-κB pathway in colorectal cancer. Cell Death & Disease, 2019, Vol.10, no 3.

44. Chen C.C.,Manning A.M. TGF-beta 1, IL-10 and IL-4 differentially modulate the cytokine-induced expression of IL-6 and IL-8 in human endothelial cells. Cytokine, 1996, Vol.8, no 1, pp. 58-65.

45. Chen Y., Shen J., Nilsson A.H., Goncalves I., Edsfeldt A., Engstrom G., Zaigham S., Melander O., Orho-Melander M., Rauch U., Venuraju S.M., Lahiri A., Liang C.,Nilsson J. Circulating Hepatocyte Growth Factor Reflects Activation of Vascular Repair in Response to Stress. JACC Basic Transl Sci, 2022, Vol.7, no 8, pp. 747-762.

46. Chiva-Blanch G., Laake K., Myhre P., Bratseth V., Arnesen H., Solheim S., Badimon L.,Seljeflot I. Platelet-, monocyte-derived and tissue factor-carrying circulating microparticles are related to acute myocardial infarction severity. PLoS One, 2017, Vol.12, no 2, pp. e0172558.

47. Cicmil M., Thomas J.M., Leduc M., Bon C.,Gibbins J.M. Platelet endothelial cell adhesion molecule-1 signaling inhibits the activation of human platelets. Blood, 2002, Vol.99, no 1, pp. 137-44.

48. Cines D.B., Pollak E.S., Buck C.A., Loscalzo J., Zimmerman G.A., McEver R.P., Pober J.S., Wick T.M., Konkle B.A., Schwartz B.S., Barnathan E.S., McCrae K.R., Hug B.A., Schmidt A.M.,Stern D.M. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood, 1998, Vol.91, no 10, pp. 3527-61.

49. Clark S.R., Ma A.C., Tavener S.A., McDonald B., Goodarzi Z., Kelly M.M., Patel K.D., Chakrabarti S., McAvoy E., Sinclair G.D., Keys E.M., Allen-Vercoe E., Devinney R., Doig C.J., Green F.H.,Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med, 2007, Vol.13, no 4, pp. 463-9.

50. Clemetson K.J., Clemetson J.M., Proudfoot A.E., Power C.A., Baggiolini M.,Wells T.N. Functional expression of CCR1, CCR3, CCR4, and CXCR4 chemokine receptors on human platelets. Blood, 2000, Vol.96, no 13, pp. 4046-54.

51. Coenen D.M., Mastenbroek T.G.,Cosemans J. Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood, 2017, Vol.130, no 26, pp. 2819-2828.

52. Cognasse F., Hamzeh-Cognasse H., Lafarge S., Chavarin P., Cogne M., Richard Y.,Garraud O. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp Hematol, 2007, Vol.35, no 9, pp. 1376-87.

53. Colotti G., Failla C.M., Lacal P.M., Ungarelli M., Ruffini F., Di Micco P., Orecchia A.,Morea V. Neuropilin-1 is required for endothelial cell adhesion to soluble vascular endothelial growth factor receptor 1. FEBS J, 2022, Vol.289, no 1, pp. 183-198.

54. Cui Z., Wu H., Xiao Y., Xu T., Jia J., Lin H., Lin R., Chen K., Lin Y., Li K., Wu X., Li C.,Yu B. Endothelial PDGF-BB/PDGFR-beta signaling promotes osteoarthritis by enhancing angiogenesis-dependent abnormal subchondral bone formation. Bone Res, 2022, Vol.10, no 1, pp. 58.

55. da Costa Martins P., Garcia-Vallejo J.J., van Thienen J.V., Fernandez-Borja M., van Gils J.M., Beckers C., Horrevoets A.J., Hordijk P.L.,Zwaginga J.J. P-selectin glycoprotein ligand-1 is expressed on endothelial cells and mediates monocyte adhesion to activated endothelium. Arterioscler Thromb Vasc Biol, 2007, Vol.27, no 5, pp. 1023-9.

56. Dawson D.W., Pearce S.F., Zhong R., Silverstein R.L., Frazier W.A.,Bouck N.P. CD36 mediates the In vitro inhibitory effects of thrombospondin-1 on endothelial cells. J Cell Biol, 1997, Vol.138, no 3, pp. 707-17.

57. De Marco L., Mazzucato M., Masotti A., Fenton J.W., 2nd,Ruggeri Z.M. Function of glycoprotein Ib alpha in platelet activation induced by alpha-thrombin. J Biol Chem, 1991, Vol.266, no 35, pp. 23776-83.

58. Del Conde I., Cruz M.A., Zhang H., Lopez J.A.,Afshar-Kharghan V. Platelet activation leads to activation and propagation of the complement system. J Exp Med, 2005, Vol.201, no 6, pp. 871-9.

59. Derler R., Gesslbauer B., Weber C., Strutzmann E., Miller I.,Kungl A. Glycosaminoglycan-Mediated Downstream Signaling of CXCL8 Binding to Endothelial Cells. Int J Mol Sci, 2017, Vol.18, no 12.

60. Ding S., Merkulova-Rainon T., Han Z.C.,Tobelem G. HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood, 2003, Vol.101, no 12, pp. 4816-22.

61. Duerschmied D., Suidan G.L., Demers M., Herr N., Carbo C., Brill A., Cifuni S.M., Mauler M., Cicko S., Bader M., Idzko M., Bode C.,Wagner D.D. Platelet serotonin promotes the recruitment of neutrophils to sites of acute inflammation in mice. Blood, 2013, Vol.121, no 6, pp. 1008-15.

62. Dwyer J., Hebda J.K., Le Guelte A., Galan-Moya E.M., Smith S.S., Azzi S., Bidere N.,Gavard J. Glioblastoma cell-secreted interleukin-8 induces brain endothelial cell permeability via CXCR2. PLoS One, 2012, Vol.7, no 9, pp. e45562.

63. Edelstein L.C. The role of platelet microvesicles in intercellular communication. Platelets, 2017, Vol.28, no 3, pp. 222-227.

64. El-Gamal H., Parray A.S., Mir F.A., Shuaib A.,Agouni A. Circulating microparticles as biomarkers of stroke: A focus on the value of endothelial- and platelet-derived microparticles. J Cell Physiol, 2019, Vol.234, no 10, pp. 16739-16754.

65. Eustes A.S.,Dayal S. The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. Int J Mol Sci, 2022, Vol.23, no 14.

66. Fahey E.,Doyle S.L. IL-1 Family Cytokine Regulation of Vascular Permeability and Angiogenesis. Front Immunol, 2019, Vol.10, no, pp. 1426.

