Preview

Medical Immunology (Russia)

Advanced search

Effect of multistage isolation of neutrophils on their counts and viability

https://doi.org/10.15789/1563-0625-EOM-2948

Abstract

Despite numerous separation methods of neutrophils from peripheral blood, isolation of sufficient quantities of high-purity viable cells for quantitative determination of neutrophil cytokines and their mRNA expression still remains an actual issue. The recommended multi-step purification methods significantly prolong the cell isolation process, potentially leading to cell activation or apoptosis and resulting in significant cell loss. Preliminary purification of neutrophils is the most critical stage in terms of time spent, and several additional manipulations with cells. To address this challenge, our study aimed to compare various methods of preliminary neutrophil isolation in order to select the optimal approach to obtaining a sufficient number of viable peripheral neutrophils.

We studied the effects of three different protocols for preliminary isolation of cell suspensions: (a) centrifugation of whole blood at a single-step density gradient followed by sedimentation of red blood cells with dextran; (b) centrifugation of whole blood on a double density gradient; (c) rapid isolation of leukocytes using a reagent that promotes red blood cell aggregation. The cell counts and viability of purified neutrophils were tested at the final stage using negative immunomagnetic selection. Our study has shown that the methods used for preliminary neutrophil isolation significantly affect both the number and viability of the cells. The highest number of viable neutrophils was obtained using a conventional method of blood centrifugation at a density gradient followed by dextran sedimentation of red blood cells. However, the three studied methods of preliminary neutrophil isolation did not show statistically significant differences with respect to quantitative yield of viable cells after immunomagnetic isolation. These findings suggest that any of these methods may be applied, depending on capabilities and preferences of the researchers. In summary, our findings confirm previous studies indicating that the multistep process of neutrophil isolation allows for obtaining a high-purity cell suspension (> 99.1%) which can be used in future studies of their cytokine-secreting activity. However, such multi-stage isolation significantly reduces the yield of neutrophils, thus being critical for studying of initially small blood volumes.

About the Authors

I. N. Shvydchenko
Kuban State University of Education, Sport and Tourism; Kuban State MedicalUniversity
Russian Federation

Irina N. Shvydchenko, PhD (Biology), Associate Professor, Department of Physiology; Associate Professor, Department of Normal Physiology

161 Budenny St Krasnodar 350015

Phone: +7 (918) 456-74-63


Competing Interests:

No conflict of interest



E. Yu. Bykovskaya
Children's Regional Clinical Hospital of the Ministry of Health of the Krasnodar Region
Russian Federation

Bykovskaya E.Yu., PhD (Biology), Biologist,

Krasnodar


Competing Interests:

No conflict of interest



V. V. Golubtsov
Kuban State Medical University
Russian Federation

Golubtsov V.V., PhD, MD (Medicine), Associate Professor, Professor, Department of Anesthesiology, Reanimatology and Transfusiology, Faculty of Advanced Training and Teaching Staff, Children’s Regional Clinical Hospital

Krasnodar


Competing Interests:

No conflict of interest



References

1. Dolgushin I.I., Ryzhkova A.I., Savochkina A.Yu., Shishkova Yu.S. Method for isolating neutrophil granulocytes from peripheral blood. Patent RU 2431836 C1, October 20, 2011

2. Kovalchuk L.V. Immunology. Workshop. Eds. L.V. Kovalchuk, G.A. Ignatieva, L.V. Gankovskaya]. Moscow: GEOTAR-Media, 2010. 176 p.

3. Mamus M.A., Tikhomirova E.A., Trofimenko A.S., Bedina S.A., Mozgovaya E.E., Spitsina S.S., Zborovskaya I.A. Method for isolating neutrophil granulocytes from blood using a two-step density gradient iohexol. Patent RU 2739324 C1. December 22, 2020

4. Arruda-Silva F., Bianchetto-Aguilera F., Gasperini S., Polletti S., Cosentino E., Tamassia N., Cassatella M.A. Human neutrophils produce CCL23 in response to various TLR-agonists and TNFalpha. Front. Cell. Infect. Microbiol., 2017, Vol. 7, 176. doi: 10.3389/fcimb.2017.00176.