67. Faille D., El-Assaad F., Mitchell A.J., Alessi M.C., Chimini G., Fusai T., Grau G.E.,Combes V. Endocytosis and intracellular processing of platelet microparticles by brain endothelial cells. J Cell Mol Med, 2012, Vol.16, no 8, pp. 1731-8.

68. Falati S., Patil S., Gross P.L., Stapleton M., Merrill-Skoloff G., Barrett N.E., Pixton K.L., Weiler H., Cooley B., Newman D.K., Newman P.J., Furie B.C., Furie B.,Gibbins J.M. Platelet PECAM-1 inhibits thrombus formation in vivo. Blood, 2006, Vol.107, no 2, pp. 535-41.

69. Feng Y.F., Yuan F., Guo H.,Wu W.Z. TGF-beta1 enhances SDF-1-induced migration and tube formation of choroid-retinal endothelial cells by up-regulating CXCR4 and CXCR7 expression. Mol Cell Biochem, 2014, Vol.397, no 1-2, pp. 131-8.

70. Ferreira P.M., Bozbas E., Tannetta S.D., Alroqaiba N., Zhou R., Crawley J.T.B., Gibbins J.M., Jones C.I., Ahnstrom J.,Yaqoob P. Mode of induction of platelet-derived extracellular vesicles is a critical determinant of their phenotype and function. Sci Rep, 2020, Vol.10, no 1, pp. 18061.

71. Filippelli A., Del Gaudio C., Simonis V., Ciccone V., Spini A.,Donnini S. Scoping Review on Platelets and Tumor Angiogenesis: Do We Need More Evidence or Better Analysis? Int J Mol Sci, 2022, Vol.23, no 21.

72. Frenette P.S., Denis C.V., Weiss L., Jurk K., Subbarao S., Kehrel B., Hartwig J.H., Vestweber D.,Wagner D.D. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med, 2000, Vol.191, no 8, pp. 1413-22.

73. Gachet C. Identification, characterization, and inhibition of the platelet ADP receptors. Int J Hematol, 2001, Vol.74, no 4, pp. 375-81.

74. Garcia B.A., Smalley D.M., Cho H., Shabanowitz J., Ley K.,Hunt D.F. The platelet microparticle proteome. J Proteome Res, 2005, Vol.4, no 5, pp. 1516-21.

75. Gentilini G., Kirschbaum N.E., Augustine J.A., Aster R.H.,Visentin G.P. Inhibition of human umbilical vein endothelial cell proliferation by the CXC chemokine, platelet factor 4 (PF4), is associated with impaired downregulation of p21(Cip1/WAF1). Blood, 1999, Vol.93, no 1, pp. 25-33.

76. Gidlof O., van der Brug M., Ohman J., Gilje P., Olde B., Wahlestedt C.,Erlinge D. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood, 2013, Vol.121, no 19, pp. 3908-17, S1-26.

77. Grotendorst G.R., Soma Y., Takehara K.,Charette M. EGF and TGF-alpha are potent chemoattractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration. J Cell Physiol, 1989, Vol.139, no 3, pp. 617-23.

78. Guo J., Feng C., Zhang B., Zhang S., Shen X., Zhu J.,Zhao X.X. Extraction and identification of platelet‑derived microparticles. Mol Med Rep, 2019, Vol.20, no 3, pp. 2916-2921.

79. Gupta S.K., Lysko P.G., Pillarisetti K., Ohlstein E.,Stadel J.M. Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem, 1998, Vol.273, no 7, pp. 4282-7.

80. Gupta S.K.,Singh J.P. Inhibition of endothelial cell proliferation by platelet factor-4 involves a unique action on S phase progression. J Cell Biol, 1994, Vol.127, no 4, pp. 1121-7.

81. Hang T.C., Tedford N.C., Reddy R.J., Rimchala T., Wells A., White F.M., Kamm R.D.,Lauffenburger D.A. Vascular endothelial growth factor (VEGF) and platelet (PF-4) factor 4 inputs modulate human microvascular endothelial signaling in a three-dimensional matrix migration context. Mol Cell Proteomics, 2013, Vol.12, no 12, pp. 3704-18.

82. Hara T.,Tanegashima K. CXCL14 antagonizes the CXCL12-CXCR4 signaling axis. Biomol Concepts, 2014, Vol.5, no 2, pp. 167-73.

83. Haywood N.J., Luk C., Bridge K.I., Drozd M., Makava N., Skromna A., Maccannell A., Ozber C.H., Warmke N., Wilkinson C.G., Watt N.T., Koch-Paszkowski J., Teh I., Boyle J.H., Smart S., Schneider J.E., Yuldasheva N.Y., Roberts L.D., Beech D.J., Sukumar P., Wheatcroft S.B., Cubbon R.M.,Kearney M.T. Endothelial IGF-1 receptor mediates crosstalk with the gut wall to regulate microbiota in obesity. EMBO Rep, 2021, Vol.22, no 5, pp. e50767.

84. Henn V., Steinbach S., Buchner K., Presek P.,Kroczek R.A. The inflammatory action of CD40 ligand (CD154) expressed on activated human platelets is temporally limited by coexpressed CD40. Blood, 2001, Vol.98, no 4, pp. 1047-54.

85. Hope W., Martin T.J., Chesterman C.N.,Morgan F.J. Human beta-thromboglobulin inhibits PGI2 production and binds to a specific site in bovine aortic endothelial cells. Nature, 1979, Vol.282, no 5735, pp. 210-2.

86. Hristov M., Zernecke A., Bidzhekov K., Liehn E.A., Shagdarsuren E., Ludwig A.,Weber C. Importance of CXC chemokine receptor 2 in the homing of human peripheral blood endothelial progenitor cells to sites of arterial injury. Circ Res, 2007, Vol.100, no 4, pp. 590-7.

87. Hu C.,Jiang X. Role of NRP-1 in VEGF-VEGFR2-Independent Tumorigenesis. Target Oncol, 2016, Vol.11, no 4, pp. 501-5.

88. Huang J., Li X., Shi X., Zhu M., Wang J., Huang S., Huang X., Wang H., Li L., Deng H., Zhou Y., Mao J., Long Z., Ma Z., Ye W., Pan J., Xi X.,Jin J. Platelet integrin alphaIIbbeta3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol, 2019, Vol.12, no 1, pp. 26.

89. Hueso L., Marques P., Morant B., Gonzalez-Navarro H., Ortega J., Real J.T., Sanz M.J.,Piqueras L. CCL17 and CCL22 chemokines are upregulated in human obesity and play a role in vascular dysfunction. Front Endocrinol (Lausanne), 2023, Vol.14, no, pp. 1154158.