5. Berends C., Dijkhuizen B., de Monchy J.G., Gerritsen J., Kauffman H.F. Induction of low density and upregulation of CD11b expression of neutrophils and eosinophils by dextran sedimentation and centrifugation. J. Immunol. Methods, 1994, Vol. 167, no 1-2, pp. 183-193.

6. Blanter M., Cambier S., De Bondt M., Vanbrabant L., Pörtner N., Salama S.A., Metzemaekers M., Marques P.E., Struyf S., Proost P., Gouwy M. Method matters: effect of purification technology on neutrophil phenotype and function. Front. Immunol., 2022, Vol. 13, 820058. doi: 10.3389/fimmu.2022.820058.

7. Blanter M., Gouwy M., Struyf S. Studying neutrophil function in vitro: cell models and environmental factors. J. Inflamm. Res., 2021, Vol. 14, pp. 141-162.

8. Borregaard N., Cowland J.B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 1997, Vol.89, no 10, pp. 3503-3521.

9. Borregaard N. Neutrophils, from marrow to microbes. Immunity, 2010, Vol. 33, no. 5, pp. 657-670.

10. Boyum A. Isolation of mononuclear cells and granulocytes from human blood: isolation of mononuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand. J. Clin. Lab. Invest., 1968, Suppl. 97, pp. 77-89.

11. Burn G.L., Foti A., Marsman G., Patel D.F., Zychlinsky A. The Neutrophil. Immunity, 2021, Vol. 54, Iss. 7, pp. 1377-1391.

12. Calzetti F., Tamassia N., Arruda-Silva F., Polletti S., Cosentino E., Tamassia N., Cassatella M.A. The importance of being “pure” neutrophils. J. Allergy Clin. Immunol., 2017, Vol. 139, pp. 352-355.

13. Cassatella M.A., Östberg N.K, Tamassia N., Soehnlein O. Biological Roles of Neutrophil-Derived Granule Proteins and Cytokines. Trends Immunol., 2019, Vol. 40, no. 7, pp. 648-664.

14. Connelly A.N., Huijbregts R.P.H., Pal H.C., Kuznetsova V., Davis M.D., Ong K.L., Fay C.X., Greene M.E., Overton E.T., Hel Z. Optimization of methods for the accurate characterization of whole blood neutrophils. Sci. Rep., 2022, Vol. 12, 3667. doi: 10.1038/s41598-022-07455-2.

15. Degel J., Shokrani M. Validation of the efficacy of a practical method for neutrophils isolation from peripheral blood. Clin. Lab. Sci., 2010, Vol. 23, pp. 94-98.

16. Ferrante A., Thong Y.H. Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leucocytes from human blood by the Hypaque-Ficoll method. J. Immunol. Methods, 1980, Vol. 36, no 2, pp. 109-117.

17. Ganesh K., Joshi M.B. Neutrophil sub-types in maintaining immune homeostasis during steady state, infections and sterile inflammation. Inflamm. Res., 2023, Vol. 72, pp. 1175-1192.

18. Giudicelli J., Philip P.J.M., Delque P., Sudaka P. A single-step centrifugation method for separation of granulocytes and mononuclear cells from blood using discontinuous density gradient of percoll. J. Immunol. Methods, 1982, Vol. 54, pp. 43-46.

19. Handrigan M.T., Burns A.R., Donnachie E.M., Bowden R.A. Hydroxyethyl starch inhibits neutrophil adhesion and transendothelial migration. Shock, 2005, Vol. 24, no. 5, pp. 434-439.

20. Hsu A.Y., Peng Z., Luo H., Loison F. Isolation of Human Neutrophils from Whole Blood and Buffy Coats. J. Vis. Exp., 2021, Vol. 175, e62837. doi: 10.3791/62837.