90. Islam S.A., Ling M.F., Leung J., Shreffler W.G.,Luster A.D. Identification of human CCR8 as a CCL18 receptor. J Exp Med, 2013, Vol.210, no 10, pp. 1889-98.

91. Isozaki T., Arbab A.S., Haas C.S., Amin M.A., Arendt M.D., Koch A.E.,Ruth J.H. Evidence that CXCL16 is a potent mediator of angiogenesis and is involved in endothelial progenitor cell chemotaxis : studies in mice with K/BxN serum-induced arthritis. Arthritis Rheum, 2013, Vol.65, no 7, pp. 1736-46.

92. Israels S.J.,McMillan-Ward E.M. CD63 modulates spreading and tyrosine phosphorylation of platelets on immobilized fibrinogen. Thromb Haemost, 2005, Vol.93, no 2, pp. 311-8.

93. Italiano J.E., Jr., Lecine P., Shivdasani R.A.,Hartwig J.H. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes. J Cell Biol, 1999, Vol.147, no 6, pp. 1299-312.

94. Italiano J.E., Jr., Richardson J.L., Patel-Hett S., Battinelli E., Zaslavsky A., Short S., Ryeom S., Folkman J.,Klement G.L. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood, 2008, Vol.111, no 3, pp. 1227-33.

95. Janowska-Wieczorek A., Wysoczynski M., Kijowski J., Marquez-Curtis L., Machalinski B., Ratajczak J.,Ratajczak M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer, 2005, Vol.113, no 5, pp. 752-60.

96. Jiang S., Ai Y., Ni L., Wu L., Huang X.,Chen S. Platelet-derived TGF-beta1 is related to portal vein thrombosis in cirrhosis by promoting hypercoagulability and endothelial dysfunction. Front Cardiovasc Med, 2022, Vol.9, no, pp. 938397.

97. Jiang Y., Zhou X., Hu R.,Dai A. TGF-beta1-induced SMAD2/3/4 activation promotes RELM-beta transcription to modulate the endothelium-mesenchymal transition in human endothelial cells. Int J Biochem Cell Biol, 2018, Vol.105, no, pp. 52-60.

98. Jiang Z., Zhang S., Wang H., Hu C., Li L., Zheng X., Mu Y., Wang F., Mou Y., Liu M.,Jin W. Protocadherin-1 serves as a prognostic biomarker and promotes pancreatic cancer progression by suppressing CD8(+) T cell infiltration through CCL5-CCR5 axis. Am J Cancer Res, 2023, Vol.13, no 11, pp. 5197-5217.

99. Jin P., Pan Q., Lin Y., Dong Y., Zhu J., Liu T., Zhu W.,Cheng B. Platelets Facilitate Wound Healing by Mitochondrial Transfer and Reducing Oxidative Stress in Endothelial Cells. Oxid Med Cell Longev, 2023, Vol.2023, no, pp. 2345279.

100. Jouan V., Canron X., Alemany M., Caen J.P., Quentin G., Plouet J.,Bikfalvi A. Inhibition of in vitro angiogenesis by platelet factor-4-derived peptides and mechanism of action. Blood, 1999, Vol.94, no 3, pp. 984-93.

101. Joyce N.C., Joyce S.J., Powell S.M.,Meklir B. EGF and PGE2: effects on corneal endothelial cell migration and monolayer spreading during wound repair in vitro. Curr Eye Res, 1995, Vol.14, no 7, pp. 601-9.

102. Kahn M.L., Nakanishi-Matsui M., Shapiro M.J., Ishihara H.,Coughlin S.R. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest, 1999, Vol.103, no 6, pp. 879-87.

103. Kandler B., Fischer M.B., Watzek G.,Gruber R. Platelet-released supernatant increases matrix metalloproteinase-2 production, migration, proliferation, and tube formation of human umbilical vascular endothelial cells. J Periodontol, 2004, Vol.75, no 9, pp. 1255-61.

104. Keeley E.C., Mehrad B.,Strieter R.M. CXC chemokines in cancer angiogenesis and metastases. Adv Cancer Res, 2010, Vol.106, no, pp. 91-111.

105. Kim H.K., Song K.S., Chung J.H., Lee K.R.,Lee S.N. Platelet microparticles induce angiogenesis in vitro. Br J Haematol, 2004, Vol.124, no 3, pp. 376-84.

106. Kraemer B.F., Campbell R.A., Schwertz H., Cody M.J., Franks Z., Tolley N.D., Kahr W.H., Lindemann S., Seizer P., Yost C.C., Zimmerman G.A.,Weyrich A.S. Novel anti-bacterial activities of beta-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog, 2011, Vol.7, no 11, pp. e1002355.

107. Kuhlmann C.R., Schaefer C.A., Reinhold L., Tillmanns H.,Erdogan A. Signalling mechanisms of SDF-induced endothelial cell proliferation and migration. Biochem Biophys Res Commun, 2005, Vol.335, no 4, pp. 1107-14.

108. Laffont B., Corduan A., Rousseau M., Duchez A.C., Lee C.H., Boilard E.,Provost P. Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost, 2016, Vol.115, no 2, pp. 311-23.

109. Langmann T. Cytokine signaling as key regulator of pathological angiogenesis in the eye. EBioMedicine, 2021, Vol.73, no, pp. 103662.

110. Larsen E., Celi A., Gilbert G.E., Furie B.C., Erban J.K., Bonfanti R., Wagner D.D.,Furie B. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell, 1989, Vol.59, no 2, pp. 305-12.

111. Lazar S.,Goldfinger L.E. Platelets and extracellular vesicles and their cross talk with cancer. Blood, 2021, Vol.137, no 23, pp. 3192-3200.

112. Lebrin F., Goumans M.J., Jonker L., Carvalho R.L., Valdimarsdottir G., Thorikay M., Mummery C., Arthur H.M.,ten Dijke P. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J, 2004, Vol.23, no 20, pp. 4018-28.

113. Leksa V., Godar S., Schiller H.B., Fuertbauer E., Muhammad A., Slezakova K., Horejsi V., Steinlein P., Weidle U.H., Binder B.R.,Stockinger H. TGF-beta-induced apoptosis in endothelial cells mediated by M6P/IGFII-R and mini-plasminogen. J Cell Sci, 2005, Vol.118, no Pt 19, pp. 4577-86.

114. Lester E.A.,Babensee J.E. Proinflammatory phenotype of endothelial cells after coculture with biomaterial-treated blood cells. J Biomed Mater Res A, 2003, Vol.64, no 3, pp. 397-410.

115. Lian L., Wang Y., Draznin J., Eslin D., Bennett J.S., Poncz M., Wu D.,Abrams C.S. The relative role of PLCbeta and PI3Kgamma in platelet activation. Blood, 2005, Vol.106, no 1, pp. 110-7.

116. Lin L., Chen Y.S., Yao Y.D., Chen J.Q., Chen J.N., Huang S.Y., Zeng Y.J., Yao H.R., Zeng S.H., Fu Y.S.,Song E.W. CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotarget, 2015, Vol.6, no 33, pp. 34758-73.

117. Lin S., Zhang Q., Shao X., Zhang T., Xue C., Shi S., Zhao D.,Lin Y. IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway. Cell Prolif, 2017, Vol.50, no 6.

118. Lindemann S.,Gawaz M. The active platelet: translation and protein synthesis in an anucleate cell. Semin Thromb Hemost, 2007, Vol.33, no 2, pp. 144-50.

119. Liu J., Liang X., Li M., Lin F., Ma X., Xin Y., Meng Q., Zhuang R., Zhang Q., Han W., Gao L., He Z., Zhou X.,Liu Z. Intramyocardial injected human umbilical cord-derived mesenchymal stem cells (HucMSCs) contribute to the recovery of cardiac function and the migration of CD4(+) T cells into the infarcted heart via CCL5/CCR5 signaling. Stem Cell Res Ther, 2022, Vol.13, no 1, pp. 247.

120. Lopez K., Lai S.W.T., Lopez Gonzalez E.J., Davila R.G.,Shuck S.C. Extracellular vesicles: A dive into their role in the tumor microenvironment and cancer progression. Front Cell Dev Biol, 2023, Vol.11, no, pp. 1154576.

121. Lovren F.,Verma S. Evolving role of microparticles in the pathophysiology of endothelial dysfunction. Clin Chem, 2013, Vol.59, no 8, pp. 1166-74.

122. Lu J., Lu Z., Reinach P., Zhang J., Dai W., Lu L.,Xu M. TGF-beta2 inhibits AKT activation and FGF-2-induced corneal endothelial cell proliferation. Exp Cell Res, 2006, Vol.312, no 18, pp. 3631-40.

123. Lupancu T.J., Eivazitork M., Hamilton J.A., Achuthan A.A.,Lee K.M. CCL17/TARC in autoimmunity and inflammation-not just a T-cell chemokine. Immunol Cell Biol, 2023, Vol.101, no 7, pp. 600-609.

124. Lv Y., Tan J., Miao Y.,Zhang Q. The role of microvesicles and its active molecules in regulating cellular biology. J Cell Mol Med, 2019, Vol.23, no 12, pp. 7894-7904.

125. Machlus K.R.,Italiano J.E., Jr. The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol, 2013, Vol.201, no 6, pp. 785-96.

126. Maillard L., Saito N., Hlawaty H., Friand V., Suffee N., Chmilewsky F., Haddad O., Laguillier C., Guyot E., Ueyama T., Oudar O., Sutton A.,Charnaux N. RANTES/CCL5 mediated-biological effects depend on the syndecan-4/PKCalpha signaling pathway. Biol Open, 2014, Vol.3, no 10, pp. 995-1004.

127. Manne B.K., Xiang S.C.,Rondina M.T. Platelet secretion in inflammatory and infectious diseases. Platelets, 2017, Vol.28, no 2, pp. 155-164.

128. Marcondes S., Lafay M., Brohard-Bohn B., de Nucci G.,Rendu F. Platelets induce human umbilical vein endothelial cell proliferation through P-selectin. Life Sci, 2000, Vol.66, no 19, pp. 1817-26.

129. Maring J.A., van Meeteren L.A., Goumans M.J.,Ten Dijke P. Interrogating TGF-beta Function and Regulation in Endothelial Cells. Methods Mol Biol, 2016, Vol.1344, no, pp. 193-203.

130. Mas-Bargues C.,Alique M. Extracellular Vesicles as "Very Important Particles" (VIPs) in Aging. Int J Mol Sci, 2023, Vol.24, no 4.

131. Mause S.F., Ritzel E., Liehn E.A., Hristov M., Bidzhekov K., Muller-Newen G., Soehnlein O.,Weber C. Platelet microparticles enhance the vasoregenerative potential of angiogenic early outgrowth cells after vascular injury. Circulation, 2010, Vol.122, no 5, pp. 495-506.

132. May A.E., Kalsch T., Massberg S., Herouy Y., Schmidt R.,Gawaz M. Engagement of glycoprotein IIb/IIIa (alpha(IIb)beta3) on platelets upregulates CD40L and triggers CD40L-dependent matrix degradation by endothelial cells. Circulation, 2002, Vol.106, no 16, pp. 2111-7.

133. Mehta V.B.,Besner G.E. HB-EGF promotes angiogenesis in endothelial cells via PI3-kinase and MAPK signaling pathways. Growth Factors, 2007, Vol.25, no 4, pp. 253-63.

134. Melincovici C.S., Bosca A.B., Susman S., Marginean M., Mihu C., Istrate M., Moldovan I.M., Roman A.L.,Mihu C.M. Vascular endothelial growth factor (VEGF) - key factor in normal and pathological angiogenesis. Rom J Morphol Embryol, 2018, Vol.59, no 2, pp. 455-467.

135. Melter M., Reinders M.E., Sho M., Pal S., Geehan C., Denton M.D., Mukhopadhyay D.,Briscoe D.M. Ligation of CD40 induces the expression of vascular endothelial growth factor by endothelial cells and monocytes and promotes angiogenesis in vivo. Blood, 2000, Vol.96, no 12, pp. 3801-8.

136. Merten M.,Thiagarajan P. P-selectin expression on platelets determines size and stability of platelet aggregates. Circulation, 2000, Vol.102, no 16, pp. 1931-6.

137. Mikolajczyk T.P., Nosalski R., Szczepaniak P., Budzyn K., Osmenda G., Skiba D., Sagan A., Wu J., Vinh A., Marvar P.J., Guzik B., Podolec J., Drummond G., Lob H.E., Harrison D.G.,Guzik T.J. Role of chemokine RANTES in the regulation of perivascular inflammation, T-cell accumulation, and vascular dysfunction in hypertension. FASEB J, 2016, Vol.30, no 5, pp. 1987-99.

138. Miyake M., Goodison S., Urquidi V., Gomes Giacoia E.,Rosser C.J. Expression of CXCL1 in human endothelial cells induces angiogenesis through the CXCR2 receptor and the ERK1/2 and EGF pathways. Lab Invest, 2013, Vol.93, no 7, pp. 768-78.

139. Morandi V., Petrik J.,Lawler J. Endothelial Cell Behavior Is Determined by Receptor Clustering Induced by Thrombospondin-1. Front Cell Dev Biol, 2021, Vol.9, no, pp. 664696.