21. Hundhammer T., Gruber M., Wittmann S. Paralytic impact of centrifugation on human neutrophils. Biomedicines., 2022, Vol. 10, no. 11, 2896. doi: 10.3390/biomedicines10112896.

22. Jackson M.H., Millar A.M., Dawes J., Bell D. Neutrophil activation during cell separation procedures. Nucl. Med. Commun., 1989, Vol. 10, no. 12, pp. 901-904.

23. Kolářová H., Víteček J., Černá A., Černík M., Přibyl J., Skládal P., Potěšil D., Ihnatová I., Zdráhal Z., Hampl A., Klinke A., Kubala L. Myeloperoxidase mediated alteration of endothelial function is dependent on its cationic charge. Free Radic. Biol. Med., 2020, Vol. 162, pp. 14-26.

24. Krabbe J., Beilmann V., Alamzad-Krabbe H., Böll S., Seifert A., Ruske N., Kraus T., Martin C. Blood collection technique, anticoagulants and storing temperature have minor effects on the isolation of polymorphonuclear neutrophils. Sci. Rep., 2020, Vol. 10, no. 1, 14646. doi: 10.1038/s41598-020-71500-1.

25. Kremer V., Godon O., Bruhns P., Jönsson F., de Chaisemartin L. Isolation methods determine human neutrophil responses after stimulation. Front. Immunol., 2023, Vol. 14, 1301183. doi: 10.3389/fimmu.2023.1301183.

26. Kremserova S., Nauseef W.M. Isolation of human neutrophils from venous blood. Methods Mol. Biol., 2020, Vol. 2087, pp. 33-42.

27. Kuhns D.B., Priel D.A.L., Chu J., Zarember K.A. Isolation and functional analysis of human neutrophils. Curr. Protoc. Immunol., 2015, Vol. 111, pp. 7.23.1-7.23.16.

28. Liew P.X., Kubes P. The neutrophil’s role during health and disease. Physiol. Rev., 2019, Vol. 99, no. 2, pp. 1223-1248.

29. Mantovani A., Cassatella M.A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol., 2011, Vol. 11, no. 8, pp. 519-531.

30. Mayadas T.N., Cullere X., Lowell C.A. The multifaceted functions of neutrophils. Annu. Rev. Pathol., 2014, Vol. 9, pp. 181-218.

31. Mócsai A. Diverse novel functions of neutrophils in immunity, inflammation, and beyond. J. Exp. Med., 2013, Vol. 210, no. 7, pp. 1283-1299.

32. Nathan C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol., 2006, Vol. 6, no. 3, pp. 173-182.

33. Nauseef W.M. Neutrophils, from cradle to grave and beyond. Immunol. Rev. 2016, Vol. 273, no. 1, pp. 5-10.

34. Nauseef W., Borregaard N. Neutrophils at work. Nat. Immunol., 2014, Vol. 15, pp. 602-611.

35. Oh H., Siano B., Diamond S. Neutrophil isolation protocol. J. Vis. Exp., 2008, Vol. 17, 745. doi: 10.3791/745.

36. Quach A., Ferrante A. The application of dextran sedimentation as an initial step in neutrophil purification promotes their stimulation, due to the presence of monocytes. J. Immunol. Res., 2017, Vol. 2017, 1254792. doi: 10.1155/2017/1254792.

37. Rahman A.H., Tordesillas L., Berin M.C. Heparin reduces nonspecific eosinophil staining artifacts in mass cytometry experiments. Cytometry A, 2016, Vol. 89, pp. 601-607.

38. Scapini P., Calzetti F., Cassatella M.A. On the detection of neutrophil-derived vascular endothelial growth factor (VEGF). J. Immunol. Methods, 1999, Vol. 232, pp. 121-129.

39. Scapini P., Laudanna C., Pinardi C., Allavena P., Mantovani A., Sozzani S., Cassatella M.A. Neutrophils produce biologically active macrophage inflammatory protein-3alpha (MIP-3alpha)/CCL20 and MIP-3beta/CCL19. Eur. J. Immunol., 2001, Vol. 31, pp. 1981-1988.