140. Morel O., Jesel L., Freyssinet J.M.,Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol, 2011, Vol.31, no 1, pp. 15-26.

141. Mulcahy L.A., Pink R.C.,Carter D.R. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles, 2014, Vol.3, no.

142. Nass J., Terglane J.,Gerke V. Weibel Palade Bodies: Unique Secretory Organelles of Endothelial Cells that Control Blood Vessel Homeostasis. Front Cell Dev Biol, 2021, Vol.9, no, pp. 813995.

143. Neskey D.M., Ambesi A., Pumiglia K.M.,McKeown-Longo P.J. Endostatin and anastellin inhibit distinct aspects of the angiogenic process. J Exp Clin Cancer Res, 2008, Vol.27, no 1, pp. 61.

144. Neubauer K.,Zieger B. Endothelial cells and coagulation. Cell Tissue Res, 2022, Vol.387, no 3, pp. 391-398.

145. Nishibori M., Cham B., McNicol A., Shalev A., Jain N.,Gerrard J.M. The protein CD63 is in platelet dense granules, is deficient in a patient with Hermansky-Pudlak syndrome, and appears identical to granulophysin. J Clin Invest, 1993, Vol.91, no 4, pp. 1775-82.

146. Niu J., Wang K., Zhelyabovska O., Saad Y.,Kolattukudy P.E. MCP-1-induced protein promotes endothelial-like and angiogenic properties in human bone marrow monocytic cells. J Pharmacol Exp Ther, 2013, Vol.347, no 2, pp. 288-97.

147. Nomura S., Inami N.,Iwasaka T. Differences in functional roles between activated platelets and platelet-derived microparticles. Thromb Haemost, 2007, Vol.98, no 5, pp. 1143-4.

148. Nurden A.T. Platelets, inflammation and tissue regeneration. Thromb Haemost, 2011, Vol.105 Suppl 1, no, pp. S13-33.

149. Oh S.P., Seki T., Goss K.A., Imamura T., Yi Y., Donahoe P.K., Li L., Miyazono K., ten Dijke P., Kim S.,Li E. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A, 2000, Vol.97, no 6, pp. 2626-31.

150. Olsson A.K.,Cedervall J. The pro-inflammatory role of platelets in cancer. Platelets, 2018, Vol.29, no 6, pp. 569-573.

151. Pardali E., Sanchez-Duffhues G., Gomez-Puerto M.C.,Ten Dijke P. TGF-beta-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. Int J Mol Sci, 2017, Vol.18, no 10.

152. Park K.H., Lee T.H., Kim C.W.,Kim J. Enhancement of CCL15 expression and monocyte adhesion to endothelial cells (ECs) after hypoxia/reoxygenation and induction of ICAM-1 expression by CCL15 via the JAK2/STAT3 pathway in ECs. J Immunol, 2013, Vol.190, no 12, pp. 6550-8.

153. Parra-Izquierdo I., Lakshmanan H.H.S., Melrose A.R., Pang J., Zheng T.J., Jordan K.R., Reitsma S.E., McCarty O.J.T.,Aslan J.E. The Toll-Like Receptor 2 Ligand Pam2CSK4 Activates Platelet Nuclear Factor-kappaB and Bruton's Tyrosine Kinase Signaling to Promote Platelet-Endothelial Cell Interactions. Front Immunol, 2021, Vol.12, no, pp. 729951.

154. Patel P., Michael J.V., Naik U.P.,McKenzie S.E. Platelet FcgammaRIIA in immunity and thrombosis: Adaptive immunothrombosis. J Thromb Haemost, 2021, Vol.19, no 5, pp. 1149-1160.

155. Patel S.R., Hartwig J.H.,Italiano J.E., Jr. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest, 2005, Vol.115, no 12, pp. 3348-54.

156. Peerschke E.I., Yin W.,Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol, 2010, Vol.47, no 13, pp. 2170-5.

157. Perez-Pujol S., Marker P.H.,Key N.S. Platelet microparticles are heterogeneous and highly dependent on the activation mechanism: studies using a new digital flow cytometer. Cytometry A, 2007, Vol.71, no 1, pp. 38-45.

158. Peterson J.E., Zurakowski D., Italiano J.E., Jr., Michel L.V., Fox L., Klement G.L.,Folkman J. Normal ranges of angiogenesis regulatory proteins in human platelets. Am J Hematol, 2010, Vol.85, no 7, pp. 487-93.

159. Pilard M., Ollivier E.L., Gourdou-Latyszenok V., Couturaud F.,Lemarie C.A. Endothelial Cell Phenotype, a Major Determinant of Venous Thrombo-Inflammation. Front Cardiovasc Med, 2022, Vol.9, no, pp. 864735.

160. Pipili-Synetos E., Papadimitriou E.,Maragoudakis M.E. Evidence that platelets promote tube formation by endothelial cells on matrigel. Br J Pharmacol, 1998, Vol.125, no 6, pp. 1252-7.

161. Polentarutti N., Introna M., Sozzani S., Mancinelli R., Mantovani G.,Mantovani A. Expression of monocyte chemotactic protein-3 in human monocytes and endothelial cells. Eur Cytokine Netw, 1997, Vol.8, no 3, pp. 271-4.

162. Prokopi M., Pula G., Mayr U., Devue C., Gallagher J., Xiao Q., Boulanger C.M., Westwood N., Urbich C., Willeit J., Steiner M., Breuss J., Xu Q., Kiechl S.,Mayr M. Proteomic analysis reveals presence of platelet microparticles in endothelial progenitor cell cultures. Blood, 2009, Vol.114, no 3, pp. 723-32.

163. Puhm F., Boilard E.,Machlus K.R. Platelet Extracellular Vesicles: Beyond the Blood. Arterioscler Thromb Vasc Biol, 2021, Vol.41, no 1, pp. 87-96.

164. Quintanilla M., Castillo G., Kocic J.,Santibanez J.F., TGF-β and MMPs: A complex regulatory loop involved in tumor progression, in Matrix Metalloproteinases: Biology, Functions and Clinical Implications, N. Oshiro and E. Miyagi, Editors. 2012, Nova Science. p. 1-38.

165. Radziwon-Balicka A., Moncada de la Rosa C., Zielnik B., Doroszko A.,Jurasz P. Temporal and pharmacological characterization of angiostatin release and generation by human platelets: implications for endothelial cell migration. PLoS One, 2013, Vol.8, no 3, pp. e59281.

166. Randriamboavonjy V.,Fleming I. Platelet communication with the vascular wall: role of platelet-derived microparticles and non-coding RNAs. Clin Sci (Lond), 2018, Vol.132, no 17, pp. 1875-1888.

167. Rao L., Giannico D., Leone P., Solimando A.G., Maiorano E., Caporusso C., Duda L., Tamma R., Mallamaci R., Susca N., Buonavoglia A., Da Via M.C., Ribatti D., De Re V., Vacca A.,Racanelli V. HB-EGF-EGFR Signaling in Bone Marrow Endothelial Cells Mediates Angiogenesis Associated with Multiple Myeloma. Cancers (Basel), 2020, Vol.12, no 1.

168. Rendu F.,Brohard-Bohn B. The platelet release reaction: granules' constituents, secretion and functions. Platelets, 2001, Vol.12, no 5, pp. 261-73.

169. Roberts A.B.,Sporn M.B. Regulation of endothelial cell growth, architecture, and matrix synthesis by TGF-beta. Am Rev Respir Dis, 1989, Vol.140, no 4, pp. 1126-8.

170. Santerre K., Cortez Ghio S.,Proulx S. TGF-beta-Mediated Modulation of Cell-Cell Interactions in Postconfluent Maturing Corneal Endothelial Cells. Invest Ophthalmol Vis Sci, 2022, Vol.63, no 11, pp. 3.

171. Sarabi A., Kramp B.K., Drechsler M., Hackeng T.M., Soehnlein O., Weber C., Koenen R.R.,Von Hundelshausen P. CXCL4L1 inhibits angiogenesis and induces undirected endothelial cell migration without affecting endothelial cell proliferation and monocyte recruitment. J Thromb Haemost, 2011, Vol.9, no 1, pp. 209-19.

172. Schafer A., Schulz C., Eigenthaler M., Fraccarollo D., Kobsar A., Gawaz M., Ertl G., Walter U.,Bauersachs J. Novel role of the membrane-bound chemokine fractalkine in platelet activation and adhesion. Blood, 2004, Vol.103, no 2, pp. 407-12.

173. Schmidt E.M., Schmid E., Munzer P., Hermann A., Eyrich A.K., Russo A., Walker B., Gu S., vom Hagen J.M., Faggio C., Schaller M., Foller M., Schols L., Gawaz M., Borst O., Storch A., Stournaras C.,Lang F. Chorein sensitivity of cytoskeletal organization and degranulation of platelets. FASEB J, 2013, Vol.27, no 7, pp. 2799-806.

174. Semple J.W., Italiano J.E., Jr.,Freedman J. Platelets and the immune continuum. Nat Rev Immunol, 2011, Vol.11, no 4, pp. 264-74.

175. Shellenberger T.D., Wang M., Gujrati M., Jayakumar A., Strieter R.M., Burdick M.D., Ioannides C.G., Efferson C.L., El-Naggar A.K., Roberts D., Clayman G.L.,Frederick M.J. BRAK/CXCL14 is a potent inhibitor of angiogenesis and a chemotactic factor for immature dendritic cells. Cancer Res, 2004, Vol.64, no 22, pp. 8262-70.

176. Shih C.H., Chiang T.B.,Wang W.J. A critical role for the regulation of Syk from agglutination to aggregation in human platelets. Biochem Biophys Res Commun, 2014, Vol.443, no 2, pp. 580-5.

177. Shu Z., Tan J., Miao Y.,Zhang Q. The role of microvesicles containing microRNAs in vascular endothelial dysfunction. J Cell Mol Med, 2019, Vol.23, no 12, pp. 7933-7945.

178. Sidiropoulou S., Papadaki S., Tsouka A.N., Koutsaliaris I.K., Chantzichristos V.G., Pantazi D., Paschopoulos M.E., Hansson K.M.,Tselepis A.D. The Effect of Platelet-Rich Plasma on Endothelial Progenitor Cell Functionality. Angiology, 2021, Vol.72, no 8, pp. 776-786.

179. Siegel-Axel D.I.,Gawaz M. Platelets and endothelial cells. Semin Thromb Hemost, 2007, Vol.33, no 2, pp. 128-35.

180. Simons M., Gordon E.,Claesson-Welsh L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol, 2016, Vol.17, no 10, pp. 611-25.

181. Sinauridze E.I., Kireev D.A., Popenko N.Y., Pichugin A.V., Panteleev M.A., Krymskaya O.V.,Ataullakhanov F.I. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost, 2007, Vol.97, no 3, pp. 425-34.

182. Somajo S., Koshiar R.L., Norstrom E.,Dahlback B. Protein S and factor V in regulation of coagulation on platelet microparticles by activated protein C. Thromb Res, 2014, Vol.134, no 1, pp. 144-52.

183. Staatz W.D., Rajpara S.M., Wayner E.A., Carter W.G.,Santoro S.A. The membrane glycoprotein Ia-IIa (VLA-2) complex mediates the Mg++-dependent adhesion of platelets to collagen. J Cell Biol, 1989, Vol.108, no 5, pp. 1917-24.

184. Stamatovic S.M., Keep R.F., Kunkel S.L.,Andjelkovic A.V. Potential role of MCP-1 in endothelial cell tight junction 'opening': signaling via Rho and Rho kinase. J Cell Sci, 2003, Vol.116, no Pt 22, pp. 4615-28.

185. Suffee N., Hlawaty H., Meddahi-Pelle A., Maillard L., Louedec L., Haddad O., Martin L., Laguillier C., Richard B., Oudar O., Letourneur D., Charnaux N.,Sutton A. RANTES/CCL5-induced pro-angiogenic effects depend on CCR1, CCR5 and glycosaminoglycans. Angiogenesis, 2012, Vol.15, no 4, pp. 727-44.

186. Suffee N., Le Visage C., Hlawaty H., Aid-Launais R., Vanneaux V., Larghero J., Haddad O., Oudar O., Charnaux N.,Sutton A. Pro-angiogenic effect of RANTES-loaded polysaccharide-based microparticles for a mouse ischemia therapy. Sci Rep, 2017, Vol.7, no 1, pp. 13294.

187. Sulpice E., Ding S., Muscatelli-Groux B., Berge M., Han Z.C., Plouet J., Tobelem G.,Merkulova-Rainon T. Cross-talk between the VEGF-A and HGF signalling pathways in endothelial cells. Biol Cell, 2009, Vol.101, no 9, pp. 525-39.

188. Sun X., Lu Q., Yegambaram M., Kumar S., Qu N., Srivastava A., Wang T., Fineman J.R.,Black S.M. TGF-beta1 attenuates mitochondrial bioenergetics in pulmonary arterial endothelial cells via the disruption of carnitine homeostasis. Redox Biol, 2020, Vol.36, no, pp. 101593.