40. Scapini P., Nardelli B., Nadali G., Calzetti F., Pizzolo G., Montecucco C., Cassatella M.A. G-CSF-stimulated neutrophils are a prominent source of functional BLyS. J. Exp. Med., 2003, Vol. 197, pp. 297-302.

41. Selsted M.E., Harwig S.S., Ganz T., Schilling J.W., Lehrer R.I. Primary structures of three human neutrophil defensins. J. Clin. Invest., 1985, Vol. 76, pp. 1436-1439.

42. Summers C., Rankin S.M., Condliffe A.M., Singh N., Peters A.M., Chilvers E.R. Neutrophil kinetics in health and disease. Trends Immunol., 2010, Vol. 31, no. 8, pp. 318-324.

43. Tamassia N., Bianchetto-Aguilera F., Arruda-Silva F., Gardiman E., Gasperini S., Calzetti F., Cassatella M.A. Cytokine production by human neutrophils: Revisiting the “dark side of the moon”. Eur. J. Clin. Invest., 2018, Vol. 48, Suppl. 2, e12952. doi: 10.1111/eci.12952.

44. Tamassia N., Cassatella M.A., Bazzoni F. Fast and accurate quantitative analysis of cytokine gene expression in human neutrophils. Methods Mol. Biol., 2014, Vol. 1124, pp. 451-467.

45. Tamassia N., Zimmermann M., Castellucci M., Ostuni R., Bruderek K., Schilling B., Brandau S., Bazzoni F., Natoli G., Cassatella M.A. Cutting edge: an inactive chromatin configuration at the IL-10 locus in human neutrophils. J. Immunol., 2013, Vol. 190, pp. 1921-1925.

46. Tecchio C., Micheletti A., Cassatella M.A. Neutrophil-derived cytokines: facts beyond expression. Front. Immunol., 2014, Vol. 5, 508. doi: 10.3389/fimmu.2014.00508.

47. Thomas H.B., Moots R.J., Edwards S.W., Wright H.L. Whose gene is it anyway? The effect of preparation purity on neutrophil transcriptome studies. PLoS ONE, 2015, Vol. 10, no. 9, e0138982. doi: 10.1371/journal.pone.0138982.

48. Trentini A., Murganti F., Rosta V., Cervellati C., Manfrinato M.C., Spadaro S., Dallocchio F., Volta C.A., Bellini T. Hydroxyethyl Starch 130/0.4 Binds to neutrophils impairing their chemotaxis through a mac-1 dependent interaction. Int. J. Mol. Sci., 2019, Vol. 20, no. 4, 817. doi: 10.3390/ijms20040817.

49. Watson F., Robinson J.J., Edwards S.W. Neutrophil function in whole blood and after purification: changes in receptor expression, oxidase activity and responsiveness to cytokines. Biosci. Rep., 1992, Vol. 12, no 2, pp. 123-133.

50. Zimmermann M., Aguilera F.B., Castellucci M., Rossato M., Costa S., Lunardi C., Ostuni R., Girolomoni G., Natoli G., Bazzoni F., Tamassia N., Cassatella M.A. Chromatin remodelling and autocrine TNFalpha are required for optimal interleukin-6 expression in activated human neutrophils. Nat. Commun., 2015, Vol. 6, 6061. doi: 10.1038/ncomms7061.


Supplementary files

1. Таблица 2
Subject
Type Исследовательские инструменты
Download (18KB)    
Indexing metadata ▾

Review

For citations:


Shvydchenko I.N., Bykovskaya E.Yu., Golubtsov V.V. Effect of multistage isolation of neutrophils on their counts and viability. Medical Immunology (Russia). 2025;27(1):107-118. (In Russ.) https://doi.org/10.15789/1563-0625-EOM-2948

Views: 361


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1563-0625 (Print)
ISSN 2313-741X (Online)