189. Sun Y., Liu X.L., Zhang D., Liu F., Cheng Y.J., Ma Y., Zhou Y.J.,Zhao Y.X. Platelet-Derived Exosomes Affect the Proliferation and Migration of Human Umbilical Vein Endothelial Cells Via miR-126. Curr Vasc Pharmacol, 2019, Vol.17, no 4, pp. 379-387.

190. Szilagyi B., Fejes Z., Rusznyak A., Fenyvesi F., Pocsi M., Halmi S., Griger Z., Kunapuli S.P., Kappelmayer J.,Nagy B., Jr. Platelet Microparticles Enriched in miR-223 Reduce ICAM-1-Dependent Vascular Inflammation in Septic Conditions. Front Physiol, 2021, Vol.12, no, pp. 658524.

191. Tanegashima K., Suzuki K., Nakayama Y., Tsuji K., Shigenaga A., Otaka A.,Hara T. CXCL14 is a natural inhibitor of the CXCL12-CXCR4 signaling axis. FEBS Lett, 2013, Vol.587, no 12, pp. 1731-5.

192. Taraboletti G., Belotti D.,Giavazzi R. Thrombospondin modulates basic fibroblast growth factor activities on endothelial cells. EXS, 1992, Vol.61, no, pp. 210-3.

193. Urbantat R.M., Blank A., Kremenetskaia I., Vajkoczy P., Acker G.,Brandenburg S. The CXCL2/IL8/CXCR2 Pathway Is Relevant for Brain Tumor Malignancy and Endothelial Cell Function. Int J Mol Sci, 2021, Vol.22, no 5.

194. Urbich C., Dernbach E., Aicher A., Zeiher A.M.,Dimmeler S. CD40 ligand inhibits endothelial cell migration by increasing production of endothelial reactive oxygen species. Circulation, 2002, Vol.106, no 8, pp. 981-6.

195. Ursoli Ferreira F., Eduardo Botelho Souza L., Hassibe Thome C., Tomazini Pinto M., Origassa C., Salustiano S., Marcel Faca V., Olsen Camara N., Kashima S.,Tadeu Covas D. Endothelial Cells Tissue-Specific Origins Affects Their Responsiveness to TGF-beta2 during Endothelial-to-Mesenchymal Transition. Int J Mol Sci, 2019, Vol.20, no 3.

196. van der Poll T.,Parker R.I. Platelet Activation and Endothelial Cell Dysfunction. Crit Care Clin, 2020, Vol.36, no 2, pp. 233-253.

197. van Meeteren L.A.,ten Dijke P. Regulation of endothelial cell plasticity by TGF-beta. Cell Tissue Res, 2012, Vol.347, no 1, pp. 177-86.

198. Van Raemdonck K., Gouwy M., Lepers S.A., Van Damme J.,Struyf S. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase. Angiogenesis, 2014, Vol.17, no 3, pp. 631-40.

199. Varshney R., Murphy B., Woolington S., Ghafoory S., Chen S., Robison T.,Ahamed J. Inactivation of platelet-derived TGF-beta1 attenuates aortic stenosis progression in a robust murine model. Blood Adv, 2019, Vol.3, no 5, pp. 777-788.

200. Ventura E., Weller M., Macnair W., Eschbach K., Beisel C., Cordazzo C., Claassen M., Zardi L.,Burghardt I. TGF-beta induces oncofetal fibronectin that, in turn, modulates TGF-beta superfamily signaling in endothelial cells. J Cell Sci, 2018, Vol.131, no 1.

201. Verma S.,Lovren F. Evolving Role of Microparticles in the Pathophysiology of Endothelial Dysfunction. Clinical Chemistry, 2013, Vol.59, no 8, pp. 1166-1174.

202. Wagner D.D. Cell biology of von Willebrand factor. Annu Rev Cell Biol, 1990, Vol.6, no, pp. 217-46.

203. Wahl M.L., Moser T.L.,Pizzo S.V. Angiostatin and anti-angiogenic therapy in human disease. Recent Prog Horm Res, 2004, Vol.59, no, pp. 73-104.

204. Walia A., Yang J.F., Huang Y.H., Rosenblatt M.I., Chang J.H.,Azar D.T. Endostatin's emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim Biophys Acta, 2015, Vol.1850, no 12, pp. 2422-38.

205. Wang L., Dutta S.K., Kojima T., Xu X., Khosravi-Far R., Ekker S.C.,Mukhopadhyay D. Neuropilin-1 modulates p53/caspases axis to promote endothelial cell survival. PLoS One, 2007, Vol.2, no 11, pp. e1161.

206. Wang M.,Liu R. CXCL16 protects against oxygen and glucose deprivation-induced injury in human microvascular endothelial cells-1: Potential role in ischemic stroke. J Cell Physiol, 2019, Vol.234, no 11, pp. 20149-20160.

207. Wang S., Lu X.A., Liu P., Fu Y., Jia L., Zhan S.,Luo Y. Endostatin has ATPase activity, which mediates its antiangiogenic and antitumor activities. Mol Cancer Ther, 2015, Vol.14, no 5, pp. 1192-201.

208. Wang X.,Khalil R.A. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. Adv Pharmacol, 2018, Vol.81, no, pp. 241-330.

209. Wang Z., Zhao G., Zeng M., Feng W.,Liu J. Overview of extracellular vesicles in the pathogenesis of preeclampsiadagger. Biol Reprod, 2021, Vol.105, no 1, pp. 32-39.

210. Wassmer S.C., de Souza J.B., Frere C., Candal F.J., Juhan-Vague I.,Grau G.E. TGF-beta1 released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: a new mechanism for microvascular lesion during cerebral malaria. J Immunol, 2006, Vol.176, no 2, pp. 1180-4.

211. Weber K.S., Nelson P.J., Grone H.J.,Weber C. Expression of CCR2 by endothelial cells : implications for MCP-1 mediated wound injury repair and In vivo inflammatory activation of endothelium. Arterioscler Thromb Vasc Biol, 1999, Vol.19, no 9, pp. 2085-93.

212. Witte A., Chatterjee M., Lang F.,Gawaz M. Platelets as a Novel Source of Pro-Inflammatory Chemokine CXCL14. Cellular Physiology and Biochemistry, 2017, Vol.41, no 4, pp. 1684-1696.

213. Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol, 1967, Vol.13, no 3, pp. 269-88.

214. Wu Q., Tu H.,Li J. Multifaceted Roles of Chemokine C-X-C Motif Ligand 7 in Inflammatory Diseases and Cancer. Front Pharmacol, 2022, Vol.13, no, pp. 914730.

215. Wu X., Ma J., Han J.D., Wang N.,Chen Y.G. Distinct regulation of gene expression in human endothelial cells by TGF-beta and its receptors. Microvasc Res, 2006, Vol.71, no 1, pp. 12-9.

216. Yadav S.,Storrie B. The cellular basis of platelet secretion: Emerging structure/function relationships. Platelets, 2017, Vol.28, no 2, pp. 108-118.

217. Yamada M., Kim S., Egashira K., Takeya M., Ikeda T., Mimura O.,Iwao H. Molecular mechanism and role of endothelial monocyte chemoattractant protein-1 induction by vascular endothelial growth factor. Arterioscler Thromb Vasc Biol, 2003, Vol.23, no 11, pp. 1996-2001.

218. Yan J., Bao H., Fan Y.J., Jiang Z.L., Qi Y.X.,Han Y. Platelet-derived microvesicles promote endothelial progenitor cell proliferation in intimal injury by delivering TGF-beta1. FEBS J, 2020, Vol.287, no 23, pp. 5196-5217.

219. Yi D., Liu B., Wang T., Liao Q., Zhu M.M., Zhao Y.Y.,Dai Z. Endothelial Autocrine Signaling through CXCL12/CXCR4/FoxM1 Axis Contributes to Severe Pulmonary Arterial Hypertension. Int J Mol Sci, 2021, Vol.22, no 6.

220. Yoshida M., Okubo N., Chosa N., Hasegawa T., Ibi M., Kamo M., Kyakumoto S.,Ishisaki A. TGF-beta-operated growth inhibition and translineage commitment into smooth muscle cells of periodontal ligament-derived endothelial progenitor cells through Smad- and p38 MAPK-dependent signals. Int J Biol Sci, 2012, Vol.8, no 7, pp. 1062-74.

221. Yu G., Rux A.H., Ma P., Bdeir K.,Sachais B.S. Endothelial expression of E-selectin is induced by the platelet-specific chemokine platelet factor 4 through LRP in an NF-kappaB-dependent manner. Blood, 2005, Vol.105, no 9, pp. 3545-51.

222. Yu X., Zhao R., Lin S., Bai X., Zhang L., Yuan S.,Sun L. CXCL16 induces angiogenesis in autocrine signaling pathway involving hypoxia-inducible factor 1alpha in human umbilical vein endothelial cells. Oncol Rep, 2016, Vol.35, no 3, pp. 1557-65.

223. Yuan X., Wu H., Li X., Chen L., Xiao Y., Chen Z., Liu G.,Lu P. SDF‑1alpha/CXCR4 signaling promotes capillary tube formation of human retinal vascular endothelial cells by activating ERK1/2 and PI3K pathways in vitro. Mol Med Rep, 2022, Vol.26, no 4.

224. Yun S.H., Sim E.H., Goh R.Y., Park J.I.,Han J.Y. Platelet Activation: The Mechanisms and Potential Biomarkers. Biomed Res Int, 2016, Vol.2016, no, pp. 9060143.

225. Zhang C., Xia D., Li J., Zheng Y., Weng B., Mao H., Mei J., Wu T., Li M.,Zhao J. BMSCs and Osteoblast-Engineered ECM Synergetically Promotes Osteogenesis and Angiogenesis in an Ectopic Bone Formation Model. Front Bioeng Biotechnol, 2022, Vol.10, no, pp. 818191.

226. Zhang J., Zhang H., Chen Y., Fu J., Lei Y., Sun J.,Tang B. Platelet‑derived growth factor D promotes the angiogenic capacity of endothelial progenitor cells. Mol Med Rep, 2019, Vol.19, no 1, pp. 125-132.

227. Zhang Y., Fan K., Xu X.,Wang A. The TGF-beta1 Induces the Endothelial-to-Mesenchymal Transition via the UCA1/miR-455/ZEB1 Regulatory Axis in Human Umbilical Vein Endothelial Cells. DNA Cell Biol, 2020, Vol.39, no 7, pp. 1264-1273.

228. Zhang Y., Ma K.L., Gong Y.X., Wang G.H., Hu Z.B., Liu L., Lu J., Chen P.P., Lu C.C., Ruan X.Z.,Liu B.C. Platelet Microparticles Mediate Glomerular Endothelial Injury in Early Diabetic Nephropathy. J Am Soc Nephrol, 2018, Vol.29, no 11, pp. 2671-2695.

229. Zhang Y., Zhang W., Zha C.,Liu Y. Platelets activated by the anti-beta2GPI/beta2GPI complex release microRNAs to inhibit migration and tube formation of human umbilical vein endothelial cells. Cell Mol Biol Lett, 2018, Vol.23, no, pp. 24.

230. Zhuge X., Murayama T., Arai H., Yamauchi R., Tanaka M., Shimaoka T., Yonehara S., Kume N., Yokode M.,Kita T. CXCL16 is a novel angiogenic factor for human umbilical vein endothelial cells. Biochem Biophys Res Commun, 2005, Vol.331, no 4, pp. 1295-300.


Дополнительные файлы

1. Метаданные
Тема
Тип Исследовательские инструменты
Скачать (13KB)    
Метаданные ▾
2. Титульный лист
Тема
Тип Исследовательские инструменты
Скачать (14KB)    
Метаданные ▾
3. Резюме
Тема
Тип Исследовательские инструменты
Скачать (15KB)    
Метаданные ▾
4. Таблица 1
Тема
Тип Исследовательские инструменты
Скачать (14KB)    
Метаданные ▾
5. Таблица 2
Тема
Тип Исследовательские инструменты
Скачать (13KB)    
Метаданные ▾
6. Таблица 3
Тема
Тип Исследовательские инструменты
Скачать (56KB)    
Метаданные ▾
7. Литература
Тема
Тип Исследовательские инструменты
Скачать (52KB)    
Метаданные ▾
8. Подписи авторов
Тема
Тип Исследовательские инструменты
Скачать (1MB)    
Метаданные ▾
9. 3008
Тема
Тип Прочее
Скачать (76KB)    
Метаданные ▾

Рецензия

Для цитирования:


Степанова О.И., Перевязкина М.А., Ксения М.Л., Сельков С.А., Соколов Д.И. ТРОМБОЦИТЫ И ИХ МИКРОВЕЗИКУЛЫ: ФЕНОТИП, СОСТАВ, ВЛИЯНИЕ НА ЭНДОТЕЛИЙ. Медицинская иммунология. https://doi.org/10.15789/1563-0625-PAP-3008

For citation:


Stepanova O.I., Pereviazkina M.A., Kseniia M.L., Selkov S.A., Sokolov D.I. PLATELETS AND PLATELET-DERIVED MICROVESICLES: PHENOTYPE, CONTENT, IMPACT ON ENDOTHELIAL CELLS. Medical Immunology (Russia). (In Russ.) https://doi.org/10.15789/1563-0625-PAP-3008

Просмотров: 330


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)